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EFFECTIVE SOURCE METHOD

Subtract ‘puncture’ field at the level of the wave 
equation.

Solve for residual field with an effective source which 
is regular everywhere

�Φ = �ΦS +�ΦR

�ΦR = Seff Seff ≡
�

γ
δ(x, z(τ �))dτ � −�ΦS



SINGULAR FIELD

Need

Given the Detweiler-Whiting Green function,

        is given by

Seff ≡
�

γ
δ(x, z(τ �))dτ � −�ΦS

GDW(x, x�) =
1

2
{U(x, x�)δ (σ(x, x�)) + V (x, x�)θ (σ(x, x�))}

ΦS

ΦS(x) = q

�

γ
GDW(x, x�)dτ �



SINGULAR FIELD

So

For x close to the world-line,

and we expand         and         
in the geodesic distance 
between x and the world-line
(Haas and Poisson)
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SINGULAR FIELD

and                is the Synge world-function.   σ(x, x̄)

r̄ = σāu
ā

s2 = (gāb̄ + uāub̄)σāσb̄
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Expand all functions of x in coordinate series

SINGULAR FIELD

s2 = Bāb̄∆xā∆xb̄ +Bāb̄c̄∆xā∆xb̄xc̄ + · · ·

r̄ = Cā∆xā + Cāb̄∆xā∆xb̄ + · · · σᾱ = Dᾱ
ā∆xā +Dᾱ

āb̄∆xā∆xb̄ + · · ·

ΦS =
Aāb̄∆xā∆xb̄ +Aāb̄c̄∆xā∆xb̄∆xc̄

(Bāb̄∆xā∆xb̄ +Bāb̄c̄∆xā∆xb̄∆xc̄)3/2
+O

�
∆x)



ISSUES - DIVERGENCES

Singular field written as a series expansion about 
particle’s location

Will in general diverge far from the particle

Window function/world tube can be employed to 
kill off singular field before divergences are reached

Location of divergences depends on orbital 
configuration (unpredictable) => desirable to 
eliminate/control them



Eliminate problems (divergences and discontinuities) 
in azimuthal direction by re-summation

Typically choose trigonometric functions

Other choices are sometimes better, e.g., for avoiding 
numerical roundoff issues at small 

ISSUES - DIVERGENCES

∆φn → fn(∆φ) = ∆φn +O
�
∆φN
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∆φ2 → 5

2
− 8
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cos∆φ+
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6
cos 2∆φ = ∆φ2 +O(∆φ6)

∆φ4 → 6− 8 cos∆φ+ 2 cos 2∆φ = ∆φ4 +O(∆φ6)



Eliminate singularities in effective source by re-
expansion of the singular field such that the 
denominator is positive definite everywhere (except 
at the particle)

For Δt = 0, new denominator is positive everywhere

ISSUES - DIVERGENCES

ΦS =
Aāb̄∆xā∆xb̄ +Aāb̄c̄∆xā∆xb̄∆xc̄

(Bāb̄∆xā∆xb̄ +Bāb̄c̄∆xā∆xb̄∆xc̄)3/2
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ISSUES - COMPUTATIONAL 
EFFICIENCY

Singular field and effective source are a complex 
function of the particle’s position and the distance 
from it

In m-mode scheme additionally have integration over 
azimuthal direction

Computationally expensive source to a 
computationally cheap wave equation

Highly desirable to make calculation as efficient as 
possible



ISSUES - COMPUTATIONAL 
EFFICIENCY

Singular field - power series in Δx 

Coefficients only depend on particle position => 
change from one iteration to the next but not from 
point to point

Optimisation (50x): precompute coefficients at the 
start of each iteration and then compute relatively 
cheap power series at each point



ISSUES - COMPUTATIONAL 
EFFICIENCY

In 2+1D m-mode scheme, numerical integration over 
azimuthal angle is quite expensive and negates some 
of the benefits of the reduction from 3+1D

Optimization: get rid of numerical integration by 
manipulating the singular field into a form where the 
integration can be done analytically in terms of 
elliptic functions.



First order metric perturbation

Trace-reversed form

Lorenz gauge

GRAVITATIONAL CASE

�γab + 2Ra
α
b
βγαβ = Sab

gab = gab + hab

γab
;b = 0

γab = hab − 1

2
gabhα

α



First order Lorenz-gauge perturbation equation

Split into singular and regular parts

Solve regularized equation with an effective source

GRAVITATIONAL CASE

�γab + 2Ra
α
b
βγαβ = −16πm
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γ
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b�ua�ub�δ4(x, z(τ
�))dτ �

γab = γS
ab + γR
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�γR
ab + 2Ra

α
b
βγR

αβ = Seff
ab



Analogous to scalar case, the gravitational DW Green 
function is

Singular field given by integral of this Green function

GRAVITATIONAL SINGULAR 
FIELD

GS
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Exact expression for the singular field

Not feasible to use in this form for practical 
calculations - proceed by expansion

GRAVITATIONAL SINGULAR 
FIELD

γS
ab =
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GRAVITATIONAL SINGULAR 
FIELD
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f(x�) = f(x̄) + f �(x̄)(x� − x̄) + · · ·



GRAVITATIONAL SINGULAR 
FIELD

γS
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+ (s2 − r̄2)Rᾱβ̄γ̄δ̄;�̄u
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Expand all functions of x in coordinate series

GRAVITATIONAL SINGULAR 
FIELD

gb̄a = gb̄ā +Ab̄
āc̄∆xc̄ + · · ·

s2 = Bāb̄∆xā∆xb̄ +Bāb̄c̄∆xā∆xb̄xc̄ + · · ·

r̄ = Cā∆xā + Cāb̄∆xā∆xb̄ + · · ·

σᾱ = Dᾱ
ā∆xā +Dᾱ

āb̄∆xā∆xb̄ + · · ·



Re-expand, make periodic, etc.

Final result - singular field written as expansion in 
powers of coordinate distance from the world-line

Apply wave operator to singular field to get effective 
source

GRAVITATIONAL SINGULAR 
FIELD

γS
ab =
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+

Yāb̄c̄d̄ē∆xc̄∆xd̄∆xē
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GRAVITATIONAL EFFECTIVE 
SOURCE - FIRST ORDER

for a circular equatorial orbit in Kerr - r0 = 10, a=0.5, M=1Seff
ab



GRAVITATIONAL EFFECTIVE 
SOURCE - SECOND ORDER

for a circular equatorial orbit in Kerr - r0 = 10, a=0.5, M=1Seff
ab



GRAVITATIONAL EFFECTIVE 
SOURCE - THIRD ORDER

for a circular equatorial orbit in Kerr - r0 = 10, a=0.5, M=1Seff
ab



GRAVITATIONAL EFFECTIVE 
SOURCE - FOURTH ORDER

for a circular equatorial orbit in Kerr - r0 = 10, a=0.5, M=1Seff
ab



GRAVITATIONAL EFFECTIVE 
SOURCE - FOURTH ORDER

for a circular equatorial orbit in Kerr - r0 = 10, a=0.5, M=1Seff
ab



CONCLUSIONS

Scalar and gravitational effective sources through 
fourth order are now at hand for Schwarzschild and 
Kerr

Most technical issues related to series divergences 
solved by suitable re-expansion/re-summation

Window function/worldtube resolves remaining 
technical problems.


