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Motivation

d Future low-frequency GW detectors will provide information about the

astrophysical properties of compact objects through EMRI and IMRI observations

(Jon’s talk on LISA)

d To do this science we need to develop accurate waveform templates that can be

used for source detection and data analysis

d Most astrophysical black holes will have spin → true gravitational waveforms will

include small body spin effects

d Develop a ‘numerical kludge (NK)’ waveform model that includes small body spin

effects (SBSEs), and their associated conservative self-force corrections (Jon’s talk

on NK models)

d Explore the regime at which SBSEs become important for parameter estimation

d Explore the extent to which the inclusion of conservative corrections reduces the

magnitude of model errors
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Source modelling

d Build NK model that includes SBSEs using the equations of motion of a spinning

particle in the equatorial plane of a Kerr BH [Saijo et al, PRD 58, 064005, 1998 ]

d Include two types of corrections: i) 1st order conservative corrections to amend the

orbital phase evolution; ii) 2nd order radiative corrections in Ė , L̇z to evolve the

geodesic params of the inspiralling object

d Equations of motion

ΣsΛs
dt

dτ
= a

(
1 +

3Ms2

pΣs

)[
J̃z − (a+ s)Ẽ

]
+
p2 + a2

∆
Ps, (1)

ΣsΛs
dϕ

dτ
=

(
1 +

3Ms2

pΣs

)[
J̃z − (a+ s)Ẽ

]
+
a

∆
Ps, (2)

ΣsΛs
dp

dτ
= ±

√
Rs, (3)
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Z where

Σs = p
2

(
1−

Ms2

p3

)
,

Λs = 1−
3Ms2p[J̃z − (a+ s)Ẽ]2

Σ3
s

,

Rs = P
2
s −∆

{
Σ2
s

p2
+ [J̃z − (a+ s)Ẽ]

2

}
,

Ps =

[
(p

2
+ a

2
) + as

(
1 +

M

p

)]
Ẽ −

(
a+ s

M

p

)
J̃z,

∆ = p
2 − 2Mp+ a

2
, (4)

Z These eqns of motion are valid only to linear order in the spin of the inspiralling

body, hence

E

µ
=

r2 − 2r ± (q + ŝ/r)
√
r + 3qŝ/r − 5qŝ/2r

r
√
r2 − 3r ± (2q + 3ŝ

r )
√
r + 3qŝ/r − 6qŝ/r

,

Lz

µM
=

±
√
r + 3qŝ/r

(
r2 + q2 + qŝ(r + 1)/r

)
− 2rq + ŝr(r − 7

2 )

r
√
r2 − 3r ± (2q + 3ŝ/r)

√
r + 3qŝ/r − 6qŝ/r

, (5)

where r = p/M , ŝ = s/M = ηχ, with χ the dimensionless spin parameter of the

inspiralling BH, η = µ/M the mass ratio, and q = a/M
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Z Use the radiation fluxes derived by [Gair et al PRD 73, 064037, 2006] augmented

with accurate BH perturbation theory results that include small body spin

corrections [Tanaka et al, PRD 54, 3762, 1996]

Ė = −
32

5

µ2

M

(
1

r

)5

1−
1247

336

(
1

r

)
+

(
4π −

73

12
q −

25

4
ηχ

)(
1

r

)3/2

+

(
−

44711

9072
+

33

16
q
2

+
71

8
qηχ

)(
1

r

)2

+ higher order Teukolsky fits

,
L̇z = −

32

5

µ2

M

(
1

r

)7/2

1−
1247

336

(
1

r

)
+

(
4π −

61

12
q −

19

4
ηχ

)(
1

r

)3/2

+

(
−

44711

9072
+

33

16
q
2

+
59

8
qηχ

)(
1

r

)2

+ higher order Teukolsky fits

.
(6)

Z Using these fluxes we can evolve a circular orbit using the ‘circular goes to circular

rule’ [Tanaka et al, PRD 54, 3762, 1996]

Ė(r) =
1

r3/2 + q

(
1−

3

2
ηχ

√
r − q

r2 + q
√
r

)
L̇z(r). (7)
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Z Furthermore, the evolution in time of the radial coordinate is given by

ṙ =
dr

dE
Ė =

dr

dLz
L̇z. (8)

Z This model only includes the radiative piece of the self-force, which drives the

evolution of the shape constants. We should also include the conservative

component, which leads to an accumulation of a phase error over time. We include

this effect by amending the evolution of the φ frequency as follows,

dφ

dt
=

(
dφ

dt

)
geo

(
1 + δΩ

)
. (9)

Z Self-force program has made great progress in the past few years (Monday &

Tuesday talks), and the computation of the gravitational self-force for Kerr

inspirals is under way [Dolan et al, arXiv:1107.0012]. We require gravitational

self-force corrections for the inspirals of spinning black holes into Kerr black holes.

Not available at present.

Z Use available post-Newtonian (PN) results to correct the NK model

Z Ensure that asymptotic observables are consistent with PN results in the weak

field (see [Babak et al, PRD 75, 024005, 2007] and [Huerta&Gair, PRD, 79,

084021, 2009] )
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Z Re-write the orbital frequency at 2PN order

Ω =
1

M

(
1

r

)3/2
(

1−
(
q +

3

2
ηχ

)(
1

r

)3/2

+
3

2
qηχ

(
1

r

)2
)(

1 + δΩ

)
,

=
1

M

(
1

r

)3/2
(

1−
(
q +

3

2
ηχ

)(
1

r

)3/2

+
3

2
qηχ

(
1

r

)2
)1 +

+ η

(
d0 + d1

(
1

r

)
+ (d1.5 + q f1.5 + χ g1.5)

(
1

r

)3/2

+ (d2 + k2 qχ)

(
1

r

)2
).
(10)

Z Compute Ω̇ = (dΩ/dr)ṙ, using eqns. (10), and ṙ = dr
dLz

L̇z at 2PN order.

Z The PN expressions for ΩPN and Ω̇PN are given by

Ω
2
PN =

mT

R3

1−
mT

R
(3− η)−

(
mT

R

)3/2∑
i

(
2

(
mi

mT

)2

+ 3η

)
L̂ ·χi

+

(
mT

R

)2 (
6 +

41

4
η −

3η

2

(
χ1 ·χ2 − 3L̂ ·χ1L̂ ·χ2

)), (11)

where mT = M +m, L̂ is a unit vector directed along the orbital momentum,

χ = χ1 = S1/µ
2, q = χ2 = S2/M

2.
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Z Additionally,

Ω̇PN =
96

5
ηm

5/3
T ω

11/3

1−
(

743

336
+

11

4
η

)
(mTω)

2/3
+ (4π − β)(mTω)

+

(
34103

18144
+

81

16
q
2

+ σ + η

(
13661

2016
+ ζq

2

))
(mTω)

4/3

. (12)

Z The spin–orbit β and spin–spin parameters σ are given by

β =
1

12

∑
i

(
113

m2
i

m2
T

+ 75η

)
L̂ ·χi,

σ =
η

48

(
−247χ1 ·χ2 + 721L̂ ·χ1L̂ ·χ2

)
. (13)

Z Find a coordinate transformation to relate the NK coordinates with those of the

PN formalism, i.e., r → r(R/M)
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Z Compare the expressions for the orbital frequencies and their first time derivatives

between the kludge and the PN formalism and find

Ω =
1

r3/2 + q

(
1−

3

2
ηχ

√
r − q

r2 + q
√
r

)1 +

η

(
1

8
+

1975

896

(
1

r

)
−
(

27π

10
+ q

191

160

)(
1

r

)3/2

+
1152343

451584

(
1

r

)2
).

(14)

Z Use this relation for Ω and ṙ = dr
dLz

L̇z including SBSEs and high-order Teukolsky

fits to generate the inspiral trajectory.

Z Build waveform using a flat-space quadrupole generation formula applied to the

trajectory of the inspiralling body in Boyer-Lindquist coordinates, which we

identify with spherical-polar coordnates in a flat-space

Z Implement LISA’s response function to obtain [Barack et al, PRD 69, 082005, 2004]

hα(t) =

√
3

2D

[
F

+
α (t)A

+
(t) + F

×
α (t)A

×
(t)

]
, (15)

where α = I, II refers to the two independent Michelson-like detectors that

constitute the LISA response at low frequencies. The functions A+ ,×(t), F+×
α are

the polarization coefficients and the antenna pattern functions, respectively
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Z Include Doppler phase modulation in the detector response

Φ(t)→ Φ(t) + 2
dφ

dt
R sin θS cos[2π(t/T )− φS ], (16)

with Φ(t) the phase of the waveform, R = 1AU/c = 499.00478s, dφ/dt the

azimuthal velocity of the orbit of the inspiralling object, and (θS , φS) the source’s

location in the sky

Z Construct noise-weighted waveforms using the total LISA noise, Sh(f), which

includes instrumental noise, confusion noise from short-period galactic binaries,

and confusion noise from extragalactic binaries [Barack et al, PRD 69, 082005,

2004]

ĥα(t) ≡
hα(t)√
Sh(f(t))

, f(t) =
1

π

dφ

dt
, (17)

Z Consider 11-D parameter space h = h(t, θi), 5 intrinsic: lnm, lnM, q, χ, p0, 6

phase parameters

Z For high signal-to-noise ratio (SNR), the expectation value of the errors ∆θi is

given by 〈
∆θ

i
∆θ

j
〉

= (Γ
−1

)
ij

+O(SNR)
−1
. (18)

Z The Fisher matrix is given by [Barack et al, PRD 69, 082005, 2004]

Γab = 2
∑
α

∫ T

0

∂aĥα(t)∂bĥα(t)dt . (19)

11



Parameter estimation results

d Estimate noise-induced errors for fixed values of the intrinsic params of the source,

but with a Monte Carlo over possible values of the extrinsic params

d Compute the Fisher Matrix for a source at D = 1Gpc, and the corresponding SNR

using the expression

SNR
2

= 2
∑

α=I,II

∫ tLSO

tinit

ĥ
2
α(t)dt. (20)

d Renormalise the results to a fixed ‘typical’ SNR, which is chosen separately for

each of the systems considered.

d ‘Typical’ SNR: Monte Carlo simulation in which the extrinsic parameters of each

source are chosen randomly. Consider events distributed uniformly out to a

redshift of z = 1, and which are detected in a certain time window at the detector.

Look at how the SNRs of these detected events are distributed.

d Consider a cosmological population of binary systems with central BHs of

redshifted mass 106M�, and spin parameter q = 0.9. The inspiralling BHs have

specific spin parameter χ = 0.9, and redshifted masses µ = 10M�, µ = 102M�,

µ = 103M�, and µ = 5× 103M�
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SNR cumulative distributions
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Z Results for EMRIs: i) including the spin of the small CO for EMRIs with mass

ratios η . 10−5 will not significantly affect parameter determination or detection;

ii) GW observations will not be able to constrain at all the spin parameter of the

inspiralling BH

Z At fixed SNR of 400, GW observations will be able to determine the spin

parameter of inspiralling BHs for systems with component masses

103M� + 106M� to an accuracy better than ∼ 28%.

Z For an inspiralling BH with mass µ = 5× 103M�, at a fixed SNR of 1000

Distribution of log10(∆X) in error, ∆X, for parameter X =

Model ln(m) ln(M) q χ p0 φ0 θS φS θK φK ln(D)

Mean -3.12 -2.94 -4.38 -1.07 -1.60 -1.48 -2.06 -2.07 -1.85 -1.71 -1.90

q = 0.9 St. Dev. 0.089 0.089 0.083 0.081 0.089 0.417 0.379 0.391 0.434 0.468 0.326

L. Qt. -3.14 -2.99 -4.40 -1.09 -1.65 -1.91 -2.39 -2.23 -2.13 -2.00 -2.10

χ = 0.9 Med. -3.13 -2.94 -4.38 -1.06 -1.64 -1.72 -2.07 -2.02 -1.89 -1.73 -1.95

U. Qt. -3.03 -2.84 -4.37 -1.02 -1.54 -1.42 -1.87 -1.74 -1.62 -1.53 -1.71

Mean -2.62 -2.44 -3.92 -0.60 -1.19 -1.49 -2.09 -2.04 -1.75 -1.62 -1.81

q = 0.9 St. Dev. 0.181 0.185 0.176 0.172 0.205 0.359 0.440 0.365 0.398 0.444 0.411

L. Qt. -2.77 -2.59 -4.07 -0.70 -1.31 -1.96 -2.44 -2.32 -2.12 -2.09 -2.10

χ = 0.1 Med. -2.60 -2.41 -3.90 -0.61 -1.21 -1.66 -2.06 -2.03 -1.82 -1.77 -1.89

U. Qt. -2.46 -2.29 -3.77 -0.44 -1.09 -1.36 -1.78 -1.69 -1.60 -1.41 -1.67

Z We have explored the trend with the spin of the small/big body for the ‘best case’

scenario
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Z Results for a slowly rotating central BH with spin parameter q = 0.1 at a fixed
SNR of 500

Distribution of log10(∆X) in error, ∆X, for parameter X =

Model ln(m) ln(M) q χ p0 φ0 θS φS θK φK ln(D)

Mean -3.09 -2.92 -2.61 -0.15 -1.62 -1.58 -1.99 -1.89 -1.75 -1.63 -1.79

q = 0.1 St. Dev. 0.071 0.072 0.064 0.062 0.072 0.365 0.401 0.416 0.387 0.416 0.283

L. Qt. -3.16 -2.99 -2.66 -0.20 -1.68 -1.82 -2.25 -2.15 -2.00 -1.92 -1.98

χ = 0.9 Med. -3.09 -2.93 -2.62 -0.16 -1.62 -1.66 -1.87 -1.85 -1.77 -1.64 -1.83

U. Qt. -3.01 -2.85 -2.56 -0.11 -1.56 -1.41 -1.67 -1.64 -1.54 -1.38 -1.62

Mean -3.09 -2.92 -2.61 -0.15 -1.62 -1.68 -1.99 -1.90 -1.85 -1.71 -1.86

q = 0.1 St. Dev. 0.069 0.070 0.064 0.060 0.070 0.282 0.397 0.444 0.348 0.385 0.254

L. Qt. -3.15 -2.98 -2.66 -0.20 -1.68 -1.86 -1.21 -2.12 -2.07 -1.96 -2.01

χ = 0.1 Med. -3.09 -2.92 -2.61 -0.16 -1.62 -1.68 -1.89 -1.83 -1.83 -1.71 -1.89

U. Qt. -3.03 -2.86 -2.56 -0.11 -1.56 -1.54 -1.68 -1.59 -1.61 -1.48 -1.72

Z For binaries with η & 10−3, the determination of the intrinsic parameters is best

accomplished when both binary components are rapidly rotating

Z If the central BH is slowly rotating i) the accuracy with which the intrinsic

parameters of the system can be determined is not very sensitive to the spin of the

inspiralling body; ii) GW observations will not provide an accurate measurement

of the spin of the inspiralling object
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Model error results

Z Model errors arise from the approximate nature of the waveform model

Z Use the scheme developed by Cutler & Vallisneri [PRD 76, 104018, 2004] to

estimate the magnitude of the model errors, ∆thθ
i, that could arise in the EMRIs

and IMRIs in which the inspiral has significant spin, i.e.,

∆thθ
i

=

(
Γ
−1

(θ)

)ij(
∂jhAP(θ)

∣∣∣∣ (hGR(θ)− hAP(θ))

)
(21)

Z hGR(θ) refers to templates that include conservative correction at 2PN order;

hAP(θ) includes non or only part of the conservative corrections

Z This scheme provides reliable results if the waveform is written in an

amplitude-phase form

∆thθ
i ≈

(
Γ
−1

(θ)
)ij([

∆A + iA∆Ψ
]
e
iΨ︸ ︷︷ ︸

at θ

∣∣∣∣ ∂jhAP(θ)

)
(22)

Z Compute the ratio of the systematic error to the noise-induced error R
Z If R . 1 then the estimates obtained from a model that ignores the conservative

piece should still be reliable; if R >> 1 then we must include the conservative

corrections.

Z The vast majority of EMRI sources fulfill R . 1 [Huerta&Gair, PRD 79, 084021,

2009]
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Z For more massive binaries model errors are likely to be larger than statistical

errors (see [Cutler et al, PRD 76, 104018, 2007])

Z For a spinning BH with mass µ = 103M�, and noise–induced errors quoted at a
fixed SNR= 400, the error ratio log10R is

Distribution of log10(∆X) in error, ∆X, for parameter X =

Model ln(m) ln(M) q χ p0 φ0 θS φS θK φK ln(D)

Mean 1.28 1.30 1.50 1.38 1.30 1.81 1.63 1.68 1.90 1.91 1.90

St. Dev. 0.599 0.651 0.494 0.651 0.563 0.715 0.725 0.643 0.664 0.673 0.725

L. Qt. 0.89 0.92 1.22 0.98 0.93 1.24 1.15 1.21 1.26 1.24 1.21

2PN vs 0PN Med. 1.30 1.40 1.47 1.51 1.40 1.79 1.69 1.76 1.96 1.99 1.98

U. Qt. 1.75 1.75 1.80 1.88 1.76 2.52 2.23 2.20 2.67 2.69 2.75

Mean 0.24 0.24 0.58 0.44 0.25 0.66 0.77 0.69 0.80 0.84 0.81

St. Dev. 0.629 0.614 0.519 0.611 0.596 0.759 0.724 0.708 0.740 0.691 0.737

L. Qt. -0.25 -0.24 0.35 -0.04 -0.27 0.04 0.05 0.09 -0.03 0.03 -0.01

2PN vs 1.5PN Med. 0.41 0.40 0.57 0.53 0.44 0.70 0.91 0.73 0.94 0.95 0.92

U. Qt. 0.79 0.77 0.87 0.97 0.79 1.36 1.61 1.44 1.65 1.75 1.74
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Z For a spinning BH with mass µ = 5× 103M�, and noise–induced errors quoted at
a fixed SNR= 1000, we find

Distribution of log10(∆X) in error, ∆X, for parameter X =

Model ln(m) ln(M) q χ p0 φ0 θS φS θK φK ln(D)

Mean 1.72 1.73 1.82 1.83 1.73 2.47 2.24 2.22 2.54 2.54 2.56

2PN vs 0PN St. Dev. 0.709 0.686 0.597 0.614 0.677 0.708 0.679 0.731 0.752 0.789 0.826

L. Qt. 1.29 1.25 1.52 1.35 1.29 1.92 1.74 1.80 1.90 1.90 1.91

χ = 0.9 Med. 1.81 1.78 1.85 1.92 1.77 2.43 2.24 2.33 2.56 2.56 2.54

U. Qt. 2.21 2.21 2.18 2.32 2.21 3.04 2.64 2.81 3.29 3.34 3.35

Mean 0.38 0.39 0.76 0.49 0.39 1.04 0.93 0.90 1.04 1.11 1.10

2PN vs 1.5PN St. Dev. 0.719 0.604 0.490 0.585 0.594 0.720 0.715 0.637 0.799 0.735 0.816

L. Qt. -0.18 -0.16 0.56 -0.11 -0.18 0.40 0.38 0.30 0.39 -0.02 0.35

χ = 0.9 Med. 0.47 0.45 0.82 0.64 0.51 0.96 1.00 0.98 1.08 1.17 1.11

U. Qt. 0.90 0.87 1.04 1.04 0.84 1.77 1.54 1.45 1.78 1.93 1.94

Mean 0.50 0.50 0.77 0.63 0.50 1.06 0.97 0.92 1.11 1.14 1.10

2PN vs 1.5PN St. Dev. 0.708 0.622 0.405 0.612 0.621 0.731 0.632 0.680 0.701 0.703 0.795

L. Qt. 0.02 0.01 0.58 0.14 0.03 0.39 0.38 0.28 0.34 0.36 0.30

χ = 0.1 Med. 0.63 0.63 0.78 0.77 0.62 1.00 1.00 0.97 1.12 1.16 1.18

U. Qt. 0.98 0.98 1.02 1.11 0.97 1.73 1.68 1.60 2.00 2.01 1.99
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Z R is smaller when hAP tends to hGR

Z The relative importance of the 1.5PN→ 2PN change is small, R . 4, even for the

most massive systems

Z Including conservative corrections to 2PN order may be sufficient to reduce

systematic errors to an acceptable level

Z Explore how much the parameter estimation would be degraded if we did not

include the spin of the inspiralling body in the waveform template, hAP, but it was

included in the “true” waveform, hGR

Z In the best case scenario, we found that the model errors associated with the CO

mass, SMBH mass and SMBH spin are a factor of ∼ 6, 18, 11, bigger than the

noise-induced errors, respectively
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Conclusions & future work

P LISA observations will not be able to measure the spin of stellar mass COs

inspiralling into a SMBH

P SBSEs are relevant for detection and parameter estimation for binaries with mass

ratio η & 10−3

P At a fixed SNR of 1000, a LISA observation of a binary with masses

5× 103M� + 106M� whose components have specific spin parameter q = χ = 0.9,

will be able to determine the CO and SMBH masses, the SMBH spin magnitude

and the inspiralling BH spin magnitude, χ, to within fractional errors of

∼ 10−3, 10−3, 10−4, ∼ 10%, and the location of the source in the sky and the

SMBH spin orientation to within ∼ 10−4 steradians.

P SBSEs will be more noticeable when both components of a massive binary are

rapidly rotating, but not when the central SMBH is slowly rotating.

P Including conservative corrections up to 2PN order may be sufficient to reduce

these systematic errors to an acceptable level for IMRIs

P Include SBSEs in IMRI models in which the inspiralling body is not spinning

[Huerta&Gair PRD 83, 044020; 83, 044021, 2011] to assess the importance and

measurability of these effects in such systems
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