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Motivation

To develop efficient and accurate Time-Domain 
Computations of the Self-Force.
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Motivation

To develop efficient and accurate Time-Domain 
Computations of the Self-Force.

Time Domain Computations are also useful for the 
computation of Waveforms via Regge-Wheeler and Zerilli-
Moncrief master Equations (given a certain spacetime 
trajectory)
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 The Particle without Particle scheme
In order to avoid the presence of singularities in our 
computational domain and also to avoid introducing an 
artificial scale in the problem we split our domain:

r∗ →∞

Ω = [−∞,∞]

−∞← r∗
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 The Particle without Particle scheme
In order to avoid the presence of singularities in our 
computational domain and also to avoid introducing an 
artificial scale in the problem we split our domain:

r∗1,R r∗2,L

Ω2

Ω =Ω 1 ∪ Ω2 = [r∗
H

, r∗
I
]

Ω1

In this way we are left with homogeneous wave-type 
equations (i.e. without distributional source terms) at the 
interiors of the domains.  Then, we obtain smooth solutions 
(in the time domain) in both domains.  

 The particle 
is located at 
the interface
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Scalar Charged Particle around a MBH
We consider a  simplified model: A charged scalar particle 
orbiting a non-rotating Black Hole:

ds2 =
�

1− 2M

r

� �
−dt2 + dr∗2

�
+ r2dΩ2 ,

r∗ = r + 2M ln
� r

2M
− 1

�
, dΩ2 = dθ2 + sin2 θ dϕ2 .
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ds2 =
�

1− 2M

r

� �
−dt2 + dr∗2

�
+ r2dΩ2 ,

r∗ = r + 2M ln
� r

2M
− 1

�
, dΩ2 = dθ2 + sin2 θ dϕ2 .

The scalar field equation is:
�Φ = gµν∇µ∇νΦ = −4πρ ,

ρ = q

�

γ
δ4[x− z(τ)] dτ .

γ = {xµ | xµ = zµ(τ)}
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Scalar Charged Particle around a MBH
We consider a  simplified model: A charged scalar particle 
orbiting a non-rotating Black Hole:

ds2 =
�

1− 2M

r

� �
−dt2 + dr∗2

�
+ r2dΩ2 ,

r∗ = r + 2M ln
� r

2M
− 1

�
, dΩ2 = dθ2 + sin2 θ dϕ2 .

The scalar field equation is:
�Φ = gµν∇µ∇νΦ = −4πρ ,

ρ = q

�

γ
δ4[x− z(τ)] dτ .

γ = {xµ | xµ = zµ(τ)}

 The equation of motion for the particle is:

aµ = uν∇νuµ =
d2zµ

dτ2
=

q

m
(gµν + uµuν)∇νΦ .
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Each harmonic mode satisfies a wave-type equation:
�
−∂2

t + ∂2
r∗ − V�

�
ψlm = S�m ,

V�(r) =
�

1− 2M

r

� �
2M

r3
+

�(� + 1)
r2

�
,

S�m = −4πq
1− 2M/rp

rpEp

Ȳ �m(
π

2
, ϕp) δ[r∗ − r∗p(t)] ,

rp = rp(t) , ϕp = ϕp(t) .

Each mode is finite at the SCO location (but the total scalar 
field is divergent). We can then regularize the solution 
harmonic by harmonic by substracting to the retarded 
solution an approximation to the singular field valid at the 
particle location [Mode Sum Scheme]

Scalar Charged Particle around a MBH
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Using the Domain Splitting:

Scalar Charged Particle around a MBH

Ω2

r∗1,R r∗2,L

Ω1

= = r∗p

ψ(t, r) = ψ−(t, r) Θ
�
rp(t)− r

�
+ ψ+(t, r) Θ

�
r − rp(t)

�
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Using the Domain Splitting:

Scalar Charged Particle around a MBH

Ω2

r∗1,R r∗2,L

Ω1

= = r∗p

ψ(t, r) = ψ−(t, r) Θ
�
rp(t)− r

�
+ ψ+(t, r) Θ

�
r − rp(t)

�

the problem is reduced to Homogeneous Equations plus   
Junction/Boundary Conditions:

�
−∂2

t + ∂2
r∗ − V (r)

�
ψ± = 0 ,

[ψ]p = A
�
rp(t),ϕp(t)

�
,

[∂r∗ψ]p = B
�
rp(t),ϕp(t)

�
.
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 The Particle without Particle scheme
We use a first-order reduction of the equations that is 
symmetric hyperbolic, and hence suitable for imposing the 
boundary/matching conditions:

ψ�m
± = rΦ�m

± , φ�m
± = ∂tψ

�m
± , ϕ�m

± = ∂r∗ψ
�m
± ,

∂tU± = A · ∂r∗U± + B ·U± ,

U± = (ψ�m
± ,φ�m

± ,ϕ�m
± ) , A =




0 0 0
0 0 1
0 1 0



 , B =




0 1 0

−V� 0 0
0 0 0



 .
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 The Particle without Particle scheme
The junction conditions are imposed in two different 
alternative ways: (i) The penalty method.  (ii) The direct 
communication of the characteristic fields.

V �m = φ�m − ϕ�m

U �m = φ�m − ϕ�m

ψ�m = rΦ�m
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 The Particle without Particle scheme
In practice we use multiple domains (some of them with 
dynamical boundaries):
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 Improving the  PwP scheme
Two ways of improving the method are:

Improve the “global” boundary conditions: At present we are 
using standard outgoing wave conditions at the boundaries 
of the “truncated” physical domain.
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 Improving the  PwP scheme
Two ways of improving the method are:

Improve the “global” boundary conditions: At present we are 
using standard outgoing wave conditions at the boundaries 
of the “truncated” physical domain.

To reduce the number of domains without reducing the 
spatial resolution:  The aim is to have faster computations of 
the self-force but maintaining the same accuracy.  
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 Improving the  PwP scheme
One way of achieving this is by using a compactification 
scheme:
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One way of achieving this is by using a compactification 
scheme:

The easiest thing is to compactify spatial infinity. Let us 
consider the example of the advection equation:

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .
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 Improving the  PwP scheme
One way of achieving this is by using a compactification 
scheme:

The easiest thing is to compactify spatial infinity. Let us 
consider the example of the advection equation:

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .

We can compactify the spatial domain using the mapping:

x �−→ ρ =
x

1 + x
, ρ ∈ [0, 1)

∂tu+ (1− ρ)2∂ρu = 0 .
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 Improving the  PwP scheme
Spatial Compactification of the advection equation:

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .

x �−→ ρ =
x

1 + x
, ρ ∈ [0, 1)

∂tu+ (1− ρ)2∂ρu = 0 .

Characteristics of the 
transformed advection 
equation.

The coordinate speed 
approaches 0 near spatial 
infinity.
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 Improving the  PwP scheme
Spatial Compactification of the advection equation:

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .

x �−→ ρ =
x

1 + x
, ρ ∈ [0, 1)

∂tu+ (1− ρ)2∂ρu = 0 .

This means that the field 
cannot reach infinity in a 
finite time.
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 Improving the  PwP scheme
Spatial Compactification of the advection equation:

uo(x) = sin(2π x) , b(t) = − sin(2π t)

u(t, x) = − sin [2π(t− x)] , u(t, ρ) = − sin

�
2π

�
t− ρ

1− ρ

��
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 Improving the  PwP scheme
Spatial Compactification of the advection equation:

The oscillations can not be resolved in the compactifying 
coordinate near infinity due to infinite blueshift in spatial 
frequency.
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Hyperboloidal Compactification
An Alternative: Hyperboloidal Compactification

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .
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Hyperboloidal Compactification
An Alternative: Hyperboloidal Compactification

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .

The idea is also to transform time, that is, to change the time 
slicing:

t �−→ τ = t−
�
x+

C

1 + x

�
,

x �−→ ρ =
x

1 + x
. ρ ∈ [0, 1)
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Hyperboloidal Compactification
An Alternative: Hyperboloidal Compactification

(∂t + ∂x)u(t, x) = 0 , x ∈ [0,+∞) ,

u(0, x) = uo(x) , u(t, 0) = b(t) .

The idea is also to transform time, that is, to change the time 
slicing:

t �−→ τ = t−
�
x+

C

1 + x

�
,

x �−→ ρ =
x

1 + x
. ρ ∈ [0, 1)

We obtain the following transformed advection equation:

∂τu+
1

C
∂ρu = 0
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An Alternative: Hyperboloidal Compactification

uo(x) = sin(2π x) , b(t) = − sin(2π t)

u(t, x) = − sin [2π(t− x)] , u(τ, ρ) = − sin [2π (τ − C(ρ− 1))]

Hyperboloidal Compactification
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An Alternative: Hyperboloidal Compactification

uo(x) = sin(2π x) , b(t) = − sin(2π t)

u(t, x) = − sin [2π(t− x)] , u(τ, ρ) = − sin [2π (τ − C(ρ− 1))]

C = 5C = 1

Hyperboloidal Compactification
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Hyperboloidal Compactification for our wave equations:
�
−∂2

t + ∂2
r∗ − V�(r)

�
ψ�m
± = 0 ,

Hyperboloidal Compactification
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Hyperboloidal Compactification for our wave equations:
�
−∂2

t + ∂2
r∗ − V�(r)

�
ψ�m
± = 0 ,

The change of time slicing and spatial coordinate are:
t �−→ τ = t− h(r∗) ,

r∗ ∈ [R,+∞) −→ ρ ∈ (R,S)

r∗ �−→ ρ = r∗ Ω ,

Hyperboloidal Compactification
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Hyperboloidal Compactification for our wave equations:
�
−∂2

t + ∂2
r∗ − V�(r)

�
ψ�m
± = 0 ,

The change of time slicing and spatial coordinate are:
t �−→ τ = t− h(r∗) ,

r∗ ∈ [R,+∞) −→ ρ ∈ (R,S)

r∗ �−→ ρ = r∗ Ω ,

The representation of outgoing null rays is left invariant
t − r∗ = τ − ρ

if we choose:

h(r∗) = r∗ − ρ(r∗)

Hyperboloidal Compactification
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Hyperboloidal Compactification for our wave equations:
��

��

�0�

��

��

��

��

singularity

Hyperboloidal Compactification
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Hyperboloidal Compactification for our wave equations:
��

��

�0�

��

��

��

��

singularity

Radial location 
of the interface 
(r*=R)

Spacelike 
Hyperboloidal 
Slices

Hyperboloidal Compactification
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�
−∂2

t + ∂2
r∗ − V�(r)

�
ψ�m
± = 0 ,

The equations transform from:

to:
�
−(1 +H)∂2

τ − 2H∂τ∂ρ + (1−H)∂2
ρ − (∂ρH)(∂τ + ∂ρ)−

V�

1−H

�
ψ
�m
+ = 0 ,

where
H =

dh

dr∗
= 1 − dρ

dr∗

Hyperboloidal Compactification
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�
−∂2

t + ∂2
r∗ − V�(r)

�
ψ�m
± = 0 ,

The equations transform from:

to:
�
−(1 +H)∂2

τ − 2H∂τ∂ρ + (1−H)∂2
ρ − (∂ρH)(∂τ + ∂ρ)−

V�

1−H

�
ψ
�m
+ = 0 ,

where
H =

dh

dr∗
= 1 − dρ

dr∗

We can construct a 1st-order hyperbolic reduction introducing 
the following variables:

φ := (1 +H)∂τψ +H∂ρψ, ϕ := ∂ρψ.

Hyperboloidal Compactification
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We use the following spatial compactification:

but we have tried others.

r∗(ρ) =
ρ

Ω(ρ)
, Ω = 1−

�
ρ−R

S −R

�4

Θ(ρ−R) .

We have done computations for circular orbits using 
domains like the following one:

-50M -25M -10M 6M 25M 50M10M 100M

Hyperboloidal Compactification
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We use the following spatial compactification:

but we have tried others.

r∗(ρ) =
ρ

Ω(ρ)
, Ω = 1−

�
ρ−R

S −R

�4

Θ(ρ−R) .

We have done computations for circular orbits using 
domains like the following one:

-50M -25M -10M 6M 25M 50M10M 100M

Particle (ISCO)

r∗

Hyperboidal
      Slide

ρ

Hyperboloidal Compactification
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Some Preliminary Results

The only component of the self-force (regularized gradient 
of the scalar field) that requires regularization is the radial 
component:

ΦR
r = 1.677282× 10−4 q/M2 ,

Self-Force Calculations in the Circular Case:
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Self-Force Calculations in the Circular Case:

Comparing results with our previous computations 
(Priscilla’s talk) we obtain the same precision (as 
compared with frequency-domain results: Diaz-Rivera et 
al. [PRD, 70 124018 (2004)]) for long evolution times and a 
number of domains one order of magnitude lower.
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Some Preliminary Results

The only component of the self-force (regularized gradient 
of the scalar field) that requires regularization is the radial 
component:

ΦR
r = 1.677282× 10−4 q/M2 ,

Self-Force Calculations in the Circular Case:

Comparing results with our previous computations 
(Priscilla’s talk) we obtain the same precision (as 
compared with frequency-domain results: Diaz-Rivera et 
al. [PRD, 70 124018 (2004)]) for long evolution times and a 
number of domains one order of magnitude lower.

However, at present, for long-term stability (hundreds of 
orbits) we need to apply a spectral filter to the compactified 
domain.
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Remarks and Conclusions
We have implemented the hyperboloidal compactification at 
spatial infinity for time-domain computations of the self-force.
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We get the same precision in the computations as in our 
previous calculations with a number of domains of the order 
of 40 and for a long time.  We reduce the computational cost 
in one order of magnitude.

We need to understand better the properties of the slicing in 
relation with the pseudospectral methods, and in particular 
the need of the use of a spectral filter.  A possible 
improvement is to introduce a transition region.
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Remarks and Conclusions
We have implemented the hyperboloidal compactification at 
spatial infinity for time-domain computations of the self-force.

We get the same precision in the computations as in our 
previous calculations with a number of domains of the order 
of 40 and for a long time.  We reduce the computational cost 
in one order of magnitude.

We need to understand better the properties of the slicing in 
relation with the pseudospectral methods, and in particular 
the need of the use of a spectral filter.  A possible 
improvement is to introduce a transition region.

Apply the same techniques at the Horizon

r∗ −→ −∞


