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Motivation

⊲ Inspirals of compact objects µ ∼ 10M⊙ into massive black holes
M ∼ 103 − 106M⊙ are a promising source of gravitational waves.

⊲ Last ∼ year of inspiral contains ∼ M/µ ∼ 102 − 105 cycles of waveform
in the relativistic regime.

Many science payoffs: map spacetime, learn about black hole growth
history and galaxy cores, cosmology

Required: theoretical waveforms with phase accuracy ∼ 10−2 − 10−5.

Geodesics in Kerr Emitted GW spectrum

(from S. Drasco’s black hole movies)
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Timescales in the problem

ǫ = µ/M ≪ 1

On short timescales:

τ orb ∼ M ∼ 50 s

(
M

107M⊙

)

µ moves on a geodesic of M ’s background spacetime.

On longer timescales

τ rr ∼ M/ǫ ∼ 1.6 yrs

(
M

107M⊙

) (
10−6

ǫ

)

gravitational radiation reaction causes the orbit to gradually evolve.

Geodesic orbits and true orbits dephase by ∼ 1 cycle after

τdeph ∼ M/
√
ǫ ∼ 13 hrs

(
M

107M⊙

) (
10−6

ǫ

)1/2

Two-timescale methods and resonances in EMRIs Tanja Hinderer, É. Flanagan



Bound geodesic orbital dynamics in Kerr

Conserved quantities:

Energy E = −ξaua, azimuthal angular momentum Lz = ϕaua,
(special cases of conserved currents Tabξ

b, Tabϕ
b)

Carter constant Q = Kabu
aub , ∇(aKbc) = 0

Reparameterization: (E , Lz ,Q) ↔ (p, e, ι)

(Steve Drasco 2005)

Two-timescale methods and resonances in EMRIs Tanja Hinderer, É. Flanagan



Overview of the talk

Motivation for a self-consistent two-timescale treatment of inspirals
in Kerr

Stage I: Two-timescale orbital motion

Qualitatively new feature for generic orbits: transient resonances

Properties, effects of the resonances

Implications for gravitational wave science

Stage II: Sketch of two-timescale Einstein Equations
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Methods of computing waveforms

Numerical relativity:

⊲ impractical, despite much recent progress (H. Pfeiffer, C. Lousto)

Post-Newtonian methods:

⊲ invalid in the relativistic regime, useful for scoping out capabilities
(Gair et al 2004, Brown et al 2006, Barack & Cutler 2004)

Effective One-body methods

⊲ require calibration, useful for detection templates (Yunes et al, T. Damour)

Black hole perturbation theory, first order

h+ − ih× =
∑

lmkn

Zlmknhlmkn

⊲ Self-consistency requires a geodesic worldline source

⊲ produces “snapshots” valid for τdeph ≪ τinspiral (Drasco et al 2005)
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Methods of computing waveforms cont.

Use of conservation laws:

⊲ compute fluxes 〈Ė 〉 and 〈L̇z 〉 to infinity and down the horizon,
infer evolution of orbital E , Lz

⊲ works only for circular or equatorial orbits, leading order

⊲ can track an entire inspiral either in the frequency or time domain
(Shibata 1994, Glampedakis et al 2002, Hughes 2000, Krivan et al 1997, Burko et al 2003, Martel 2003, Souperta

et al 2005, Sundararajan et al 2007)

Use averaged self-force: Adiabatic waveforms

⊲ requires only ãSF = P · ∇(hret − hadv)/2 (Mino 2003)

〈Q̇〉 =
∑

lmkn

cEH
lmkn|ZEH

lmkn|2 + c∞
lmkn|Z∞

lmkn|2, 〈Ė 〉 =
∑

lmkn

|ZEH
lmkn|2 + |Z∞

lmkn|2

⊲ correct to leading order, waveforms in hand (ignoring inconsistencies)
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Computing waveforms cont.

Black Hole Perturbation Theory, Second Order:

⊲ validity still limited to τ deph ≪ τ inspiral

sourced by a geodesic of g (0)

gαβ = g
(0)
αβ + ǫh

(1)
αβ + ǫ2h

(2)
αβ + O(ǫ3)

After τdeph : ǫh
(1)
αβ ∼ ǫ2h(2)

αβ

Related: use of the gravitational self force:

⊲ Given inspiralling orbit, how to compute waveforms?

linearized theory + non-geodesic source for waveforms is inconsistent,
results expected to be gauge dependent

Possible fixes: ⊲ geodesic deviation Gralla, Wald ’10

⊲ relax the gauge condition Quinn, Wald ’97, Mino ’03, Pound ’10

⊲ stitch together many small evolution steps

⊲ this talk: two-timescale expansions
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Two-timescale expansion

Systematic framework, gives rigorous derivation of adiabatic
prescription at leading order.

Gives method for computing post-adiabatic corrections.

Two stages: (i) Orbital motion, (ii) Einstein eqns.

Basis of method:
Posit a one-parameter family of worldlines zα(τ, ǫ) and metrics
gαβ(x , ǫ) of a specific form in a specific region of spacetime

locally in time: ansatz is compatible with geodesic motion and first
order perturbation theory
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Context: Approximation Schemes

T M

R

M
µ

Minkowski Kerr

Newtonian Adiabatic

Linearized Pert. Linearized Pert.

Post-1 Newt. Post-1 Adiabatic

2nd Order Pert. 2nd Order Pert.

M/R ≪ 1 M/R ≪ 1

M/R ≪ R2/T 2 R/T ≪ 1
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Orbital motion part of the two-timescale formalism

Action angle variables qα = (qt , qr , qθ, qφ), Jλ = (E/µ, Lz/µ,Q/µ
2)

Geodesic equation in Kerr with self-force:

dqα

dτ
= ωα(Jλ) + ǫ g (1)

α (qr , qθ, Jλ) + O(ǫ2),

dJλ

dτ
= 0 + ǫG

(1)
λ (qr , qθ, Jν) + ǫ2 G

(2)
λ (qr , qθ, Jν) + O(ǫ3)

⊲ tori in phase space

⊲ fundamental frequencies ωr , ωθ (t and ϕ symmetries)

Two-timescale expansions for the solutions:

ansatz for the dependence on ǫ

initially based on adiabaticity (τorb ≪ τrr),

later augmented by treatments of resonances, separatrices
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Two-timescale expansion

Introduce: ⊲ a “slow” variable τ̃ = ǫ τ

⊲ auxiliary phase variables ψα

Ansatz: asymptotic expansion of the solutions at fixed τ̃ :

ψα(τ̃ , ǫ) =
1

ǫ
ψ(0)

α (τ̃ )+
1√
ǫ
ψ(1/2)

α (τ̃ )+ ln ǫψ(ln)
α +ψ(1)

α (τ̃ )+O(ǫ1/2)

Jλ(τ, ǫ) = J (0)
λ (τ̃ )+

√
ǫJ (1/2)

λ (τ̃ )+ǫ ln ǫJ(ln)+ǫ J
(1)
λ (ψα, τ̃ )+O(ǫ3/2)

qα(τ, ǫ) = ψα(τ̃ ) + O(ǫ)
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Adiabatic approximation

Jλ(τ, ǫ) = J
(0)
λ (τ̃ )+

√
ǫJ (1/2)

λ (τ̃ ) + ǫJ
(1)
λ (ψα, τ̃ ) + O(ǫ3/2)

ψα(τ̃ , ǫ) =
1

ǫ
ψ(0)

α (τ̃ )+
1√
ǫ
ψ(1/2)

α (τ̃ ) +ψ(1)
α (τ̃ ) + . . .

dJ
(0)
λ

d τ̃
= 〈G (1)

λ 〉[J (0)
ν (τ̃ )], ψ(0)

α (τ̃ ) =

∫ τ̃

ωα[J
(0)
λ (τ̃ ′)]d τ̃ ′.

nonresonant tori are ergodic:

〈G (1)
λ 〉 ≡ 1

(2π)2

∫ 2π

0

dqr

∫ 2π

0

dqθ G
(1)
λ (qr , qθ, Jλ)

Adiabatic prescription:

Replace G
(1)
λ by 〈G (1)

λ 〉, drop all other forcing terms.

Closed system, simpler: no need to specify ǫ to solve the ODEs
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Properties of the adiabatic approximation

dJ
(0)
λ

d τ̃
= 〈G (1)

λ 〉[J (0)
ν (τ̃ )], ψ(0)

α (τ̃ ) =

∫ τ̃

ωα[J
(0)
λ (τ̃ ′)]d τ̃ ′

Fourier expansion of the forcing functions:

G (1)(qr , qθ, Jλ) = G
(1)
00 +

∑

kr 6=0

∑

kθ 6=0

G
(1)
kr kθ

(Jλ)e i(krqr +kθqθ)
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Post-1-adiabatic corrections

Jλ(τ, ǫ) = J (0)
λ (τ̃ )+

√
ǫJ (1/2)

λ (τ̃ )+ǫ J
(1)
λ (ψα, τ̃ )+O(ǫ3/2)

ψα(τ̃ , ǫ) =
1

ǫ
ψ(0)

α (τ̃ )+
1√
ǫ
ψ(1/2)

α (τ̃ )+ψ(1)
α (τ̃ )+O(ǫ1/2)

require g (1), G (1) and 〈G (2)〉 (currently unknown)

give rise to phase errors of O(1) over an inspiral

Decompose the forcing terms according to parity properties
under qr → 2π − qr , qθ → 2π − qθ

Gλ = ǫ
[

〈G (1)
λ, dissipative〉

︸ ︷︷ ︸

known

+ δG
(1)
λ, dissipative

︸ ︷︷ ︸

“known′′

+ G
(1)
λ, conservative

]

︸ ︷︷ ︸

“known′′

+ O(ǫ2)
︸ ︷︷ ︸

unknown
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Transient Resonances

Occur when ωθ/ωr = k/n with k, n small integers.

Geometric picture:
trajectories fill up
lower-dimensional
tori
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Resonance Timescale

Timescale: intermediate between τ rr and τ orb:

τ res ∼ 1/
√
ǫ s, s = k + n

near a resonance at τ = 0:

strong resonances:

s . O(| ln(ǫ)|)
⊲ few and isolated
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Estimates for relevant resonances and locations

⊲ Resonant frequency combination:

σ = nωr − kωθ = 0

for Kerr inspirals: n > k

⊲ Scaling estimates of G
(1)
kn

based on post-Newtonian orbits:

resonance surface

ωθ/ωr = 3/2 , a = 0.2, 0.5, 0.99 (from top)

ĖPN
kn

EPN
∼ −en a2 sin2 ι

(1 − e2)p6
δk,2 fE (e),

Q̇PN
kn

QPN
∼ en a2 sin2 ι

p6
δk,2 fQ(e),

L̇PN
z kn

LPN
z

∼ en sin2 ι

p11/2
δk,2

[
a

cos ι
f1(e) +

a2

√
p

f2(e)

]
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Effect of a transient resonance

O(1) corrections to the adiabatic approximation during τ res

net jumps ∆J = O(
√
ǫ) across a resonance,

affect the frequencies: ∆ω ∼ ω,J ∆J

leads to phase errors ∼ 1/
√
ǫ after further inspiral
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Analytic Treatment

⊲ Relevant phase in the resonance zone: Q = k qr − n qθ

⊲ Use matched asymptotic expansions to compute

∆Jλ ∼
√
ǫ N(Q0, G

(1)
kn , G

(1)
00 , ∂Q̇/∂Jλ),

phase entering the resonance to O(1)

⊲ For the post-resonance phase to O(1), also need ∆J
(1)
λ and ∆Q (X)

linearized approximation :

∆Jλ ∼
√
ǫ 2

√
π

∑

v 6=0

G
(1)
vk,vn

√

v |σ,τ̃ |
× [cos(vQ0) − sgn(σ,τ̃ ) sin(vQ0)]
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Properties of transient resonances

Non-perturbative effects in v/c .

Occur for eccentric, inclined orbits around spinning black holes.

Driven by spin-dependent, instantaneous, dissipative pieces of the
self-forces.

Cause increased sensitivity to initial conditions:
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Numerical estimates

Integrate Kerr geodesics + approximate post-Newtonian forcing terms
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Matching the phase evolution

Can idealize the phase evolution as:

ψα(τ ; ǫ) =







ǫ−1ψ(0)
α (τ̃ ) + O(1), τ − τ0 ≪ τres

ǫ−1ψ(0)
α (τ̃ +

√
ǫ∆τ̃ ) − ωα(τ̃0)∆τ̃ /

√
ǫ+ O(1), τ − τ0 ≫ τres

effective O(
√
ǫ) time shift: ∆ψα ∼ ωα(τ̃0)∆τ̃/

√
ǫ,

equivalently: match to post-resonance phasing,
phase error is accumulated before the resonance:

define ψ̃α(τ) = ψα(τ +
√
ǫ∆τ ) − ∆ψα, then:

ψα(τ ; ǫ) =







ǫ−1ψ̃
(0)

α (τ̃ ) − ∆τ̃ /
√
ǫ [ωα(τ̃ ) − ωα(τ̃0)] + O(1), τ − τ0 ≪ τres

ǫ−1ψ̃
(0)

α (τ̃ ) + O(1), τ − τ0 ≫ τres
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Summary: Transient resonances

Qualitatively new feature of two-body problem in the relativistic,
small mass ratio regime.

Occur for generic orbits.

Make the orbit more sensitive to changes in the initial data.

Give rise to phase corrections that scale as
√

M/µ,
sudden jumps in the time derivative of the phases.

Require currently unknown pieces of the gravitational self force.

Numerical estimates: δφ ∼ 10 cycles for mass ratios ∼ 10−6.

Further investigations in progress.
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Two-timescale metric (non-resonant case)

Ansatz for the metric in the region µ≪ r ≪ M/ǫ

gαβ(t̄, x̄ j , ǫ) = g
(0)
αβ (x̄ i ) + ǫh

(1)
αβ

(
qr , qθ, qφ, t̃, x̄

i
)

+ ǫ2h
(2)
αβ

(
qr , qθ, qφ, t̃, x̄

i
)

+ O(ǫ3)

assumes periodicity in qi = (qr , qθ, qφ)

t̃ ≡ ǫt̄, qi (t̄, ǫ) =
1

ǫ
f

(0)
i (ǫt̄)+f

(1)
i (ǫt̄)+. . .

∂/∂ t̄ = Killing vector

Self-consistency verified by substitution
into Einstein’s equations.
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Double expansion of the Einstein Equation

⊲ Metric:

gαβ(t̄, x̄ j ; ǫ) = g
(0)
αβ (x̄ j) + ǫh

(1)
αβ(qr , qθ, qφ, t̃, x̄

j) + O(ǫ2)

⊲ Connection:

∇ = ∇(0,0) + ǫ
[

∇(0,1) + ∇(1,0)

[h(1)]

]

+ O(ǫ2)

factors of h derivatives involving t̃ and Ω(s)

⊲ Einstein tensor:

Gαβ [g ] = Gαβ [g (0)] + ǫG
(1,0)
αβ [h(1)] + O(ǫ2)

⊲ O(ǫ) stress-energy conservation:

∇(0,0)G (1,0)[h(1)] = 0
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Solving the Einstein Eqs. (I)

G
(1,0)
αβ [h(1)] = 0 → Dh

(1)
αβ = 0,

linear differential operator on the 6-dim manifold (qr , qθ, qφ, x̄
j)

solution that matches to T
(1)
αβ (qi , x̄

j , t̃) is:

h
(1)
αβ =

∂g
(0)
αβ

∂M
δM(t̃) +

∂g
(0)
αβ

∂a
δa(t̃) + . . .

+ Fαβ[qr , qθ, qφ, x̄
j ,E (t̃), Lz(t̃),Q(t̃)],

same as in standard linear pert. theory with a geodesic source

gauge freedom:

(i) xα → xα + ǫξα(qr , qθ, qφ, t̃, x
j) + O(ǫ2)

(ii) ǫ−independent transformations that preserve ∂/∂ t̄
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Required solutions to get qi to O(1):

G (1,1)[h(1)] + G (2,0)[h(1), h(1)] + G (1,0)[h(2)] = T (2)

the 00 Fourier component determines the t̃-dependence of the adiabatic
solution (similar to conservation law approach),
oscillatory pieces give schematically

h(2) = G(2)(t̃ , x̄ j) + Hαβ(qi , t̃, x̄
j).

Last missing piece: the 00 Fourier component of:

G (0,1)[h(2)] + 〈G (3,0)[h(1), h(1), h(1)] + 2G (2,1)[h(1), h(2)] + G (1,2)[h(1)]〉 = 0
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Summary

Systematic 2-timescale approximation scheme, resolves the
difficulties with the standard perturbation theory.

Framework for computing higher order corrections to the adiabatic
evolution.

Identification of which pieces of the forcing functions are required to
compute the motion at each order

Treatment of resonances.
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