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Plan of the talk

@ Perturbations in RW gauge, W properties and jump conditions
@ Indirect method

@ Perspectives

Alessandro D.A.M. Spallicci 8 July 2011 14th Capra Meeting, Southampton



LISA-NGO and low frequencies

@ The shift of LISA-NGO sensitivity towards higher frequency (shorter arm
length) must concern the Capra community, the opportunity of EMRI
detection being reduced.

Are there new arguments, beyond EMRIs, to favour low-frequency sensitivity?
Sequential detection of SMBHBs by pulsar timing array PTA (coalescence) and
by LISA-NGO (merge and ringing).

@ Individual detection of SMBHBEs is at the limit of PTA actual state of the
art (50 ns residuals).
@ Sequential detection is also hindered by shift to higher frequencies.

@ SMBHB of n-1078M,, pass in few years from PTA to LISA-NGO band.

@ Undergoing simulations (A. Sesana MPI) evaluate the probability of
sequential detection.
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LISA-NGO and low frequencies

12 T 04 08 08 10

Transfer time [y] versus SMBHB mass [109M®] for PTA-SKA band hight limit of respectively 4 - 1078 Hz and 8 - 1078 Hz.
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Perturbations in RW gauge, W properties, jump conditions

Perturbations in RW gauge

RW gauge W € C1, hy, € CO for radial infall, h,, ¢ CO for generic
orbits.

@ h even perturbations (radial case, only even) € C° continuity class at z,
(1: integration over r of the Hamiltonian constraint, tt component of the
Einstein equations; 2: structure of selected even perturbation equations (Lousto
2000, - and Nakano 2009).

@ LN derive the jump conditions on W and derivatives from RWZ equation.
For radial, there is an alternative: obtain jump conditions from formal solutions
(inverse relations) of RWZ equation.

Determination of the jump conditions on Psi and derivatives, to get h even

perturbations € C°.
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Perturbations in RW gauge, W properties, jump conditions

W properties

From the visual inspection of the Zerilli wave equation, ¥ € C~! continuity class =>:

d*W(t,r)  d*V(t,r)
dr*2 dt?

= Vi(nWi(t,r) = Si(t,r)
V(t,r)=V*(t,r) ©1+ V¥ (t,r) O
V,=V10;+V, 0+ (VT-WT)s

V= V0,0 (VW) 5 (W)

Y, =Whe V0, — (W —W7) z,6

V=V 014V, O+ (Vi—V)6— (W —V7) 2,4
©1 =0 [r — z,(t)], ©2 = © [z,(t) — r] Heaviside step distributions
Property f(r)d'[r — zu(t)] = f,(1)0'[r — 2u(t)] — £}, (1y0[r — zu(t)]
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Perturbations in RW gauge, W properties, jump conditions

Inverse relations

K = A(r)V + L(r)V .+ f(r)d
Ha = fo(r)V + f(r)V,, + f6(r)W 1 + ()8 + fo(r)d’
Hi = K(r)WV ¢ + fo(r)V,e + f1(r)6 + fia(r)d’

£ _ OM24+3MAr+ AN+ () 2M f__ Ru(r—2Mm)
b r2(Ar + 3M) T T O+ 1)(Ar +3M)r
3 2 2 2 2 3 2 2
[ _OMPHOAMI 4 3NME + XA+ 1) 3MP— AMr+ A b= (r2m)
r2(Ar +3M)? r(Ar 4 3M)

[ KUO(r — 2M)(A2r? + 2AMr — 3Mr + 3M?) P kP (r — 2M)?

T r(r + D)(Ar 4 3M)2 ST TN+ 1) (Ar +3M)

Ar? —3MAr — 3M? ku® z, (Ar + M) K u z, r(r—2M)
fo = flo=r fi1=— fio =

(r — 2M) (Ar + 3M) (A +1)(Ar +3M) (A +1)(Ar +3M)

§=68[r—z(t)] and &' = & [r — z,(t)]
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Perturbations in RW gauge, W properties, jump conditions

Jump conditions

Conditions on W and its derivatives must cancel discontinuities in K, H> and H;
Coefficients of ©; must be = coefficients of ©,, Coefficients of § and 6’ must vanish

- f3 fs fi2
yt =2 =_2=
( )Zu f fo  Zufio
~~ ~—~ N——"
K Ho,2 H

(v vy = fif 7;(@%%”7@,,@)

@ 2 f\ f fs
~~
K Ho,z
(Wt —w— fs (WH —w,
I s L L

_ \Ut_w—r 2= (fg—ﬁo,r)éu(\V’—LU_)—ﬂ1+f12’, )
, , = 7 H.
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Indirect method

h
4™ order

Indirect method |

@ Integration domain h discretised by 2-dimensional uniform mesh (t, r.).
@ Initial data and empty cells (Lousto and Price, Martel and Poisson, Martel, Lousto, Haas).

@ The forward time value at the upper node of the (r*,t) grid cell is obtained by
i) the preceding node values of the same cell,
i) analytic expressions from the jump conditions on W and its derivatives,
iii) ONLY AT HIGH ORDERS: the values of the wave function at adjacent cells .
@ The numerical integration does not deal with the source and potential terms
directly, for cells crossed by the particle world line.

@ The values of W, h,v and derivatives at the particle positions are analytical.

a a a o
i Y ¥ %
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Indirect method R 2kl h”

Indirect method I

Case 1: particle crosses the 3 - d line at a and 7y - « line at b
€2 = min{ad, aB}, e = min {ba, by}; WE = WE(ty, 1), VE = WE(t,,1])
6 analytic expressions and 6 numerical equations:

(Wr—wT) =[], (V. -V ) =[], (Vi-Vy), =V,
(Wh—w), =] (V- —V.), =Wl (Wi-WV,), =[Vds
WS =V (tht e, r5) = Vi + e WY,
Vo =V (t—(h—e), ) =V, —(h—e) V],
=V (s —2h+en, ) =V (to —hyry) =V, —h VW |
V=Vt i +e)=V+e
UV, =V (6, —(h—€)) =V, —(h—e) V.|,

VS =W (te,r] —2h+ ) =V (to, 1 —h)y =V = hW .
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RECIEIRE
Generic orbits
4th

Indirect method

Indirect method IlI

Our aim: determination of the value of W, knowing those of \UE, v, \U}, €2, €b,
[\U]a,b’ [\Uv’]a,b and [\th]a,b
Algebraic manipulation. Subtracting (1) and (2):

Vo=V, + V] + [Velo+h VL], 7)
Subtracting (4) and (5):

Vi =V, + [V + [V la+h Vo (8)
Summing (3) and (7), (6) and (8), and combining the results, it provides:

VI = W5 =W U — (V] 4 V], — 6 [V ], + e [V, + O(K)

@ No need of direct integration of the singular source

@ Top cell value depending upon analytic expressions (and other cell's corners)
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RECIEIRE
Generic orbits

Indirect method

Indirect method IV

Similar relations for the other three cases

a

2
V=g — W W) V] V], -6 [V ], e [We], + O(K)

U=, — Wl 4V - V] e [V,-], + O(R)

U=, — U] W 4 V] e [V,-], + O(R)
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Indirect method

Radial fall
G ic orbits
4" order

Indirect method V: Radial fall from 5M
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Indirect method

Radial fall
Generic orbits

4™ order

Indirect method VI: Radial fall from 20M

— Yine - Y

uj2M uj2M
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ECIEIRE
Generic orbits
4" order

Indirect method

Indirect method VII: Generic orbits

Y
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ECIEIRE
Generic orbits
4" order

Indirect method

Indirect method VIII: Generic orbits

r* =r+2Min(r/2M — 1); T(t),R(t),@(t),(b(t); A= —-1)(e+2)/2, f=1—2M/r.
UL, r) PVt r) e ¢
e T o — V()W (t,r)=S(¢,r),
2 3 2 2 2 3
. [N+ D%+ 332Mr 4 oAM?r + 9M? oA+l M
Ve =2f r3(\r + 3M)2 v 72{( 2 T 73)

Si(t,r) = G (t,r)d[r — R(t)] + F (t,r)8'[r — R(¢)] .

(R—2M) [(RR’)2 —(R—-2 M)2] B [(RR)2 —(R— 2M)2]

! !
F, Y, F, =8K ang(t
e R2(>\R+3M) £m o R g(t)
. R d_ 66 _ (62 —sin?062) _
Gl=klar_amla — v, 2 "X~ x|+
e ( ) ORT3M) e om N N tm
8(R—2M? _ ™ s (R2A+6RM+6>\RM+3M2+R2A2)R2 (R2A+R2)\2+15M2+6)\RM) ]
— Y, ©° +sin“ 0 ©° + —
(AR+3M) ‘" R(AR +3M) (R —2M)? R3 (AR +3M) J

6l =—-k 8RR d (t) 8 (t) RZR’UO +R*R+2M — R + RR?
= — — —an, _ an, — -
° X de e AR E uo
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Indirect method Generic orbits

4" order

Indirect method IX: Generic orbits

K=(rmU%/(x+1)

XM =20, (89 — cot0) V"

1

tm 2 2 £m
W™ = (95 — cot@ 99 — 15} Y

( 0 ¢ Gn2e “’)

ytm represents the complex conjugation of spherical harmonics and it is defined by

?Zm _

ang(t) = o (;)6¢ vim _sine 9y ytm

© = 0 and © = 7 /2 without loss of generality.
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ECIEIRE
Generic orbits
4" order

Indirect method

Indirect method X: Generic orbits

V=V + VU H,

The wave equation is cast in the following form

2
'OV + FPO7W — 837: — VW = S(t,r) = G(t,r)d + F(t,r)d = Grd + Frd’

where Gg = Gr — Fj, (since ¢(r)d' [r — R(t)] = ¢rnd’ [r — R(t)] — Dreyd [r — R(1)])
' 0,0 f207w = (/W] P | ek [0 4 PV Mot (W —w ) svar® (- v ) s (W - v

WML+ VT,0; — 20,0: (w* - \u*) §—R (\u+ - w*) 5+ R? (\u+ - \u*) s

VU=VUTHy + VU T H,
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ECIEIRE
Generic orbits
4™ order

Indirect method

Indirect method Xl: Generic orbits

Equating the coefficients of ', and owing to the above mentioned property of the delta
derivative for which (W —W™)§" = [W]§ — [W ], we get the jump condition for W

V] = s Fr ©)

Equating the coefficients of §, we get the jump condition on the space derivative

WA= s |Got (et = R) ]2k e w1 (10)
R

and therefore the jump condition on the first time derivative

. d .
W.e=Rpg NV -RWV.] . (11)
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ECIEIRE
Generic orbits
4" order

Indirect method

Indirect method XlI: Generic orbits

For case 5, we have

Vo =Wy =V U5+ V], - V], — 6 [V, ], — s [V,

For case 6, we have
Vo =W, =W U — V] 4 V], — e [V, — e [V,

@ Waveforms for circular orbits at first order have been obtained.
Work slowly in progress (SA - ET, LISA).
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RECIEIRE
Generic orbits
4t order

Indirect method

Indirect method XIlI: 4t order

@ The indirect method may be extended to higher orders for any orbit.

2nd, 3rd

o Coding state: radial are working (4" unstable on July 8t").

e Warning: slightly different approach (1 point-based, € definition).
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RECIEIRE
Generic orbits
4t order

Indirect method

Indirect method XIV: 4t order

4 4
Vi =Y qoiv; +0 (h5) =3 (00w, +[07V],) + O (h5) -
n=0 n=0
4
=V, +adV; + adiV; +adiV;, +adiv, + 3 V], + O (h5)
n=0

After considerable manipulation, we get for the first of the nine sub-cases

V= Va4V, + Vs, +x (w;f + w;f) +xs (w[;é n w%)
- + - + - + 1)
X (\II%L + w’Yf) X (wvﬁ + w'vf) + X (wué + wu?) + q)ni‘(tb)
L) = N [V, + yalh, ) [BeW], + ys(H, &, hes) 7V +ya(b, 1, 5. ) [oFw ]

+ys(h*, B, 1%, €h, €3, €b) [a:‘w}b + Y6 [0 V], + ys(h°) [a?* W]b + yo(h?, hev) [0, 0:V],,

Tyio(h, Hep, héd) [a,i atw] v He) [a,% afw] (', Bes, i, he)) [a,*a?w}
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Perspectives

Perspectives

@ The indirect method appears to be an (close to) analytical
development scheme and applicable to any orbit.

@ Our aim is the orbital evolution. Although, a self-consistent
evolution a /a Gralla-Wald of the self-force is conceivable in the
harmonic gauge, an iterative evolution of the back-action may be
conceived in other gauges.
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Orbital evolution

Orbital evolution |

The geodesic deviation expression has been rigorously derived by Gralla and Wald.
Here a non-rigorous (kludgy ? quick and dirty) derivation of the same expression.
D*z° _ d*z*
dr2  dr2

v APz o dztdz¥
dr2 Wodr dr

bra n
+ M uu

D?2*  d’2* d’2*  q ., d2*d2¥

=2 = re,ote” = re, = —o

) ) CE ) W)Y
being 7 an d A proper time in the background (b) and full (f) metric, respectively.
2% = z% + Az is the coordinates of the particle in the full metric g.. + hﬁu, where

hﬁl, is the DeWh radiative effective or the MiSaTuQuWa tail perturbation.

Subtracting the two geodesics, after some manipulation:

D2Az®
dr?

= —R.,"u"AZ"u” —%(gaﬁ—i— uauﬁ)(Zhﬁﬁ;u — hﬁu;g)u“u”
—_—

Back, d desic deviati
ackground geodesic deviation Self — acceleration
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Orbital evolution

Orbital evolution 1l

¢
a. Geodesic in the
background.

o1

b. Self-force correction
aposteriori

h
c. Evolution by
geodesic deviation.

/

az az

d. Self-consistent
evolution.

—

az a2

@ Self-consistent evolution corresponds to the bottom-right figure: the geodesic is
constantly updated at each instant (iteration) by the self-force term, having
neglected the background geodesic deviation.

@ It has been shown in specific cases the correspondence between the pragmatic
RW gauge and the self-consistent approaches, term by term. Meaningfulness
under scrutiny (proper — coordinate time, harmonic = RW gauge).
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