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Goals

• Kerr

• scalar field for now, gravitational field in the future

• compute self-force very accurately

• equatorial circular orbit → equatorial eccentric orbit → generic orbit

• as efficient as possible (orbital evolution in the future)

This is work in progress!
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Overall Plan

Puncture-function regularization [[as per Vega, Wardell, Dolan talks]]
• use Wardell’s 4th order puncture function and effective source

• scalar field for now, gravitational field in the future
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Overall Plan

Puncture-function regularization [[as per Vega, Wardell, Dolan talks]]
• use Wardell’s 4th order puncture function and effective source

• scalar field for now, gravitational field in the future

Time domain
• can handle any orbit, including high eccentricity

• Cauchy evolution (well-understood, could even use Cactus)

• AMR (⇒ accurate, efficient)
◮ hopefully competetive with frequency-domain at much smaller e

• spatial boundaries far enough away to be causally disconnected
(with AMR this isn’t that expensive)

• try higher order finite differencing for improved accuracy/efficiency

m-mode decomposition ⇒ 2+1D numerical evolution for each m

Worldtube scheme to treat far-from-the-particle region
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m-mode Decomposition and 2-D Evolution

Vega, Detweiler, Diener, et al. numerically solve for the residual field ϕr

in 3+1D,
�ϕr = Seff

We (Barack, Dolan, Wardell, Thornburg) prefer to Fourier-decompose in φ
[actually in φ̃ := φ+ f (r) to avoid infinite-twisting at horizon], then
numerically solve for each individual Fourier mode of the residual field
ϕm
r := (ϕ− ϕpunct)

m in 2+1D,

�
mϕm

r = Sm
eff

where the 2-D puncture function and effective source are given by

ϕm
punct(t, r , θ) =

1

2π

∫ π

−π
ϕpunct(t, r , θ, φ)e

−imφ̃ d φ̃

Sm
eff(t, r , θ) =

1

2π

∫ π

−π
Seff(t, r , θ, φ)e

−imφ̃ d φ̃
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The Worldtube (Idea)

Problem: puncture function and effective source aren’t well-defined far
from the particle.

Solutions:
◮ window function [[Vega, Detweiler, Diener, et al.]]
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The Worldtube (Idea)

Problem: puncture function and effective source aren’t well-defined far
from the particle.

Solutions:
◮ window function [[Vega, Detweiler, Diener, et al.]]

◮ world tube

World tube: Introduce 2-D world tube (of macroscopic size) containing
particle. Then the “numerical field”

ϕm
num :=

{

(ϕ− ϕpunct)
m inside worldtube

ϕm outside worldtube

satisfies

�mϕ
m
num =

{

Sm
eff inside worldtube

0 outside worldtube
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The Worldtube (Implementation)

The worldtube is very easy to implement at the finite-differencing level:
• store ϕm

num as a grid function in the usual manner

• for each finite difference operation at each grid point
• if the finite difference molecule crosses the worldtube boundary, then

copy all the input data for the molecule to a small scratch array,
adjusting by ±ϕm

punct as appropriate, and apply the standard finite
difference molecule to the scratch array

• if the finite difference molecule doesn’t cross the worldtube boundary,
then use the standard finite difference operation

Only a small fraction of grid points are within a molecule radius of the
worldtube boundary & hence need the [slow] adjustment; most grid points
can use the [fast] ordinary finite difference operation. Thus this scheme is
quite fast on average.
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Efficiently Computing the φ Integrals (1)

For the 4th order puncture we haven’t been able to do these Fourier
integrals analytically, so we have to do them numerically. Since Sm

eff

appears as the source term in the 2+1D evolution equation, we have to
compute the Sm

eff Fourier integral at each 2+1D grid point (actually, at
each 2+1D grid point in the worldtube) at each time step.

That’s a lot of integrals!

[For an equatorial-circular orbit we can just compute the Fourier integrals
at each 2+1D grid point in the worldtube at the first time step, then apply
a phase factor to get Sm

eff cheaply at each later time step. But this
“rotation trick” doesn’t work for more general particle orbits.]
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integrals analytically, so we have to do them numerically. Since Sm

eff

appears as the source term in the 2+1D evolution equation, we have to
compute the Sm

eff Fourier integral at each 2+1D grid point (actually, at
each 2+1D grid point in the worldtube) at each time step.

That’s a lot of integrals!

[For an equatorial-circular orbit we can just compute the Fourier integrals
at each 2+1D grid point in the worldtube at the first time step, then apply
a phase factor to get Sm

eff cheaply at each later time step. But this
“rotation trick” doesn’t work for more general particle orbits.]

⇒ We don’t yet know what fraction of the total computational cost
will be consumed by these integrals.
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Efficiently Computing the φ Integrals (2)

To actually compute the Fourier integrals, we use an adaptive numerical
quadrature routine (GSL’s QAWO) designed for oscillatory integrands.
⇒ cost of computing a Fourier integral is ≈ independent of m

(with a general-purpose numerical quadrature routine, cost ∝ m)
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The 3-D Puncture Function and Effective Source

Fix a t = constant slice. Supose the particle is at x ip and we want to

evaluate the 3-D puncture fn ϕpunct at the position x i := x ip + δx i . Then

ϕpunct(δr , δθ, δφ) =

∑

ijk Nijk(δr)
i (δθ)j (δφ)(k)

(

∑

ijk Dijk(δr)i (δθ)j (δφ)(k)
)3/2

where the 18 Nijk and 18 Dijk coefficients depend on M, a, and x ip,

but do not depend on δx i , k ∈ {0, 2, 4}, and where

δφ(0) = 1

δφ(2) =
5

2
−

8

3
cos δφ+

1

6
cos 2δφ ∼ (δφ)2 for |δφ| ≪ 1

δφ(4) = 6 − 8 cos δφ+ 2 cos 2δφ ∼ (δφ)4 for |δφ| ≪ 1

The 3-D effective source Seff(δr , δθ, δφ) is similar, but messier.
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Efficiently Computing the 2-D Puncture Fn & Effective Src

To compute the 2-D effective source Sm
eff at a given (δr , δθ) (corresponding

to a given 2-D (r , θ) grid point), the numerical integration of the Fourier
integral requires computing Seff(δr , δθ, δφ) for many (∼ 100) different δφ
values.

() July 5, 2011 11 / 16



Efficiently Computing the 2-D Puncture Fn & Effective Src

To compute the 2-D effective source Sm
eff at a given (δr , δθ) (corresponding

to a given 2-D (r , θ) grid point), the numerical integration of the Fourier
integral requires computing Seff(δr , δθ, δφ) for many (∼ 100) different δφ
values.

Thus, we define the coefficients

Nk(δr , δθ) :=
∑

ij

Nijk(δr)
i (δθ)j Dk(δr , δθ) :=

∑

ij

Dijk(δr)
i (δθ)j

so that

ϕpunct(δr , δθ, δφ) =

∑

k Nk(δr , δθ)δφ
(k)

(
∑

k Dk(δr , δθ)δφ(k)
)3/2

The coefficients Nijk and Dijk are computed once per time step (for the
equatorial circular orbit case they’re actually time-independent). The
coefficients Nk and Dk are computed once per (worldtube) grid point per
time step. Given Nk and Dk , ϕpunct(δr , δθ, δφ) is fairly cheap to compute.
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(Very) Preliminary Results (1)

• Kerr BH (spin 0.6), particle in equatorial circular orbit at r = 10M
• unigrid, highest resolution ∆r∗ = M

16 , ∆θ = π

640 radians (⇒ r ∆θ ≈ ∆r at
particle)
• 4th order finite differencing (ignore non-smoothness at the particle)
• evolutions for 0 ≤ m ≤ 15

⇒ Between 2nd and 3rd order convergence with resolution:
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(Very) Preliminary Results (2)

Nice ∼ m−4 convergence of Fm at large m:
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(Very) Preliminary Results (3)

Self-force in units of 10−6q2/M2:
∑15

m=0 F
m = −7.529± 0.004

fitted m−4 tail sum = 0.026± 0.0008
fitted m−5 tail sum = 0.004± 0.0004
sum = −7.499± 0.004 (0.05%)

true Fself (Niels Warburton) = −7.491205
actual error = − 0.008 (0.11%)
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Conclusions

◮ puncture-function regularization is very nice!

◮ m-mode decomposition & 2-D evolution are very nice!
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◮ (very) preliminary results:
◮ naive 4th order finite differencing across particle gets ≈ 2.75th order
◮ nice m−4 convergence of Fm at large m
◮ ⇒ δFself ∼ 10−3

◮ AMR should greatly improve this
◮ don’t yet know equal-efficiency point with frequency-domain
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Directions for Further Research

Near-Term:
◮ don’t integrate outside result domain of dependence

◮ angular boundary condition at equator

◮ better finite-differencing error estimates

◮ non-naive formula for δφ(2) and δφ(4)

◮ interpolate singular field very close to particle to avoid cancellations
in naive formula there

◮ more generic orbits (equatorial eccentric is in progress now)

◮ fancier finite differencing at particle (try to get ≥ 4th order)

◮ phase-align grid with particle?

◮ auto-adjust domain size

Medium-Term:
◮ AMR

◮ high-accuracy runs
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