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PLAN

• Wald’s generalization of CCK formalism

• Summarize the procedure in a radiation 
gauge

• Spheroidal-spherical problem

• Results
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Wald’s generalization of CCK
formalism

Suppose one wants to solve the linearized vacuum Einstein 
equation:

3

−∇µ∇νh−�hµν +∇α∇νhαµ +∇α∇µhαν + gµν(�h−∇α∇βhαβ) = 0

[E(h)]µν = 0 that is

Suppose a decoupled equation is derived for a 
new variable which is a function of the metric

perturbation, h - Teukolsky equation.
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Teukolsky equation

4

Newman-Penrose equations (Bianchi identities):
Derivative operators acting on the Weyl scalars
= Derivative operators acting on the Ricci tensor

Their combination then gives us:
Derivative operator acting on ψ0, i.e., Oψ0

=Derivative operator acting on Rµν , i.e., SµνR(1)
µν

If one writes, ψ0 = T (h), and R(1)
µν ∼ E(h)

we get OT (h) = SE(h)

Thursday, July 7, 2011



5

Example: s = 2 case

T2(h) = −lαmβlγmδCαβγδ = ψ0

=
−1

2
lαmβlγmδ

�
hαγ;βδ + hβδ;αγ − hβγ;αδ − hαδ;βγ

+R(0)
α�γδh

�
β −R(0)

β�γδh
�
α

�

O2 = (D − 3�+ �̄− 4�− �̄)(∆− 4γ + µ)

− (δ + π̄ − ᾱ− 3β − 4τ)(δ̄ + π − 4α)− 3ψ2

OsTs(h) = SsEs(h)
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OsTs(h) = SsEs(h)

[E2(h)]µν = Gµν = 8πTµν

[S2]
µν =

1

2
(δ + π̄ − ᾱ− 3β − 4τ)[(D − 2�− 2�̄)lµmν−

− (δ + π̄ − 2ᾱ− 2β)lµlν ]

+
1

2
(D − 3�+ �̄− 4�− �̄)[(δ + 2π̄ − 2β)lµmν

− (D − 2�+ 2�̄− �̄)mµmν ]

D = lµ∇µ

∆ = nµ∇µ

δ = mµ∇µ
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Metric Perturbation
Suppose SE = OT holds where S, O, E and T are linear partial

differential operators and suppose Ψ satisfies O†Ψ = 0. If E is self-adjoint,
then S†Ψ satisfies E(h) = 0. Taking the adjoint of SE = OT , we have

E
†
S
† = T

†
O

†

ES
† = T

†
O

†

If O†Ψ = 0, then E(S†Ψ) = 0, i.e., h = S†Ψ
Writing the above equations with the appropriate spin-weights, we have

hORG = S
†
+2

ΨORG

hIRG = S
†
−2

ΨIRG
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ψ0 = T2S†
+2

ΨORG

ψ0 = T2S†
−2

ΨIRG

ψ4 = T−2S†
+2

ΨORG

ψ4 = T−2S†
−2

ΨIRG

hORG = S†
+2

ΨORG

hIRG = S†
−2

ΨIRG

SE(S†Ψ) = OT (S†Ψ)

0 = O[T S
†Ψ]

Weyl scalar

T S† maps solutions of O†Ψ = 0 to Oψ = 0.
This gives us the appropriate Weyl scalar in terms of the

Hertz potential (ψ = T S†Ψ) as follows
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Weyl scalar
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H in a radiation gauge
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Weyl scalar

Hertz potential
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H in a radiation gauge

Thursday, July 7, 2011



H in a radiation gauge
Weyl scalar

Hertz potential

Metric perturbation
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Weyl scalar

Numerically solve the separable 
Teukolsky equation
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H in a radiation gauge
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Weyl scalar

Hertz potential

Metric perturbation

✔
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H in a radiation gauge
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Weyl 
scalar

Hertz 
potential

ψ0 =
1

8

�
L4Ψ̄+ 12M∂tΨ

�

Ψ�,m,ω = 8
(−1)mDψ̄0�,−m,−ω + 12iMωψ0�,m,ω

D2 + 144M2ω2

L4S−2 = DS+2 D =
�
(�+ 2)(�+ 1)�(�− 1) (a = 0)

Ψ =
�

�,m,ω

Ψ�,m,ω(r) 2S
ω
�,m(θ,φ)e−iωt ψ0 =

�

�,m,ω

ψ0 �,m,ω(r) 2S
ω
�,m(θ,φ)e−iωt
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H in a radiation gauge

ψ0 = T2S†
+2

ΨORG
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Weyl scalar

Hertz potential

Metric perturbation

✔

✔
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H in a radiation gauge
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Weyl scalar Hertz potential
Metric 

perturbation

n · l = 1

m · m̄ = −1
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H in a radiation gauge

hORG = S†
+2

ΨORG
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Weyl scalar

Hertz potential

Metric perturbation

✔

✔

✔
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H in a radiation gauge

☻
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Weyl scalar Hertz potential
Metric 

perturbation

l ≥ 2 part of 
the full/retarded 

H
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H in a radiation gauge

H
ret
� = B +

C�
�+ 1

2

� +
D

P2(�)
+ · · ·+H

R
�
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H
ret =

∞�

�=0

H
�ret
� =

∞�

�=0

H
ret
�

H
�ret
� =

��

m=−�

R̃�,mS�,m

H
ret
� =

��

m=−�

R�,mY�,m

where R�,m =
�

��

b
m
��,�R̃��,m

As one goes to higher �s, one sees that
the difference between H

�
� and H�

becomes smaller and smaller, i.e.,
the difference converges to zero.

H
ret
� = B +

C�
�+ 1

2

� +
D

P2(�)
+ · · ·+H

R
�
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H
R = lim

�max→∞

�max�

�=0

(H� −B − C/L)

H
R = lim

�max→∞

�max�

�=0

(H �
� −B − C/L)

The above sums, whether one uses H� or H �
�

gives us the same renormalized field but instead
of infinity if one is restricted to a certain �max

which is 75 in our case, the first sum does not
converge.
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Weyl scalar Hertz potential
Metric 

perturbation

l ≥ 2 part of 
the full/retarded 

H

B, D, E,.. 
matching

Complete H in 
hybrid gauge

δm, δa and δcom in 
a different non-
singular gauge

hybrid
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H in a radiation gauge

S      Y
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Gauge-invariant results for a particle in 
circular, equatorial orbit around a Kerr BH

u
α
u
β(gαβ + hαβ) = 1

u
α = [ut

0 + u
t
1 +O(µ2)]kα

∆U = u
t
1 = u

t
0 H
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r0/M a = 0.7 M a = 0.9 M
4 -1.4748811719 -1.4633559752
6 -1.01878981134 -1.0078165302
7 -0.8760106461 -0.8679363173
8 -0.7672776106 -0.7612477750
10 -0.6136003896 -0.6100017577
15 -0.4076336292 -0.4062824668
20 -0.3047875811 -0.3041226445
30 -0.2023749186 -0.2021320671
50 -0.1209396770 -0.1208717776
70 -0.0862158376 -0.0861865457
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Gauge-invariant results
r = 15 M
a = 0.5 M

(Kerr)

r = 15 M
a = 0 M

(Schwarzschild)

Singular term (B) in 
H 0.130773 0.130679

Renormalized H -0.295911 -0.300533

Ω = Ω0

�
1−

r2
�
r3/2 − 3Mr1/2 + 2aM1/2

�

2Mµ
�
r3/2 + aM1/2

� Fr

�

U = U0

�
1−

r1/2
�
r2 − 2aM1/2r1/2 + a2

�

2µ
�
r3/2 + aM1/2

� Fr

�
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