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General idea



Capra mandate

(a) Understand the two-body problem in general relativity in the
extreme-mass-ratio regime
(b) Develop methods for modeling such systems.

Main issue

I Multiple scales: spatial scale of large black hole vs scale of the small
compact object + short dynamical time scale vs long radiation
reaction time scale

General line of attack
Map the EMRI problem onto that of the motion of a point mass in black
hole spacetime, where the motion needs to incorporate the effects of the
self-force.

Point sources → delta functions → locally divergent fields requiring

regularization



Numerical self-force: Mode sum method

I Use delta-function source
�ψ = δ

The physical solution, ψret, diverges at the particle.

I Break into spherical harmonic modes that are all finite.

I Regularize l-modes.
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I Sum the remainders.
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Effective source

What if we avoid using a delta function altogether?
Perhaps replace it by a less singular source?
→ Fields will be finite.

I Choose ψ̄ st �ψ̄ = δ +O(ρn), n ≥ −1

I Then regularize the delta function source

�(ψR + ψ̄) = δ

�ψR = −�ψ̄ + δ

�ψR = S = O(ρn)

I Effective source:
S := −�ψ̄ + δ = O(ρn)



Effective source

Capra 10, (Alabama ’07): The idea was independently proposed by two
groups at the same time.

I Barack and Golbourn (PRD 2007): “puncture” scheme

ψ̄ = q/ε, ε2 = (gαβ + uαuβ)δxαδxβ

�ψ̄ = δ +O(ρ−1)

ψR = C0 → enough to recover retarded field and fluxes

I Vega and Detweiler (PRD 2008): “smeared-out” sources

ψ̄ = ψ̃S (DW singular field)

�ψ̃S = δ +O(ρ1)

ψR = C2 → enough to compute for self force



Choice of ψ̄

A convenient choice of ψ̄ is the Detweiler-Whiting singular field

ψS(x) := q

∫
GS(x, z(τ))dτ

GS(x, x′) =
1
2
U(x, x′)δ(σ)− 1

2
V (x, x′)θ(σ)

This choice has the following neat features:

I �ψR(x) = −�ψS(x) + δ = 0 when x ∈ N (z)

I Fα = ∇αψR, where ψR := ψret − ψS

So not only do we produce a wave equation with a regular source, the

resulting physical solution of this wave equation immediately gives the

self-force.



Choice of ψ̄

While by definition the DW singular field, ψS, ought to give

�ψR(x) = 0 when x ∈ N (z)

in practice, one can find an explicit (coordinate) expression only for an
approximation to this singular field, ψ̃S, so that

�ψR = −�ψ̃S + δ = O(ρn)

Two methods to get a coordinate expression

I Locally inertial coordinates (THZ) in which the singular field looks
like an ordinary Coulomb field (Detweiler et al, 2003)

I Covariant expansion + coordinate expansion (Haas and Poisson,
2006)



(Spatially) compactifying the source

The coordinate expression for the singular field typically results in an
effective source that misbehaves away from the particle. Moreover, we
would typically want a source that is spatially compact.

This is easily done by choosing a window function, W , whose role it is to
force the effective source to zero outside some specified region. The
effective source is then constructed as

S =
{
−�(Wψ̃S), x 6= z

0, x = z

This implies that ψR = ψret −Wψ̃S. W should be picked such that it

does not affect the condition that Fα := ∇αψR



(Spatially) compactifying the source

The window function needs to satisfy the following conditions:

1. W → 1 sufficiently fast as one approaches the particle,

2. ∇αW → 0 sufficiently fast as one approaches the particle, and

3. W = 0 outside a compact region R surrounding the particle.

4. Smoothness (optional)

These conditions guarantee that

(a) ∇αψR|point charge gives the self-force.

(b) ψR gives fluxes in the wavezone.



Example
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Prescription

Self-force calculation

I Prescribe worldline, zα(τ).

I Solve
�ψR = S(xa, za(τ), ua(τ))

I And evaluate ∇αψR along the worldline.

Self-consistent evolution

I Simultaneously integrate

�ψR = S(xa, za(τ), ua(τ))

d2za

dτ2
=

q

m
(gab + uaub)(∇bψR)|za .



Choice of integration method

Why (3+1)?

I Non-post-processing (therefore straightforward) approach to
self-consistent evolution.

I Does not rely on the underlying symmetries of the spacetime.

I Difficulty of the calculation (IN PRINCIPLE) should not depend on
the orbit (except that the effective source tends to be more
expensive to compute for generic orbits)

Why not (3+1)?

I Less accurate (though perhaps not necessarily)

I Much fewer checks as compared to methods based on some
decomposition (e.g. no mode fall-off)



Past work

I L. Barack and D. Golbourn (PRD 2007): (2+1), puncture, compute
retarded field, Schw

I IV and S. Detweiler (PRD 2008): (1+1), DW singular field,
compute self-force, Schw

I IV, P. Diener, W. Tichy, S. Detweiler (PRD 2009): (3+1), circular
orbit

I S. Dolan and L. Barack (PRD 2010): (2+1), higher-order puncture,
compute self-force, Schw, generic orbits

I S. Dolan, L. Barack, B. Wardell (arxiv 2011): (2+1), Kerr, compute
scalar self-force

See also recent review of the effective source approach by IV, B. Wardell,

P. Diener (CQG, 2011).



(3+1) implementation



Evolution equations

Scalar wave equation in (3+1)

α2∇a∇aψ = −∂t∂tψ + βi∂t∂iψ

+
α
√
γ
∂i

(√
γ

α
βi∂tψ

)
+

α
√
γ
∂i

[
α
√
γ
(
γij − βiβj

α2

)
∂jψ

]
+ α2S

where
H = 2m/r, α2 = (1 +H)−1, βi = α2Hxi/r

γij = ηij − H

1 +H

xixj

r2



Evolution equations

1st-order form

∂tρ = βi∂iρ+
α
√
γ
∂i

[
α
√
γ
(
gijφj +

βiρ

α2

)]
− α2S

∂tφi = ∂iρ

∂tψ = ρ

ρ := ∂tψ
φi := ∂iψ

{ρ, φi} : evolved
ψ : solved as a simple ODE.

Self-force is simply φi interpolated to the particle location.



Hyperboloidal slicing

I Using standard spatial slices forces one to deal with the problem of
imperfect outer boundary conditions.

I This is solved using hyperboloidal slicing, as proposed by A.
Zenginoğlu and M. Tiglio (PRD 2009), that compactifies the
spacetime, bringing I + to some finite coordinate distance. (Of
course the coordinate speed of the ingoing characteristic at I + is
zero).

I This amounts to the coordinate transformation

τ = t− h(r)
r = ρ/Ω(ρ), such that Ω(ρ)→ 0, ρ→ L

and working with a conformally rescaled metric, g = Ω2g̃, that is
regular at ρ = L.



Hyperboloidal slicing

I To avoid having to worry about the source term, we choose to
implement hyperboloidal slicing only in the source-free region, and
retain the spatial Kerr-Schild time slices where the source is
non-zero.

I This can be done by choosing h(r) and Ω(ρ) appropriately, making
sure that h(r) = C and Ω(ρ) = 1 in some ρ < ρin while smoothly
transitioning to the hyperboloidal slices of Zenginoğlu and Tiglio
starting at ρ = ρout.

I This allows for very long-term evolution without any spurious
reflection from the boundary.



Multi-block code

The evolution that’s currently being used is the multi-block code
described in [Schnetter, Diener, Dorband, Tiglio (2006)].

The code has also been used to compute quasinormal modes in Kerr via
3D scalar field evolutions. (Dorband et al, 2006)

It works very well for scalar fields!



Approximation to the singular field

ψS =
q

2r
+

q

2radv
+O(ε3)

ψS =
q

s

(
1 +

r̄2 − s2

6s2
Ruσuσ +

r̄(r̄2 − 3s2)
24s2

Ruσuσ|u −
(r̄2 − s2)

24s2
Ruσuσ|σ

)
+O(ε3)

Five scalar functions
{s, r̄, Ruσuσ, Ruσuσ|u, Ruσuσ|σ}.

σα = σα(x, x̄)→ requires coordinate expansion

s2 = (gᾱβ̄ + uᾱuβ̄)σᾱσβ̄
r̄ = uᾱσβ̄

Ruσuσ|u = Rᾱβ̄γ̄δ̄;ε̄u
ᾱσβ̄uγ̄σδ̄uε̄



Approximation to singular field

The straightforward coordinate expansion needs to be massaged a bit to
produce an effective source that’s amenable to a 3+1 code.

Currently, we do the following:

I Use a smooth window functions in θ and r.

I Choose window (and orbit) so that we never encounter divergences
away from the particle.

I Periodicize the singular field.

I Employ some form of interpolation very close to the particle to take
care of the round-off error there.

(These are described in more detail by Barry’s talk).



Results: Ft, eccentric orbit
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Results: Fφ, eccentric orbit
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Results: Fr, eccentric orbit
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Results: Fr, circular orbit
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Summary

I There exists a (3+1) approach to the self-force programme.

I The (3+1) approach, in principle, is a robust method that (a) does
not care about the symmetries of the background spacetime, and
(b) should work just as well for any orbit.

I It can naturally be extended to provide self-consistent orbits.

I We still have quite a bit to do!


	Main Talk

