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In what sense is radiation reaction a quantum effect?

0. Every ‘classical phenomenon’ is an approximation to a
quantum phenomenon.

1. There are indisputably-quantum forces which are of the
same order in ~ as the radiation-reaction force.

2. (We argue that) the conservative part of the
radiation-reaction force comes from a one-loop diagram.
(The dissipative part comes from a tree diagram.)

∞. Is there an important quantum contribution to the
radiation-reaction force in astrophysics that cannot be
derived classically? Unlikely but not impossible?
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Anomalous magnetic moment and radiation reaction

The electron energy in magnetic field H with the spin aligned
with H:

V =
e~

2mec
gH,

where the gyromagnetic ratio is

g = 2
(

1 +
α

2π
+ · · ·

)

.

α ≈ 1/137. But

α =
e2

~c
in cgs units.

Hence the contribution of the anomalous magnetic moment to
the potential energy is

Vam =
e3

mec2 H.
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Anomalous magnetic moment and radiation reaction

If H varies in space, the force on the electron due to the
anomalous magnetic moment is

Fam = −
e3

mec2∇H.

The Abraham-Lorentz-Dirac force?
The acceleration of an electron in magnetic field H:

a = −
e

mec
v × H.

Assuming that H does not vary rapidly in space, we have

FALD =
2e2

3c4 ȧ = −
2e3

3mec4 a × H.
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Anomalous magnetic moment and radiation reaction

Fam = −
e3

mec2∇H, FALD = −
2e3

3mec4 a × H.

If |a| ∼ v2/r (circular motion of radius r ) and if |∇H|/H ∼ ε/r ,
then

|FALD|

|Fam|
∼

1
ε

(v
c

)2
.

For non-relativistic motion

|FALD| � |Fam| if (v/c)2 � ε.

The loop expansion is the ~-expansion only if mc/~ is regarded
as O(~0). [Itzykson and Zuber, page 288]
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ALD and anomalous-magnetic moment forces from
QED?

Consider an electron moving in an external electromagnetic
field.

Question: Do we recover the radiation-reaction force and the
‘anomalous-magnetic-moment’ force at order e2 in the ~ → 0
limit of QED?

YES, if the external force is due to A(t), i.e. if it is a
time-dependent homogeneous electric field
Giles D. R. Martin, [arXiv:0805.0666 [gr-qc]].

How do we find these forces at order e2 in the limit ~ → 0?
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The ~ → 0 limit of the position shift

We work in Minkowski spacetime.

1. We accelerate an electron wave packet by a vector
potential A(t) in t < 0. This wave packet emits a photon
with some probability.

2. We compare the position expectation value 〈x(0)〉0 without
the EM interaction and 〈x(0)〉e with the EM interaction and
define the position shift in the limit where the wave packet
is a momentum eigenstate by

∆x(0) = 〈x(0)〉e − 〈x(0)〉0.

3. We read off the radiation-reaction force by interpreting
∆x(0) to have arisen from a classical force.

In this talk I assume that the initial and final momenta are the
same for simplicity.
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The ~ → 0 limit of the position shift

Suppose the electron of momentum p denoted |p〉 evolves as

|p〉 →

[

1 +
i
~
F(p)

]

|p〉

+
i
~
|p〉 ⊗

∫

d3k
(2π)32|k|

Aµ(p,k)a†
µ(k)|0〉,

F(p): forward-scattering amplitude of order e2 (conservative),
Aµ(p,k): one-photon emission amplitude of order e
(dissipative); k is the wave number of the photon.

one photon emission forward scattering
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The ~ → 0 limit of the position shift

electron: p (classical) p/~ (not classical)
photon: ~k (not classical) k (classical)

We find
∆x(0) = ∆x(0)diss +∆x(0)cons,

where

∆x(0)diss = −
i
2

∫

d3k
(2π)32|k|

Aµ(p,k)

↔
∂

∂p
Aµ(p,k),

∆x(0)cons = −
∂

∂p
ReF(p).
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Classical emission process

The emission process is essentially classical in the limit ~ → 0.

Reminder
If xp(t) is classical position of the electron of momentum p
under the electric force E(t) = −Ȧ(t), then

j(p)(x, t) = eẋp(t)δ3(x − xp(t)),

j0(p)(x, t) = eδ3(x − xp(t)).

If Gret
µµ′(x , x ′) is the retarded Green’s function in the

Feynman/Lorenz gauge, then

Aret
(p)µ(x) =

∫

d4x ′Gret
µµ′(x , x ′)jµ

′

(p)(x
′).

(x = (t ,x), x ′ = (t ′,x′))
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The dissipative part of the position shift

∆x(0)diss = −
i
2

∫

d3k
(2π)32|k|

Aµ(p,k)

↔
∂

∂p
Aµ(p,k).

One finds (with jµ adiabatically turned off)

Aµ(p,k) = lim
T→∞

∫

t=T
d3x eik ·x

↔
∂t Aret

(p)µ(x).

(k · x = |k|t − k · x). Then

∆x(0)diss =

∫

d4x∂pjν(p)(x)A
rad ν(x),

where

Arad
µ (x) =

1
2
(Aret

µ (x)− Aadv
µ (x)).
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The dissipative part of the position shift

∆x(0)diss =

∫

d4x∂pjν(p)(x)A
rad ν(x).

This can be shown to equal the position shift from the Lorentz
force due to the radiation field

F rad
µν (x) = ∇µArad

ν (x)−∇νArad
µ (x).

This agrees with the classical dissipative force.

This result can be generalised to an electron moving in
time-dependent metric gµν(t).
P. J. Walker, PhD thesis
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The conservative part of the position shift

∆x(0)cons = −
∂

∂p
ReF(p).

If Jµ
Q(x) is the quantum current operator ψ(x)γµψ(x), then

F(p) =
∫

d4x
∫

d4x ′〈p|T [Jµ
Q(x)J

µ′

Q (x ′)]|p〉GF
µµ′(x , x ′),

where |p〉 is the electron state with momentum p and where
GF

µµ′(x , x ′) is the Feynman propagator satisfying

−Re GF
µµ′(x , x ′) = Gsing

µµ′ (x , x ′) =
1
2
(Gret

µµ′(x , x ′) + Gadv
µµ′ (x , x ′)).

We (i) identify the infinite contribution to the mass in F(p) and
subtract it (mass renormalization) and (ii) take the limit ~ → 0.
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The conservative part of the position shift

F(p) =
∫

d4x
∫

d4x ′〈p|T [Jµ
Q(x)J

µ′

Q (x ′)]|p〉GF
µµ′(x , x ′).

This can be analysed in the momentum space: the momentum
is conserved because the external field A(t) depends only on t
in our model. me(dx/dτ) = p − eA(t)

p p − ~k p

~k

We cannot say e.g. ~|k| � mec2 because 0 < ~|k| <∞. So we
first try the ~-expansion with K = ~k regarded to be O(~0).
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The conservative part of the position shift

The ~-expansion with K = ~k regarded as O(~0):
∫

d3k
(2π)32|k|

=
1
~2

∫

d3K
(2π)32|K|

.

I O(~−1) ∼ m2
e log(Λ/me) (“|K| ≤ Λ”) cancelled by the mass

counterterm. (The mass renormalization is at order ~−1.)
I O(~0) ∼ (e2/me)s · (p × ṗ), (“anomalous-magnetic

moment”.)
I O(~) and higher: ~-expansion breaks down due to small K

contribution. (The nth order term ∼ ~
nK 1−n

min for n ≥ 2.)

If we let |K| ≥ Kmin = λ~β with 3
4 < β < 1. Then

~
nK 1−n

min = λ1−n
~
β+n(1−β) → 0 as ~ → 0.

Only the mass-renormalisation and
anomalous-magnetic-moment contributions remain.
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The conservative part of the position shift

For the contribution from |K| ≤ λ~β we change back to k.

0 < |K| < λ~β ↔ 0 < |k| < λ~β−1.

Since 0 < β < 1, λ~β → 0 but λ~β−1 → ∞ as ~ → 0.

We find this contribution to be

−ReF<(p) =
1
2

∫

d4xd4x ′jµ(p)(x)G̃
sing
µµ′ (x , x ′)jµ

′

(p)(x
′),

where

G̃sing
µµ′ (x , x ′) = igµµ′sgn(t−t ′)

∫

|k|≤λ~β−1

d3k
(2π)32|k|

(

e−ik ·x − eik ·x
)

is the regularized singular Green’s function,

Gsing
µµ′ (x , x ′) =

1
2
(Gret

µµ′(x , x ′) + Gadv
µµ′ (x , x ′)).
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The conservative part of the position shift

The contribution to ReF(p) from |K| ≤ λ~β (|k| ≤ λ~β−1):

−ReF<(p) =
1
2

∫

d4xd4x ′jµ(p)(x)G̃
sing
µµ′ (x , x ′)jµ

′

(p)(x
′).

This is infinite. After the subtraction of the contribution to the
mass counterterm from |K| ≤ λ~β , if we can write

−ReF ref,<(p) =
1
2

∫

d4xd4x ′jµ(p)(x)G
reg
µµ′(x , x ′)jµ

′

(p)(x
′),

Then the corresponding conservative radiation-reaction force is
the Lorentz force with

Areg
µ (x) =

∫

d4x ′Greg
µµ′(x , x ′)jµ

′

(p)(x
′).

In our model (flat space, external A(t)), Greg
µµ′(x , x ′) = 0.
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Summary

For an electron accelerated by A(t) in Minkowski spacetime,
I The dissipative part of radiation reaction is from the

one-photon emission process in QED.
I The conservative part, which vanishes, comes from the

one-loop diagram.

This is likely to be true in general.

The one-loop correction to the external potential A(t):
I |K| ≥ λ~β (particle-like virtual photon):

(infinite) renormalization of the mass and what is regarded
as a quantum effect (anomalous magnetic moment)

I |K| ≤ λ~β (wave-like virtual photon):
the conservative part of radiation reaction force.

Does this clear split of the quantum and classical parts of the
one-loop contribution persist in curved spacetime; for
gravitational radiation reaction?
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