Frequency-domain approach to self-force calculations

Niels Warburton n.warburton@soton.ac.uk

July 3, 2011

Southampton

TD vs. FD

Time Domain	Frequency domain
PDEs	ODEs
Same speed regardless of orbit type	Fast for low eccentricity orbits
Self-consistent evolution	Osculating orbit method

TD vs. FD

Time Domain	Frequency domain
PDEs	ODEs
Same speed regardless of orbit type	Fast for low eccentricity orbits
Self-consistent evolution	Osculating orbit method

Generic circular and eccentric equatorial orbits

TD vs. FD

Time Domain	Frequency domain
PDEs	ODEs
Same speed regardless of orbit type	Fast for low eccentricity orbits
Self-consistent evolution	Osculating orbit method
Scalar Self Force (SSF) in	Gravitational Self Force (GSF)
Kerr spacetime	in Schwarzschild spacetime
Generic circular and eccentric	Eccentric orbits
equatorial orbits	See also Akcay's talk

Method

Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

SSF in Kerr

Wave equation

The minimally coupled Klein-Gordon equation with source T

$$\Box \Phi \equiv \Phi_{;\alpha}^{\ \alpha} = -4\pi T, \qquad T = q \int \delta^4 (x^\mu - x^\mu_\rho(\tau)) [-g(x)]^{-1/2} d\tau$$

Method

Decompose field Φ into spheroidal harmonic and frequency modes

$$\Phi = \sum_{j_m} R_{j_m}(r) S_{j_m}(\theta; \sigma^2) e^{im\phi} e^{-i\omega t}$$

where $\sigma^2 = -a^2 \omega^2$

- Numerically solve for the radial equation R_{im}(r) for each mode
- Mode-sum regularization: $F_{\alpha}^{\text{self}} = \sum_{I} \left[F_{\alpha}^{(\text{full})I}(x) A_{\alpha}(I+1/2) B_{\alpha} \right]$

Method

Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Spheroidal to spherical decomposition

$$F_{\alpha}^{(\text{full})I}(x) = q \nabla_{\alpha} \sum_{\hat{l}=0}^{\infty} \sum_{m=-\hat{l}}^{\hat{l}} b_{lm}^{\hat{l}} R_{\hat{l}m}(r) Y_{lm}(\theta, \phi) e^{-i\omega_m t}$$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Circular, equatorial orbits: Zero spin

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Circular, equatorial orbits: effect of spin

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Circular, equatorial orbits: $r^5 F_r$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Circular, equatorial orbits: PN Fit

Niels Warburton n.warburton@soton.ac.uk

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Circular, inclined orbits

Radial SSF for (a, r₀) = (0.5,10M) for a variety of inclincation angles

Niels Warburton n.warburton@soton.ac.uk

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Circular, inclined orbits

(a, r₀, inc) = (0.9, 3, 32deg)

Niels Warburton n.warburton@soton.ac.uk

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

Eccentric orbits

Spectrum now bi-periodic

$$\omega_{mn} = m\Omega_{\phi} + n\Omega_{r}$$

$$\Phi_{lm}(t,r) = \sum_{n} \phi_{lmn}(r)e^{-i\omega_{mn}t}$$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

Credit: Barack, Ori and Sago

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

Eccentric orbits 0.4 Spectrum now bi-periodic 0.35 $\omega_{mn} = m\Omega_{\phi} + n\Omega_{r}$ 0.25 $\Phi_{lm}(t,r) = \sum \phi_{lmn}(r)e^{-i\omega_{mn}t}$ 0.2 r 0.15 0.1 0.05 full field-Extended homogeneous solutions -0.05 -0.17 8 q 14 Avoids Gibbs phenomenon r/M • Exponential convergence with *n* Credit: Barack, Ori and Sago

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

Eccentric orbits

Spectrum now bi-periodic

$$\omega_{mn} = m\Omega_{\phi} + n\Omega_{r}$$

$$\Phi_{lm}(t, r) = \sum_{n} \phi_{lmn}(r) e^{-i\omega_{mn}t}$$

Extended homogeneous solutions

- Avoids Gibbs phenomenon
- Exponential convergence with n

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

- 1. With suitable BCs solve radial equation to find homogeneous solutions: $\psi^{\pm}_{lmn}(r)$
- 2. (Naïve method) Use the standard method of variation of parameters to find the inhomogeneous solutions

$$\psi_{\hat{l}mn}^{\text{inh}}(r) = \psi_{\hat{l}mn}^{+}(r) \int_{r_{\min}}^{r} \frac{\psi_{\hat{l}mn}^{-}(r')Z_{\hat{l}mn}(r')r'^{2}}{\Delta(r')W} dr' + \psi_{\hat{l}mn}^{-}(r) \int_{r}^{r_{\max}} \frac{\psi_{\hat{l}mn}^{+}(r')Z_{\hat{l}mn}(r')r'^{2}}{\Delta(r')W} dr'$$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

1. With suitable BCs solve radial equation to find homogeneous solutions: $\psi_{\hat{l}mn}^{\pm}(r) = r > 2M$ 2. (Naïve method) Use the standard method of variation of parameters to find the inhomogeneous solutions

$$\psi_{lmn}^{\text{inh}}(r) = \psi_{lmn}^{+}(r) \int_{r_{\min}}^{r} \frac{\psi_{lmn}^{-}(r') Z_{lmn}(r') r'^{2}}{\Delta(r') W} dr' + \psi_{lmn}^{-}(r) \int_{r}^{r_{\max}} \frac{\psi_{lmn}^{+}(r') Z_{lmn}(r') r'^{2}}{\Delta(r') W} dr'$$

2. (Method of EHS) Define

$$\tilde{\psi}^{\pm}_{\hat{l}mn}(r) = C^{\pm}_{\hat{l}mn}\psi^{\pm}_{\hat{l}mn}(r), \qquad C^{\pm}_{\hat{l}mn} = \int_{r_{\min}}^{r_{\max}} \frac{\psi^{-}_{\hat{l}mn}(r')Z_{\hat{l}mn}(r')r'^2}{\Delta(r')W} dr'$$

$$\tilde{\phi}_{lm}^{\pm}(t,r) = \sum_{n=0}^{\infty} \sum_{\hat{j}=0}^{\infty} b_{lm}^{\hat{j}} \psi_{\hat{j}mn}^{\pm}(r) e^{-i\omega_{mn}t}$$

Then the correct TD field is given by

$$\phi_{lm}(t,r) = \begin{cases} \tilde{\phi}_{lm}^+(t,r) & r \ge r_p(t) \\ \tilde{\phi}_{lm}^-(t,r) & r \le r_p(t) \end{cases}$$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

1. With suitable BCs solve radial equation to find homogeneous solutions: $\psi_{\hat{l}mn}^{\pm}(r) = r > 2M$ 2. (Naïve method) Use the standard method of variation of parameters to find the inhomogeneous solutions

$$\psi_{\bar{l}mn}^{\rm inh}(r) = \psi_{\bar{l}mn}^{+}(r) \int_{r_{\rm min}}^{r} \frac{\psi_{\bar{l}mn}^{-}(r') Z_{\bar{l}mn}(r') r'^{2}}{\Delta(r') W} \frac{dr'}{dr'} + \psi_{\bar{l}mn}^{-}(r) \int_{r}^{r_{\rm max}} \frac{\psi_{\bar{l}mn}^{+}(r') Z_{\bar{l}mn}(r') r'^{2}}{\Delta(r') W} \frac{dr'}{dr'}$$

2. (Method of EHS) Define

$$\tilde{\psi}^{\pm}_{\bar{l}mn}(r) = C^{\pm}_{\bar{l}mn}\psi^{\pm}_{\bar{l}mn}(r) \,, \qquad C^{\pm}_{\bar{l}mn} = \int_{r_{\min}}^{r_{\max}} \frac{\psi^{-}_{\bar{l}mn}(r')Z_{\bar{l}mn}(r')r'^{2}}{\Delta(r')W} \, dr' \,, \qquad Z_{lmn}(r) \propto \frac{1}{|u'|}$$

$$\tilde{\phi}_{lm}^{\pm}(t,r) = \sum_{n=0}^{\infty} \sum_{\hat{j}=0}^{\infty} b_{lm}^{\hat{j}} \psi_{\hat{j}mn}^{\pm}(r) e^{-i\omega_{mn} t}$$

Then the correct TD field is given by

$$\phi_{lm}(t,r) = \begin{cases} \tilde{\phi}^+_{lm}(t,r) & r \ge r_p(t) \\ \tilde{\phi}^-_{lm}(t,r) & r \le r_p(t) \end{cases}$$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Method of extended homogeneous solutions

1. With suitable BCs solve radial equation to find homogeneous solutions: $\psi_{fmn}^{\pm}(r) = r > 2M$ 2. (Naïve method) Use the standard method of variation of parameters to find the inhomogeneous solutions

$$\psi_{lmn}^{\text{inh}}(r) = \psi_{lmn}^{+}(r) \int_{r_{\min}}^{r} \frac{\psi_{lmn}^{-}(r') Z_{lmn}(r') r'^{2}}{\Delta(r') W} dr' + \psi_{lmn}^{-}(r) \int_{r}^{r_{\max}} \frac{\psi_{lmn}^{+}(r') Z_{lmn}(r') r'^{2}}{\Delta(r') W} dr'$$

2. (Method of EHS) Define

$$\tilde{\psi}_{\hat{j}mn}^{\pm}(r) = C_{\hat{j}mn}^{\pm}\psi_{\hat{j}mn}^{\pm}(r), \qquad C_{\hat{j}mn}^{\pm} = -\frac{8\pi q S_{\hat{j}mn}(\pi/2)}{T_r W} \int_0^{T_r/2} \frac{\psi_{\hat{j}m\omega}^{\mp}(r_p(t))\cos(\omega_{mn}t - m\varphi_p(t))}{r_p(t)u^t(r_p(t))} dt$$

$$\tilde{\phi}_{lm}^{\pm}(t,r) = \sum_{n=0}^{\infty} \sum_{\hat{l}=0}^{\infty} b_{lm}^{\hat{l}} \psi_{\hat{l}mn}^{\pm}(r) e^{-i\omega_{mn}t}$$

Then the correct TD field is given by

$$\phi_{lm}(t,r) = \begin{cases} \tilde{\phi}_{lm}^+(t,r) & r \ge r_p(t) \\ \tilde{\phi}_{lm}^-(t,r) & r \le r_p(t) \end{cases}$$

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Validation: regularization

(a, p, e) = (0.9M, 10M, 0.5)

Niels Warburton n.warburton@soton.ac.uk

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Sample results

(p, e) = (10M, 0.5)

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Schwarzschild ISCO shift

- Self-force corrections shift the location of the ISCO
- Formula for the radial shift given by

$$\Delta r_{\rm isco} = 216F_0^r - 72F_1^r + 6\sqrt{2}F_t^1 + \frac{4}{\sqrt{3}}F_\phi^1$$

where e.g.

$$F^r = F_0^r + e\hat{F}_1^r \cos(\omega\tau)$$

and

$$F_1^r = \lim_{p \to 6} \lim_{e \to 0} \hat{F}_1^r$$

• Calculate the (conservative) self-force and \hat{F}_1^r , \hat{F}_{ϕ}^1 and \hat{F}_t^1 for slightly eccentric orbits and then extrapolate to the ISCO

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Niels Warburton n.warburton@soton.ac.uk

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Niels Warburton n.warburton@soton.ac.uk

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Kerr ISCO shift

Similar procedure can be applied to Kerr

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Variation of rest mass

$$u^{\beta}\nabla_{\beta}(\mu u^{\alpha}) = q\nabla^{\alpha}\Phi^{R} = F_{self}^{\alpha} \quad (1)$$

$$\mu \frac{du^{\alpha}}{d\tau} = (\delta^{\alpha}_{\beta} + u^{\alpha}u_{\beta})F_{self}^{\beta}$$

$$\frac{d\mu}{d\tau} = -u^{\alpha}F_{\alpha}^{self} \quad (2)$$

$$Eq. (1) + Eq. (2) \Longrightarrow$$

$$\mu(\tau) = \mu_{0} - q\Phi^{R}(\tau)$$

$$u^{\beta}\nabla_{\beta}(\mu u^{\alpha}) = q\nabla^{\alpha}\Phi^{R}(\tau)$$

Niels Warburton n.warburton@soton.ac.uk Frequency-domain approach to self-force calculations

Method Generic circular orbits Method of extended homogeneous solutions Eccentric, equatorial orbits

Efficiency of the method

GSF in Schwarzschild

Overview

- Lorenz gauge calculation of the GSF for eccentric orbits about a Schwarzschild black hole
- Using the method of extended homogeneous solutions for coupled fields [See Akcay's talk]
- Fast computation of GSF for low eccentricity orbits
- Code works out to p = 200M

GSF in Schwarzschild

Overview

- Lorenz gauge calculation of the GSF for eccentric orbits about a Schwarzschild black hole
- Using the method of extended homogeneous solutions for coupled fields [See Akcay's talk]
- Fast computation of GSF for low eccentricity orbits
- Code works out to p = 200M

Results

- Computing 15 I-modes at (p, e) = (7M, 0.2) takes 1.5 hours on a dual core desktop machine
- Same code scales to a cluster (MPI implementation)
- e.g. Using 64 cores we can compute the same results as above in under 12 minutes
- Higher accuracy ISCO shift (work in progress)

FD GSF efficiency

GSF ISCO shift

BS2010 (method I):

$$rac{\Delta\Omega_{
m isco}}{\Omega_{
m isco}}=$$
 0.484(2) μ/M

GSF ISCO shift

Niels Warburton n.warburton@soton.ac.uk

Future Prospects

• SSF: generic orbits in Kerr

$$\omega = m\Omega_{\phi} + n\Omega_r + k\Omega_{\theta}$$

- GSF: complete higher accuracy ISCO shift calculation
- GSF: eccentric orbit SF-PN comparison
- GSF: orbital evolution with osculating orbits

Scalar SF for eccentric orbits in Kerr: Phys. Rev. D. 83, 124038 (2011) Scalar SF for circular orbits in Kerr: Phys. Rev. D. 81. 084039 (2010)