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] Two-timescale dynamics: Time-averaged, dissipative part of 2nd order self force is
just as important as fluctuations in conservative part of Ist order self force

Mino (2007), Hinderer & Flanagan (2008)
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1 Transient resonances will effect parameter estimation and possibly even
detectability

D ~ 1 4+ L + O(SO) Flanagan & Hinderer (2010)

€ \/E T. Hinderer's talk

- Change of phase by about 20 rad if waveform doesn't track resonance



Why bother with higher order? (2)

[ Could describe binaries with intermediate mass ratios and possibly with
comparable mass components

T. Damour's talk
[ Comparisons with post-Newtonian calculations
A.Le Tiec's talk

[l More accurate EOB models from higher-order SF data

T. Damour's talk

] Make definite statements about errors in truncating the perturbation theory at
lower orders (i.e., use 2nd order to put error bars on |st order)

1 Other (?)...



Why bother with scalar fields?

L1 Historically, scalar models offer a simpler framework

- The most useful regularization scheme -- Detweiler & Whiting (2003) -- first
developed and understood in a scalar model

- Numerical self force computations first accomplished for linear scalar models

- Conceptually cleaner because not a gauge theory

[ 1 As a result, the physics of higher-order self force corrections can be
investigated more easily compared to the gravitational case



A nonlinear scalar model

for EMRIs

Galley, 1012.4488 and |1 107.0766



A scalar analog of EMRIs [Galley, 1012.4488]

[ ] In the Lorenz gauge, a vacuum background spacetime, and ignoring spin and finite
size effects of the small body:

S[st ) :—167TGZE/an(ga5)Vthh 2_mzm/d7l)n(u )7 (=)
n=2 x n=0
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A scalar analog of EMRIs [Galley, 1012.4488]

[ ] In the Lorenz gauge, a vacuum background spacetime, and ignoring spin and finite
size effects of the small body:

o
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n x n=0

n
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*Verified explicitly through sixth order
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[ 1 However, one can make a field redefinition that removes all self-interaction terms in

the bulk spacetime .
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Two roads to self force at any order (1)

[ ] First road -- A variational principle of an effective action

7
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Two roads to self force at any order (1)

[ ] First road -- A variational principle of an effective action

W
Paper | S [Z ’w]
Galley, 1012.4488

Selcf[zllﬂzg]

B 0Sert|2], 25

= T

— ma* = Fp(7)

Z1=Z92=—ZX%

[—» Self-consistent formalism for open classical systems j

[see Galley 1012.4488, Galley & Tiglio (2010), Galley & Hu (2010)]



Two roads to self force at any order (2)

[] Second road -- The Detweiler-Whiting (DWV) scheme [Detweiler & Whiting (2003)]
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[] Second road -- The Detweiler-Whiting (DWV) scheme [Detweiler & Whiting (2003)]
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But, the DW scheme is implemented only at first order in perturbation theory




Two roads to self force at any order (2)

[] Second road -- The Detweiler-Whiting (DWV) scheme [Detweiler & Whiting (2003)]

Paper | Paper 2
Galley, 1012. 4488 Galley, 1107.0766

0.5 |[zH]
Lo i
eﬂ:zlazQ 52”( ):>ma = F ( )
y(z) =
0— 0Set|2), 25 s mat = FE(T) < >  mat — F}%(T)

521( ) Z1=2z2=2
Both methods give same
regular self force!

But, the DW scheme is implemented only at first order in perturbation theory




Self force from the Detweiler-Whiting scheme:
the Big Picture

Calculate the (formally singular) perturbations of the field through a given order

[1 Decompose the Green's function (or "propagator") into the DWV regular (R) and
singular (S) functions

L] Regularize divergent integrals

Singular integrals of singular integrals of... -- New feature!

[] Cancel divergences in the source of the perturbations by introducing counter
terms into the action -- Resulting regular field is the radiative field

Absent at first order -- New feature!

[ ] Substitute in resulting radiative field into SF equations of motion

Since counter terms were added to the action, they will also appear in the SF eom
-- New feature!

(1 Renormalize the body's mass via a mass counter term



Feynman diagrams

[] Field equation of motion
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Feynman diagrams

[ ] Field equation of motion
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First order perturbations:

L1 Trivial

= —m01/d7'Dret(x,z“)




Second order perturbations (1): .---

[ 1 Feynman rules give
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Second order perturbations (1): .---

[ ] Feynman rules give
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] Regularize the last integral by using the DV decomposition [Detweiler & Whiting (2003)]
Diet(z,2") = Dg(z,2") + Dg(x, 2")

[1 Define
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] Regularize the last integral by using the DV decomposition [Detweiler & Whiting (2003)]
Diet(z,2") = Dg(z,2") + Dg(x, 2")

[1 Define

l A
oot = miae (4—) /dTDret(x,z“) —|—m20162/dTDret(x,z“’)IR(z“)
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Second order perturbations (2):

l A
ooTs =micic (4—> /dTDret(x,z“) —|—m20102/dTDret(:C,z“)IR(z“)

T

The divergent first term is proportional to the first order perturbation and can be
cancelled by adding a counter term to the action

—01 / dr(z")

which sources the field equation but also the self force

Dwz..._51/d754($—2)

gl/2

Removing the singular field implies

5 A
1 = m0102 47T

4 )

= m20102/dTDret(x,z“)IR(z“)
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Comparison with Rosenthal's expression (1)
E. Rosenthal CQG (2006)

54 (z —
O = ¢0d® — q/df (;1/2 )

[ Rosenthal developed a somewhat complicated procedure to derive the regular 2nd
order perturbations

- Investigate behavior of wave equation when g — 0
- Make ansatz for particular solution

- Use physical considerations to identify divergent b.c.'s for field as field point
approaches worldline

- Solve the wave equation with those divergent b.c.'s

2
p(x) = q/dTDret(a:,z“) +q;[/d7‘Dret(x,z“)] —q2/d¢Dret(g;,zM)]R(zu) 4.



Comparison with Rosenthal's expression (2)

5 (z —
06 = 6,00 — q/df (g”j/Q &)

[ Rosenthal's model is a member of our class of nonlinear theories:
b= —L py=42L 4= —6
m m
L1 Psifield:
Yraa(x) = q/dT Diet(z,2%) — ¢° / dT Dyet(x, 2H) IR (2H) 4+ - -
L] Using the inverse of the field redefinition

B(x) = Y(x) + FUP() + -

gives agreement with Rosenthal

[¢($) = C]/dT Dyet(x, 21) + q—; [/dr Dret(x,z“)r — QZ/CZT Dyet(x, 2M)Ip(2") + - ]




Third order perturbations (1): & ... ... + -

C2 C2 1 G C3
[ ] Feynman rules give
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[ ] First line contains a singular integral of a singular integral in DW decomposition
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Third order perturbations (1):
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Third order perturbations (2):

1
1
1
1
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Putting together gives a divergent contribution

1 / A 2 A /
— —m361 (C% —l— 56163) /dT, Dret(x, Z'u ) [(E) —|_ 2(E>IR(Z,UJ )]
and a regular piece
_ —m3clc§/d7’ Dret(x,z“/) /dT" DR(Z“/,Z“”)IR(Z“H)
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Introducing another counter term into the action allows for the divergent piece to
be subtracted

1
—552 /dT ¢2 (2")



Third order perturbations (2):

]
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C2 C2 1 (1 C3 C1

Putting together gives a divergent contribution

= —m3ec 02—|—lcc /dT’D (x z“/) A 2+2 A 1 (ZM/)
11 %2 9 1€3 ret \«v» AT AT R

and a regular piece

- )
[ Dt )[4 D i
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Introducing another counter term into the action allows for the divergent piece to
be subtracted
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Scalar perturbations through 3rd order

[ Combining all the contributions to the scalar perturbations then gives the radiative
field

a4 )

3.2
Drad(z) = / 7' Dyey (7, 2 ){ —mer +mPeiealg(2) — LB 2 )

2

—m3clc§/d7” DR(z“/,z“N)IR(z“H) — 0(64)}




Self force through 3rd order (1)

[ The counter terms change the equations of motion

0 (x — 2)

L (z) = /dT v {(mq +61) + (mea + 82)¢ + %m63¢2 NI }

1 1
F'u(’T) = —(CI,'u + P'u’/vy){(mcl + 51)¢(z“) -+ §(m02 + 52)¢2(2M) + 6m03¢3(zu) + ... }
] The radiative field solves the wave equation (obviously)

() = traa () = / 07" Dy (20, 2 ) S (=)

[ ] Evaluated on the worldline the radiative field has a singular piece and a regular piece

A

Yraq(2H) = ESR(ZM) + /dT/ DR(z“,z“/)SR(z“)

and defines the regular part of the field on the worldline

V() = / dr' D", 2% )Sp(z")



Self force through 3rd order (2)

[1  Substituting the radiative field into the SF yields a regular piece and singular pieces
that are proportional only to the 4-acceleration, which can be removed by adding a
mass counter term into the action

—0m / dr

[ ] The 3rd order SF therefore only involves the regular part of the field and we
observe that the final expression can be condensed to

Fi(t) = —m(a* + P’“’Vy){cl + copp(2") + 3031@{(2“)} + O(eh)

[ ] In other words, one can replace the formally divergent retarded field in the SF with
the regular part of the field

Detweiler-Whiting scheme seems applicable
at higher orders
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[ Renormalization via counter terms is an efficient and consistent way of removing
divergences
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[1 Dimensional regularization is an efficient way to evaluate power-divergent integrals

(The divergent integral A evaluates to zero in dimensional regularization)



Lesson | for higher-order GSF:

[ Renormalization via counter terms is an efficient and consistent way of removing
divergences

Lesson 2 for higher-order GSF:

[1 Dimensional regularization is an efficient way to evaluate power-divergent integrals

(The divergent integral A evaluates to zero in dimensional regularization)

Lesson 3 for higher-order GSF (?):

[1 Detweiler-Whiting scheme should also be applicable for GSF



Non-perturbative scalar

self force effects

(in preparation)



Assumptions

1 1
O S[P, 9] = D) / VP — m/dT (1 + ay(z) + 502@02(2))
L1 lgnore dissipative effects, finite size effects, and spin
Consequence (1) oy :m/dT (c1 + cxtb(2))
[ ] Formally singular solution
Y(xr) = —mey /dT Dyet(z, 2H) — mCQ/d’T Dyot(x, 2H)p(2H)

[ ] Evaluating the field on the worldline and evaluating the singular integrals in
dimensional regularization (which then vanish)

Yr(z") = —merIg(2*) — TTLCQ/dT/ DR(Z“,z“/)wR(z“/)

] For circular geodesics in Schwarzschild, the regular part of the field is constant in
proper time [Diaz-Rivera + (2004)]

é )
B mc1Ir(r,)

Vr(ro) = 1 4+ mealg(r,)

N\ _/




Nonperturbative orbital quantities (1)

Using the regular part of the field, it is straightforward to use the components of the
worldline equations of motion for circular orbits to derive non-perturbative
expressions for:

Effective potential 1+ 7,0, InC(r,)
V L)) = . ovr O
(T ) f(r ) 1 — roar lﬂ f1/2 (7“0)

Orbital frequency f(ro) Or(fY2(r,)C(ro))

2 _
e (7“0) - ro 1+7r,0,In C(TO)
ut N 14 7,0,C(r)
w=f o)y [ 12 rody In(f1/2(ro)C(r,))

etc. |
C(2#) = 1+ extn(eh) + Seavh(=")



Nonperturbative orbital quantities (2)

The values of (4 pi M Ir(ro)), which are independent of the mass ratio, were
calculated already in Diaz-Rivera + (2004) so one can simply use those values to plot
how these quantities vary over the whole range of mass ratios

e.g., Effective potential

1.00 1
0.95 |
>
:C—‘E L
2 090 - _
5 I
g q=0.1
g L
= 0.85 - f
Q L S
2 q=1
88
O.80j .
0.75; | . T B B S
30 50 70 100 150 200

r/ M
C1 — 2, Co — 0.1



Nonperturbative orbital quantities (3)

e.g., ut"gauge invariant”

1.0E [ B | . | A R R
10 15 20 30 50 70 100

r/M

N P

150 200

C1 :2, C9o = 0.1



Rich structures

L]

0.50
0.49
048

047

Effective potential, V

0.46 -

0.45

If the c2 parameter is much larger than ¢ than one finds rich structure in the non-
perturbative orbital quantities
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An ambiguity
[ Worldline equations of motion
ma* = —m(a" + P**V,)C(2)

[ 1 Collect 4-acceleration to one side

mC'(z)a" = —mP"'V,C(2)



An ambiguity

[ Worldline equations of motion
ma* = —m(a" + P**V,)C(2)
[] Collect 4-acceleration to one side
mC'(z)a" = —mP"'V,C(2)

[ ] Two equivalent interpretations:

|) Particle carries an effective mass

Meg = MmC(2)
2) Inertial mass but an effective self force

Fr(r) = zg%((;)) = —mP"'V, InC(2)




An improved perturbation theory (1)

] In general, one cannot resum the field to get exact, non-perturbative expressions.
For example, at first order the effective action approach gives

mat = —mecq (a” + P*"V ) YR (2)

L] Typically, the Ist term on the right is ignored as being a higher order correction. But

it can be regarded as part of the "energy" at |st order since it came from the
variation of a first order effective action.

Keeping that term implies an effective SF given by

mcy PPV R (2)
1+ c1Yr(2)

[ What's the implication for the |st order potential, say?



Effective Potential

An improved perturbation theory (2)

| st order
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Effective Potential

An improved perturbation theory (2)

| st order

1.00 Ty ‘ \ \
i (B
[\
My
095 o\ —
i my N - =
i nh VN ==
r ny = —
\ —=
0.907 n\ \\ Q — —' —— /////// B
L m N x /////// ///
| “\\\ ~ o _Z /////// z
r \\\ i = /////
) _ o 77,
0.85 - W~ _ -2 /7 B
i w - i //// A
L %
| \\1\\\ - ////////
L \\\ ///// A P
0.80 - NS S a
L © - )7 S
-7 -
0.75 Rty
0.70 Lo
3.0 5.0 7.0 10.0 15.0 20.0
r/M
q=0.1 3
— . <
=
[
Q
N
o
- 1 ¥
q — v
>
=
3
fam
8

C1 22, C2o = 0.1

Improved |st order

1.00 [

0.95 -

0.90

085 -

0.80

075 -

070 -
3.0

50 7.0 10.0
r/M

15.0

20.0



Lesson 4 for higher-order GSF?:

[1  First order GSF from an action also gives rise to a naively 2nd order contribution
proportional to

1
—167Gm <§a“uo‘uﬁ + P“(O‘aﬁ)) hii(2)

It would be worthwhile to see if first order GSF predictions for ISCO shifts can be
improved by using the corresponding effective GSF

On a circular geodesic

1
tomma” ( Gutuhly(ro) + 9 (r)HE )

[1 The corresponding |st order effective GSF (radial component) would then be

167TmP“O‘B”V,,h§B (75)

= T 8r (R () + g (ro) R r)) T O

ot (7o)

How might this compare with NR LSO's for comparable mass binaries?



Summary

L]

We constructed a class of nonlinear scalar models analogous to the
perturbative description of EMRIs in GR

Calculated the scalar perturbations and SF through 3rd order

Explicitly showed that DW scheme is valid at higher orders

A subclass of these models can be resummed exactly to yield non-
perturbative expressions in the mass ratio

Showed how various orbital quantities vary with full mass ratio range

Perturbative SF can be improved by retaining the "effective mass" piece



