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1. Self-force differences 

with Theo Drivas, arXiv:1009.0504 
 
•How much does the central object type affect the self-force? 
 

2. Self-force and averaging 
arXiv:1104.5635v1 
 
•Self-force as angle-average of the bare force 
•Gauge-dependence, mode sum regularization 
•Mass renormalization and the “4/3 problem” 
 



Self-force Differences 

The self-force on a scalar charge moving through a vacuum region  of spacetime is 
given by (Quinn 2001) 

Local ALD-type force Non-local tail integral 

A self-force is hard to compute, requiring regularization.  However, consider the 
difference in self-force between charges moving through spacetimes that agree 
locally, but not globally.  (The orbit is kept the same; for example, a circular orbit 
around a star versus that around a black hole.) This self-force difference … 

• …is easy to compute (no regularization). 
• …probes the (non)locality of the force. 
• …gives the self-force for the new spacetime once the result is 
known for the old spacetime. 



Computing a Self-force Difference 

The Green’s function satisfies 

The “Green’s function difference”          satisfies the source-free equation 
and is smooth at the particle zero in a neighborhood of the particle. 

self-force: 

self-force difference: 

After computing the Green’s function (or field), you still must do a delicate 
regularization to compute the self-force.  After computing the Green’s function 
difference (or field difference), no regularization is required to get the self-force 
difference. 

regularization 

straightforward 



For Static Spherically Symmetric Central Bodies 

Suppose our charge orbits a star instead of the black hole.  
How does the self-force change? 

The Green’s function for each spacetime (star and black hole) can be computed in 
a mode expansion.  Then subtract mode-by-mode, 

: A normalization factor 

: The solution of the star radiation equation regular at the origin 

: The solution of the Schwarzschild radial equation ingoing at the horizon 

: The solution of the Schwarzschild radial equation outgoing at infinity 

Green’s function difference: 

rq: source point r0: radius of star r:  field point 



A Prettier Expression 

For body A/B, define radial function A/B to be the interior regular solution 
continued into the Schwarzschild exterior by matching at the boundary.   
 
Then the self-force difference B minus A is given by 

The Wronskian of the origin-regular solutions of the respective spacetimes 
controls the self-force difference. 



Circular orbit about a thin-shell spacetime 



Comparing radial and circular orbit SF’s and SFD’s 



Self-force Differences Results 

1. We did a complete analysis of the force on charge held static at a large 
distance from an arbitrary central body. 
 

2. For the self-force difference (from Schwarzschild) for circular orbits a thin-
shell spacetime, we found  
 

1. The change in central body has a much bigger effect on the radial 
(conservative) self-force than on the angular (dissipative) self-force 
 

2. The self-force difference for a static charge is a good estimator of the 
radial self-force difference for a circular orbit.  That is: 
 

Shell circular orbit SF = BH circular orbit SF + static case SF Diff 



Part II. Self-force and Averaging 

1. Motivation 
 

2. Review of the formalism in Gralla&Wald 2008  
 

3. Hamiltonian Center of Mass (CM) and parity condition 
 

4. Simple derivation of equations of motion 
 
 
 

5. Gauge-invariance of mode-sum regularization 
 

6. Mass renormalization and the 4/3 problem 
 

7. Ideology: averaging vs. regular/singular decomposition 



Lorenz gauge 
Green’s Function 

Lorenz Gauge force 

The MiSaTaQuWa equation gives the Lorenz gauge motion, 

To get the force in another gauge, need to use a transformation law. 

•At a theoretical level, a particular gauge choice is playing a preferred role, even 
though Einstein’s equation (which determines the motion) is covariant.  
 
•At a practical level, it appears that the computation of a self-force in an 
alternative gauge must proceed through Lorenz gauge, eliminating much of the 
practical appeal of working in the Lorenz gauge in the first place. 

I will identify a class of gauges based on the requirement that the Hamiltonian 
center of mass of the particle is well-defined, and show that the force is given by the 
angle-average of the bare force.  Interpetation: self-force = net gravitational force. 



Formalism and Mass Dipole CM 

To do perturbation theory of small bodies in a mathematically rigorous manner, 
we consider a one-parameter-family of metrics containing a body that scales to 
zero size and mass with the perturbation parameter, λ. 
 
The worldline, γ, that the body ``disappears to’’ characterizes its lowest-order 
motion.  We characterize the corrected motion  by a deviation vector, Z, on γ. 
 
Our definition of Z is essentially to compute the center of mass of the body in 
the ``near-zone’’, where the metric is stationary and asymptotically flat.  We 
used a “mass dipole” notion, 

near-zone background metric 



Hamiltonian CM and Parity Condition 

Regge and Teitelboim (1974) gave a definition of center of mass as the 
conserved quantity associated with the asymptotic boost symmetry in the 
Hamiltonian formulation of asymptotically flat general relativity.  

The definition is more general than the mass dipole definition in that it 
applies to non-stationary spacetimes, but also less general in that it 
requires a ``parity condition’’ on the coordinates in order to be defined. 

Parity condition:  

Near zone background:  

(i,j label spatial coordinates) 

In terms of the far-zone picture this restricts the divergent part of the 
first order perturbation, 



To Parity or not to Parity? 

The CM definitions are equivalent in the region of shared validity.  The question 
of which to use is simply the question of whether to impose the parity condition. 

On the one hand, one could view Regge-Teitelboim analysis as indicating 
that parity-condition-violating coordinates are “too irregular” to define the 
center of mass, even if the mass dipole formula is still finite. 

On the other hand, one could view the mass dipole formula as providing 
an extension of the of the RT center of mass to a larger class of coordinates 
within the stationary case. 

In any case, the parity condition offers a number of simplifications in 
the present context, and I will adopt it. 



Equation of Motion 

Under gauge transformations allowed by our assumptions, 

The change in the spatial part of the first-order far-zone perturbation is 

In order to preserve the parity condition that C is even parity, α must be 
of the form of a constant plus an odd parity function, 

In this case the center of mass (“deviation vector”) changes by the constant 
part c.  We can write this as an angle-average, 

1/r 



Now we can “drop the deltas” to obtain 

Where A is the constant of integration—some unknown gauge-invariant piece.  
We may now work in any convenient (parity-regular) gauge to determine A.  (It 
works out to be the Papapetrou spin force.) 

Ricci Identity Christoffel term;  
vanishes by parity 

Key Manipulation 

Consider the change in acceleration due to a change of gauge, 

recall 



What if you don’t impose the parity condition? 

As far as I can tell, it’s a big mess: 

The equation of motion in a parity-irregular gauge contains a gauge vector to 
some reference (parity-regular) gauge.  The acceleration is not given by a local 
expression involving just the spacetime metric! 



“Parity-Regular” gauges 

I believe that my results apply to all gauges in which the metric perturbation 
goes like 1/r and satisfies the parity condition. 
 
However, I have only shown that my results hold for gauges related to a gauge I 
used (equivalently related to Lorenz gauge) by transformations of the form 

where certain restricted log terms are also allowed.  I name these gauges “parity-
regular”. 

Bob and I were unable to find a complete proof of our belief that these two 
classes are equivalent, but it seems obvious.  See arXiv:1104.5205. 



Mode-sum Regularization 

To compute the self-force in a black hole background, Barack and Ori told us 
to numerically determine the spherical harmonic modes of the metric 
perturbation, and to perform a subtraction from each mode. 
 
In terms of the angle-average result, we must find an S such that 

Mode sum regularization relates a mode decomposition to a local average.   
This type of relationship is familiar… 

The Fourier series of 
a discontinuous 
function converges 
to the average at 
discontinuity. 



For spherical harmonics, the average is over a small circle surrounding the pole.  
For the change in force under a change of parity-regular gauge, we have 

polar circle average local inertial sphere average 
(i.e., self-force) 

The first equality is a general theorem. 
 
The second equality follows from the 
parity condition: δF has the form of 
“constant plus odd-parity”, and pretty 
much any old average will pick out the 
constant part. 



The process of decomposing into modes and summing automatically averages  
the change in bare force, computing its contribution to the self-force! 

This means that the same subtraction S may be used in any parity-regular gauge. 

Both Lorenz gauge and the modified radiation gauge of the Milwaukee group 
satisfy the parity condition.  This means that Barack and Ori ‘s Lorenz gauge results 
may be used in the radiation gauge. 

modesum formula using 
new F with the same S… 

...does indeed give the 
correct new force 

HOPEFULLY… 



Self-force and Averaging Results 

1. The self-force in any parity-regular gauge is given by the angle-
average of the bare force in that gauge. 
 

2. The perturbed mass is constant in time 
 

3. The mode sum regularization scheme is gauge-invariant under the 
parity condition. 



Supertranslation Dependence of Mass Dipole Center of Mass 

Consider a supertranslation, 

The old g00  is given by 

So, just by plugging in we have 

and the center of mass changes by 

with parity condition: 

constant odd parity 

(so that the 1/r part of hij is even parity) 

If I had used the left form in my derivation I would have naturally been led to 
the expression <(F.n)n> instead of <F> for the self-force.  An aesthetic choice? 



Does averaging work for electromagnetism? 

At first glance, the answer is no: the average gives 

Mass renormalization!  AHH!!! 

In my opinion this kind of mass renormalization is a complete physical disaster 
(any mathematical issues aside): it requires the body to be made of negative 
energy matter.  Another worry is numerical coefficient, which doesn’t match 
the energy of a shell: “the 4/3 problem”. 

However, remember the (F.n)n average?  It turns out that works! 



Ideology Slide 
(Given knowledge of the correct self-force equations,  

what is the best way to think about them?) 

Averaging Reg./Sing. Decomposition 

Works in a big class of gauges Works only in Lorenz 

Simple to write down 
(requires only notion of local 
inertial coordinates) 

Requires Hadamard 
decomposition to define 

Physical interpretation: self-
force is net force on the body 

Physical interpretation: ??? 
Why doesn’t the singular field 
affect the motion? 

Mathematical properties: ??? Mathematical properties: 
smooth solution of source-
free field equation. 

Works for EM too Works for EM too 

Final score: 4-2.  Same as Mexico > USA. 



1. The change in central body has a much bigger effect on the radial 
(conservative) self-force than on the angular (dissipative) self-force 
 

2. The self-force difference for a static charge is a good estimator of the 
radial self-force difference for a circular orbit. 

1. The self-force in any parity-regular gauge is given by the angle-
average of the bare force in that gauge. 
 

2. The perturbed mass is constant in time 
 

3. The mode sum regularization scheme is gauge-invariant under the 
parity condition. 

SF Differences Results 

Gauge and Averaging Results 
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