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Motivation

> Inspirals of compact objects u ~ 10Mg into massive black holes
M ~ 103 — 10M,, are a promising source of gravitational waves.

> Last ~ year of inspiral contains ~ M/p ~ 102 — 10° cycles of waveform
in the relativistic regime.

Many science payoffs: map spacetime, learn about black hole growth
history and galaxy cores, cosmology

Required: theoretical waveforms with phase accuracy ~ 1072 — 10~°.

Emitted GW spectrum

frequency (Hz) 10°
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Timescales in the problem

e=u/M<1

@ On short timescales:

M
or ~ M ~ 5 TAT AT
Torb 50 s (107/\/,@)

1 moves on a geodesic of M's background spacetime.

@ On longer timescales

M 106
T~ M]/e ~ 1.6 yrs <m) ( . )

gravitational radiation reaction causes the orbit to gradually evolve.

@ Geodesic orbits and true orbits dephase by ~ 1 cycle after

M 106\ /2
Tdeph ™~ M/\/E ~ 13 hrs (m) ( p )
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Bound geodesic orbital dynamics in Kerr

Conserved quantities:

@ Energy E = —&%u,, azimuthal angular momentum L, = ¢?u,,
(special cases of conserved currents T,5E2, Topp?)

@ Carter constant Q = Kapu?u® , V(,Kpe) =0

@ Reparameterization: (E,L;, Q) < (p,e,t)

spin axis
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Overview of the talk

@ Motivation for a self-consistent two-timescale treatment of inspirals
in Kerr

@ Stage |: Two-timescale orbital motion
@ Qualitatively new feature for generic orbits: transient resonances
@ Properties, effects of the resonances

@ Implications for gravitational wave science

@ Stage II: Sketch of two-timescale Einstein Equations
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Methods of computing waveforms

@ Numerical relativity:
> impractical, despite much recent progress

@ Post-Newtonian methods:
> invalid in the relativistic regime, useful for scoping out capabilities

@ Effective One-body methods
> require calibration, useful for detection templates

@ Black hole perturbation theory, first order
h+ - /h>< - Z Z/mknhlmkn
Imkn

> Self-consistency requires a geodesic worldline source

> produces “snapshots” valid for Tqeph < Tinspiral
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Methods of computing waveforms cont.

Use of conservation laws:

> compute fluxes (E) and (L) to infinity and down the horizon,
infer evolution of orbital E, L,

> works only for circular or equatorial orbits, leading order

> can track an entire inspiral either in the frequency or time domain

Use averaged self-force: Adiabatic waveforms
> requires only 35F = P . V(hret — padv)/2

Z C/mkn lmkn + C/mkn|Zlmkn| ) < > Z' lmknl2 + |Z/mkn|2

Imkn Imkn

> correct to leading order, waveforms in hand (ignoring inconsistencies)
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Computing waveforms cont.

Black Hole Perturbation Theory, Second Order:
> validity still limited to Tgeph < Tinspiral
,———— sourced by a geodesic of g©
8ap = géoﬁ) + ehf\l)f + e2hgﬁ) + O(e?)
After Tgeph : ehf\l)f ~ €? hgﬁ)
Related: use of the gravitational self force:
> Given inspiralling orbit, how to compute waveforms?

linearized theory + non-geodesic source for waveforms is inconsistent,
results expected to be gauge dependent

Possible fixes: > geodesic deviation
> relax the gauge condition

> stitch together many small evolution steps

> this talk: two-timescale expansions
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Two-timescale expansion

@ Systematic framework, gives rigorous derivation of adiabatic
prescription at leading order.

@ Gives method for computing post-adiabatic corrections.
@ Two stages: (i) Orbital motion, (ii) Einstein eqgns.

@ Basis of method:
Posit a one-parameter family of worldlines z*(r, €) and metrics
8ap(x, €) of a specific form in a specific region of spacetime

@ locally in time: ansatz is compatible with geodesic motion and first
order perturbation theory

Tinspir: || two-timescale two-timescale : §
l HEN
L g < F << Tinspiral =9 *
BH pert BH pert BH pert
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Context: Approximation Schemes
r(v]

R
@
| |
| Linearized Pert. | 1 | Linearized Pert. | 1
l |
|2nd Order Pert. | |2nd Order Pert. |
M/R < 1 M/R < 1
M/R <« R%/T? R/T < 1
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Orbital motion part of the two-timescale formalism

Action angle variables qo = (q¢, r, G0, 90), Ix = (E/m, L2/ 11, @/ 11?)

Geodesic equation in Kerr with self-force:

dqa

% = CAJa(J)\) + egc(yl)(qra de, J)\) + 0(62)’

dJ

d_: =0 +e¢ Gil)(qra qe, Jv) + € G)(\2)(qra e, Jv) + 0(63)

> tori in phase space

> fundamental frequencies w,, wy (t and ¢ symmetries)

Two-timescale expansions for the solutions:
@ ansatz for the dependence on e

@ initially based on adiabaticity (Torb < Tir),
later augmented by treatments of resonances, separatrices
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Two-timescale expansion

Introduce: ©> a “slow” variable ¥ =¢7

> auxiliary phase variables 1,

Ansatz: asymptotic expansion of the solutions at fixed 7:

balfo0) = 29O + -l () +90(7)+0(e /)

I(r,€) = TOF) +ve 72 (%) +e D (@, 7)+0(e¥?)

qa(T; €) = % (F) + O(€)
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Adiabatic approximation

In(r €)= TV(F)
1

(0) 7
@, @) = [ walg Ve

nonresonant tori are ergodic:

27 27
1) 1 (1)
dq, d s Qo,
(Gy7) (277)2/0 q/o 90 Gy ’(qr, g6, )

Adiabatic prescription:

@ Replace G)(\l) by (G)(\l)), drop all other forcing terms.

@ Closed system, simpler: no need to specify € to solve the ODEs
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Properties of the adiabatic approximation

d (0) 7
= (@I 0@ = [ s e

Fourier expansion of the forcing functions:

G( )(qr7 qe, J)\ OO + Z Z lelzg ’(k’qf+k9q9)
k70 kg #0

Full solution & adiabatic approx.
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Post-1-adiabatic corrections

In(re) = e SV )
Yol €) = v (7)
@ require g, G and (G®) (currently unknown)
@ give rise to phase errors of O(1) over an inspiral

Decompose the forcing terms according to parity properties
under ¢, — 2w —q,, Qg — 2T — Qo

_ 1) (1) (1) 2
GA =€ [<G)\, dissipative> +6G}\, dissipative + G)\, conservative + O(6 )
—_—— N
known “known’’ “known’! unknown
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Transient Resonances

Occur when wy/w, = k/n with k, n small integers.

. . wO/wr irrational 6/wr = 3/2
Geometric picture: e oW !
trajectories fill up -
. . / phase space:
lower-dimensional o[:] / a® vs. qr

tori

/2 x w2 2 g P

U mod(2m .

32 27

/2 x
Uy mod(2m

Boyer-Lindquist
coordinates

r cos® vs. r sin®

X
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Resonance Timescale

Timescale: intermediate between 7., and To.1:
Tres ~ 1/°\/€S, s=k+n

near a resonance at 7 = 0:

G~ Gé!a:JrZGv((Qme“[(@ ko) (0 ko) T*/2 4 -] oscill,

W e

Frequency Ratio
a=0.9, e=0.8, Binc=1.3
3.0 (geodesics)
Strong resonances:

s < O(IIn(€)])

> few and isolated
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Estimates for relevant resonances and locations

resonance surface

wg /wr =3/2,a=0.2,0.5,0.99 (from top)

> Resonant frequency combination:
0= nw,— kwg=0

for Kerr inspirals: n > k

> Scaling estimates of G,Ei,) .
based on post-Newtonian orbits:  cccentricity

EPN e 2% sin’y QPN e 2 sin?y
EPN T e)ps O () gin T dka fale)

'szlin e"sin® . a 22
LEN - pll/2 Ok cost fl(e)—'_\/_ﬁ f2(e)]
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Effect of a transient resonance

Tres~/1/€5
\
I e

AT~ drn Vs

@ O(1) corrections to the adiabatic approximation during Tes

® net jumps AJ = O(+/€) across a resonance,
affect the frequencies: Aw ~w ; AJ

@ leads to phase errors ~ 1/,/€ after further inspiral

Tanja Hinderer, E. Flanagan
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Analytic Treatment

> Relevant phase in the resonance zone: Q@ =k g, —n gy

> Use matched asymptotic expansions to compute
DIy~ /e N(Qo, G, G, 9Q/0U),
\

phase entering the resonance to O(1)
> For the post-resonance phase to O(1), also need AJS) and AQ (v')

Effect of differences in initial conditions

linearized approximation :
¢
AJ)\ ~ \/— 2\/— vk vn
; VVv|o.z|

X [cos(v Qo) — sgn(o #) sin(v Q)]
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Properties of transient resonances

@ Non-perturbative effects in v/c.
@ Occur for eccentric, inclined orbits around spinning black holes.

@ Driven by spin-dependent, instantaneous, dissipative pieces of the
self-forces.

@ Cause increased sensitivity to initial conditions:

phasing: resonance
1
adiabatic  O(1/€)

information
flow

1
1
post-1/2 adiabatic O(1/N€ ) [:

post-1 adiabatic (1)
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Numerical estimates

Integrate Kerr geodesics 4+ approximate post-Newtonian forcing terms

0.1
0.08
0.06
0.04
0.02

Ve

10

5
8 0
(en) -5
-10
-15
-20

- : : : —
-\\
55 6 6.5 7 7.5 8 8.5 9
r forces: 1st order,'dissipat'ive, oscilllatory ' .
r 1st order, conservative 1
5.5 6 6.5 7 75 8 8.5 9

p/M
a=0.95, e=3x10° w6/wr=3/2
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Matching the phase evolution

Can idealize the phase evolution as:

6711#5)?)(%) + O(l)a T — T0 K Tres

PelT =N g0 4 eBT) - ()BT O, 710 T

o effective O(y/€) time shift: A, ~ wa(To)AT/ /€,

@ equivalently: match to post-resonance phasing,
phase error is accumulated before the resonance:

define 1o (1) = o (T + /€AT) — At)y, then:

e 130 (7) = A7/ Ve [walF) — walFo)] + O(L), 7 — 70 <€ Tres

1997) + o), T —To > Tres

Two-timescale methods and resonances in EMRIs Tanja Hinderer, E. Flanagan



Summary: Transient resonances

Qualitatively new feature of two-body problem in the relativistic,
small mass ratio regime.

@ Occur for generic orbits.
@ Make the orbit more sensitive to changes in the initial data.

@ Give rise to phase corrections that scale as \/M/pu,
sudden jumps in the time derivative of the phases.

@ Require currently unknown pieces of the gravitational self force.
@ Numerical estimates: d¢ ~ 10 cycles for mass ratios ~ 1076.

@ Further investigations in progress.
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Two-timescale metric (non-resonant case)

Ansatz for the metric in the region p < r < M/e

gop(t, %, €) = g((yoﬁ)( )—|—eh()(q,.q(»qwf,>‘<")

+ Ezhgﬂ) (Qr qe, q¢, %7)_(i) + 0(63)

assumes periodicity in g; = (g,. g0, 9s)

mlr—\

P=et, q(te) = =F(eD)+FV(eD)+. ..

0/0t = Killing vector

Self-consistency verified by substitution
into Einstein's equations.
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Double expansion of the Einstein Equation

> Metric:

gaﬂ(fv )_(J, 6) = g(ioﬁ)()_fl) + thﬁ)(CIm qo, de, %7 )?J) + 0(62)

> Connection:
V= V001 [vOD 4 VD] + 0(e?)

N

factors of h derivatives involving 7 and Q)

> Einstein tensor:

Gaslg] = Gaplg @]+ €GV (V] + O(e?)

> O(€) stress-energy conservation:

v oM = o
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Solving the Einstein Egs. (I)

1,0 1
MY =0 — Dhl) =0,
linear differential operator on the 6-dim manifold (q,, qo, 9., X/)

solution that matches to T(glﬁ)(q,-,)?f,f) is:

ag(o) 5g(0)
1 _ o z aB ¢ 7
hyy = M IM(t) + Ep da(t) +...

+ faﬁ[qf' do, qwa)_(jv E(E)a LZ(E)’ Q(E)L

same as in standard linear pert. theory with a geodesic source
gauge freedom:
(i) x® — x“+€£%(qr, o, 9o, £, 7) + O(€2)

(if) e—independent transformations that preserve 9/0t
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Required solutions to get g; to O(1):

GUD[AD] 4 RO 4] 4 GLO[HA] = TO)

the 00 Fourier component determines the #-dependence of the adiabatic
solution (similar to conservation law approach),
oscillatory pieces give schematically

W = GO (%, %) + Hap(qi, T, %).

Last missing piece: the 00 Fourier component of:

G(O’l)[h@)] + (G(?”O)[h(l), A, h(l)] + 2(;(2,1)[/,(1)7 h(2)] + G(1’2)[h(1)]> -0
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Summary

@ Systematic 2-timescale approximation scheme, resolves the
difficulties with the standard perturbation theory.

@ Framework for computing higher order corrections to the adiabatic
evolution.

@ lIdentification of which pieces of the forcing functions are required to
compute the motion at each order

@ Treatment of resonances.
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