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The self-force problem

Compact objects coupled to long-range fields carry some of these fields
with them as they move. How does this self-field affect their motion?

Fields can irreversibly radiate energy and momentum. This implies a
recoil.

Fields can also reversibly transfer energy and momentum to (and
from) matter. There are therefore “conservative” effects too.
Self-force is not just radiation reaction!
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Typical consequences of the self-force

For a sufficiently small object
near internal equilibrium in orbit
around a large central attractor:

Trajectories usually precess,
circularize, and decay.

Orbital frequencies change.

Linear and angular momentum
are shifted (along with higher
multipole moments of the
stress-energy tensor)

Small charged particle orbiting a large

spinning charge in flat spacetime with and

without self-force corrections
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Why study self-force?

This subject has been extensively studied in various contexts over the last
century. Motivations have changed over time:

Models for elementary particles

Guidance to fix infinities in QFT

Explain inertia

Obtain a deeper understanding of motion in classical field theories

Predict behavior of certain astrophysical systems

...
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What’s so hard?

Multiple length scales

Delicate subtractions

What is a “self”-field anyway?

What aspects of motion are “interesting?” What is meant by “force?”

Abraham Harte (AEI) Foundational aspects of the self-force July 4, 2011 6 / 27



Motion in general

The full (classical) description of, say, a binary is provided by coupling
together the various PDEs describing the evolution of the fields and the
matter.

Gab = 8πTab

ua∇aρ+ (ρ+ p) = 0
(ρ+ p)ub∇bua + hab∇bp = 0

p = p(ρ)

 =⇒

Solving (and providing initial data for) these equations is difficult. Doing
so provides a very detailed prediction for the behavior of a very specific
system.

What about a coarser description of more generic systems?
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Internal and external variables in celestial mechanics

This question is interesting even in Newtonian gravity.

The standard solution is to define “internal and external variables” for
(say) an N-body system:

External (or bulk) variables

Center of mass positions
Linear momenta
Angular momenta

Internal variables

Density distributions
Internal velocities
Thermodynamic variables

These two sets couple only very weakly to each other.

The behavior of the external variables is relatively simple and generic.
Focus on these.
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A way forward

One thing to do in relativistic cases is therefore to define something like a
“center of mass” and figure out how that evolves.

Center of mass doesn’t have an obvious definition in most cases, so
one might try looking at point particles (where it is obvious).

This fails for standard theories (GR, Maxwell EM, . . . ) unless special
rules are invented only for the motion of point particles.

One might physically argue for such rules – “axiomatizing” the
problem – but what do they mean for real (non-point) objects?

A proposal

Derive an effective theory describing some bulk features of realistic objects
as quantities evolving on (some notion of) a preferred worldline.
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Effective worldlines are complicated

Which “worldline” is interesting?

Should this even be a collection of points in the physical spacetime?
Not if modelling black holes!

There are multiple approaches in the literature, some of which are
quite indirect.

All definitions are (and must be) nonlocal and coupled to fields with
an infinite number of degrees of freedom.

This means that “effective point particles” constructed from realistic
objects can behave in counterintuitive ways if you look too
closely. . . Causality is nontrivial, for example.
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Two types of approach to gravitational self-force

Look outside body

Allows strong internal
gravity

Abstract worldlines (can
describe black holes)

Results only for specific
classes of objects

Requires existence of a
buffer region

No relation between body
parameters and internal
structure

Look inside body

Very general objects allowed

No buffer region needed

Explicit relations between
body parameters and
internal structure

Concrete worldlines (cannot
describe black holes)

Currently no allowance for
strong internal gravity
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A unifying principle

Regardless of approach, the physical result is:

Equations describing the bulk motion of a self-interacting body are those
of a test body moving in a certain fictitious (usually vacuum) field.

This holds for. . .

All objects in Newtonian gravity and electrostatics

Essentially all objects coupled to linear scalar fields or Maxwell fields
in fixed curved spacetimes: AIH [2008, 2009, 2010]

Well-isolated uncharged masses in GR with slow internal dynamics
but possibly strong internal gravity: Gralla & Wald [2008], Pound
[2010], Gralla [2011]

Essentially all uncharged masses in GR whose internal metric can be
approximated by a linear perturbation to a vacuum metric: AIH [2011]
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Effective test body motion in Newtonian gravity

The total force and torque acting on a Newtonian mass is

dpi

dt
= −

∫
ρ∇iφd

3x =: Fi [φ]

dSi

dt
= −

∫
ρ[(x − z)×∇φ]id

3x =: Ni [φ]

Define an effective field φ̂ satisfying ∇2φ̂ = 0:

φ̂ := φ−
(
−
∫

ρ(x ′)

|x − x ′|
d3x ′

)

There’s no self-force or self-torque:

Fi [φ] = Fi [φ̂] Ni [φ] = Ni [φ̂]
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Newtonian multipole expansion

φ̂ is a vacuum field and usually varies slowly: φ̂(x) = 〈φ̂〉S2(r ,x).

It can therefore be expanded about the center of mass z(t):

dpi

dt
= −

∫
ρ∇i φ̂d

3x = −m∇i φ̂(z)− 1

2
Q jk(t)∇ijk φ̂(z) + . . .

dSi

dt
= −

∫
ρ[(x − z)×∇φ̂]id

3x = εijkQkl(t)∇j
l φ̂(z) + . . .

These are the same as the equations satisfied by an extended test
mass moving in the fictitious vacuum potential φ̂ (the “external
field”).
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Interpretations of the effective field

There are various ways to compute φ̂. . .

Subtract self-field from full field inside body:

φ̂ := φ−
(
−
∫

ρ(x ′)

|x − x ′|
d3x ′

)
.

“Average” the physical field over a surface:

φ̂(x) =
1

4π

∮ [
∇′φ(x ′)

|x − x ′|
− φ(x ′)∇′

(
1

|x − x ′|

)]
· dS ′

= 〈φ〉S2(r ,x) −
(
−m

r

)
.
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Coupling relativistic fields

Similar ideas hold for non-Newtonian systems. Generically, self-forces no
longer vanish, but are still “simple.”

They do two things to the test body laws of motion :

1 Relations between the multipole moments and the matter distribution
change (“stress-energy of the self-field”).

2 The field in which the object appears to move is no longer purely
“external” (except under very special boundary conditions).
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Non-Newtonian effective fields

Physically-motived axioms for point particles coupled to relativistic fields
proposed by Dirac [1938], Quinn & Wald [1997], Quinn [2000], Detweiler
and Whiting [2003], Poisson [2004/2011]. In one form,

“Detweiler-Whiting axiom”

Choose a certain Green function GS satisfying D[GS] = δ and define
φ̂ := φ−

∫
ρ′GSdV ′. Then D[φ̂] = 0 and mz̈a = f a

test,mon[φ̂].

The remaining self-field is interpreted only as renormalizing m.

This is now a derived result for very general non-point objects.
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Effective test bodies in General relativity

Given a compact uncharged matter distribution in GR, non-perturbative
definitions of linear and angular momentum (pa,S

ab) have been provided
in AIH [2011]. A non-perturbative “S-field” hS

ab has also been defined.

Generalized gravitational Detweiler-Whiting axiom (AIH [2011])

If gab|suppTab
is sufficiently near a “background metric” ḡab satisfying

Ḡab + Λḡab = 0 and if ĝab := gab − hS
ab varies sufficiently slowly inside the

body, (pa, S
ab) evolve via Dixon’s [1974] test body multipole expansions

in the fictitious metric ĝab (to all multipole orders).

All multipole moments (not only mass!) are shifted by hS
ab:

pa = pbare
a + δpa, Sab = Sbare

ab + δSab, Jabcd = Jbare
abcd + δJabcd
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The simplest example

Apply the center of mass condition paSab = 0 to pick out a unique
worldline z(s) about which to evaluate the momenta.

The simplest test bodies move on geodesics wrt the background metric.
Appropriate self-gravitating bodies do the same wrt ĝab:

D̂2za

ds2
= 0, m = const.

“Self-force” at this level is geodesic motion in a certain vacuum metric...
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Some approximations

If. . .

gab can be approximated by a retarded Lorenz-gauge metric
perturbation to a vacuum background (then ĝab → gR

ab),

All timescales are long compared to object’s diameter:

‖z̈‖d � 1, ωintd � 1,

External length scales are large compared to the diameter:

d‖∂n+1ĝ‖ � ‖∂nĝ‖,

then

D̂2za

ds2
→

D2
Rza

ds2
→ 0⇐⇒ MiSaTaQuWa equation
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MiSaTaQuWa equation

An equation (due to Mino, Sasaki, & Tanaka [1997] and Quinn & Wald
[1997]) that allows self-interaction of a real object to be computed as
though it were a point particle experiencing a force wrt a background
metric ḡab (related to gab via Lorenz gauge)

D̄ża

ds
= (ḡad + żażd)żb żc(Hdbc − 2Hbcd) + . . .

Hc
ab := 4m lim

ε→0

∫ s−ε

−∞
∇̄c Ḡ aba′b′

ret ża′ żb′ds ′

This is the simplest self-force effect. Test body corrections to geodesic
motion (like the Papapetrou force) can be comparable or larger!
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Self-interaction and spin

Spinning bodies (with negligible higher moments) satisfy the Papapetrou
equations:

D̂pa

ds
=

1

2
R̂bcd

aSbc żd

D̂Sab

ds
= 2p[ażb]

If the spin is small, it is parallel-transported wrt ĝab. Self-torque equivalent
of MiSaTaQuWa (AIH [2011]):

0 =
D̂Sa

ds
=

D̄Sa

ds
+ 2mżb żc R̄abc

dSd +
1

2
żbSc(Hcab − 2H(ab)c)
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Why doesn’t hS
ab matter?

Letting Fξ(x , x ′) = (“force density at x due to matter at x ′”), the
interesting part of Pξ(Σ2)− Pξ(Σ1) has the form:∫

Ω
dV

∫
W
dV ′Fξ(x , x ′) =

1

2

∫
Ω
dV

(∫
W

dV ′[Fξ(x , x ′) + Fξ(x ′, x)]

+

∫
W \Ω

dV ′[Fξ(x , x ′)−Fξ(x ′, x)]

)
.

The first line looks like Newton’s 3rd law. It gives a
force involving LξĜ aba′b′

S , which is a (nonlocal) linear
functional of Lξĝab. It renormalizes the quadrupole
and higher moments.

The second line has a contribution localized to small
finite regions around Σ1 and Σ2. It renormalizes the
momenta.

Ω

W \ Ω

W \ Ω

Σ
2

W \ Ω

Σ
1
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Comments and cautions

MiSaTaQuWa (and more) has now been derived from first principles
in various ways.

“Worldlines” that this equation produces do not have a trivial
interpretation.

Many approximations are required for MiSaTaQuWa. They may or
may not apply to your problem of interest.

Other effects (like spin) can easily be as important as gravitational SF.

MiSaTaQuWa is a general-purpose equation. Better starting points
may exist for special problems (symmetric backgrounds, quasicircular
orbits in specific spacetimes, etc.)
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Open problems

What about gravitational SF in the presence of non-gravitational
forces (like EM)?

Nonlinear effects?

Notion of “self-field” much less clear (and may not be useful)
Is there still a sense in which things “move on an effective vacuum
metric?”
Or does this require assumptions on sphericity or internal equilibrium?
Is there a useful notion of “motion?”

Sharp long-term error estimates

Computational methods
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Perturbative worldlines

The most popular choices for worldlines are intrinsically perturbative
(Gralla & Wald [2008], Pound [2010], etc.).

Use variants of matched asymptotic expansions to ask where the far-field
metric perturbations come from if they were produced by a point source
coupled to the linearized (Lorenz-reduced) Einstein equation.

Choose Γ such that gab ≈ φ∗(ḡab + hlin
ab [Γ]) in some buffer region N ⊂ M.
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Non-perturbative worldlines

One can also non-perturbatively choose a physical worldline inside a
matter distribution (e.g., Ehlers & Rudolph [1977], AIH [2011]).

Look for something with nice properties and argue that
it’s representative.

Usually consider points z satisfying
pa(z ,Σ)Sab(z ,Σ) = 0.

Problem is pushed into defining momenta pa and Sab.
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