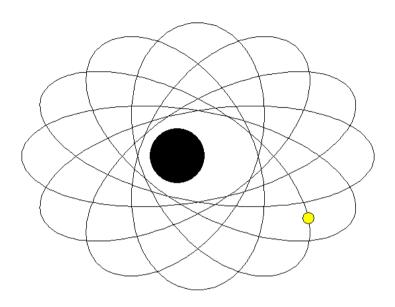


Self-force driven inspiral of a scalar point particle into a Schwarzschild black hole: a progress report

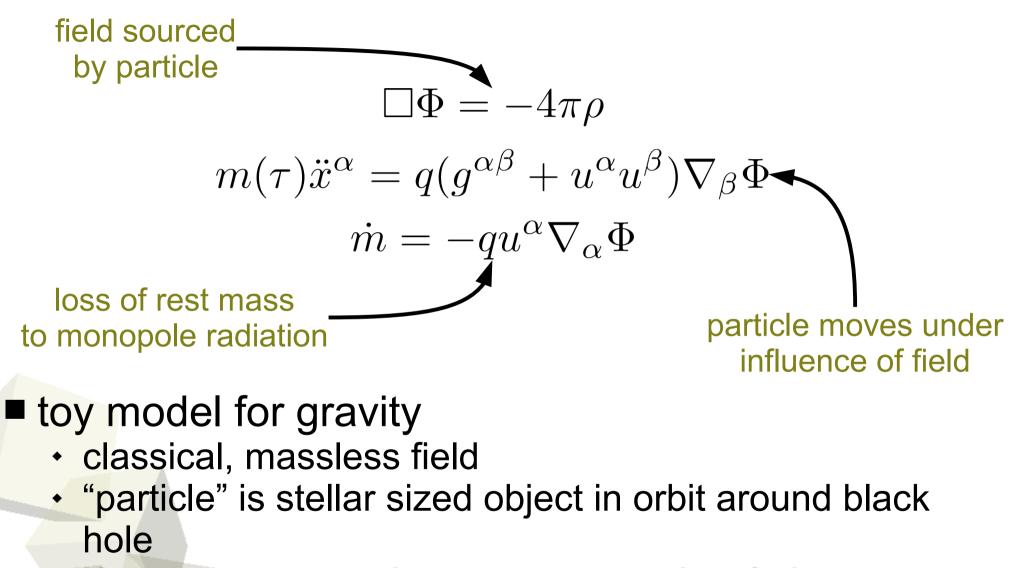
Roland Haas Caltech

Extreme Mass Ratio Inspirals



- Solar-mass, compact object moving around a supermassive black hole
 - energy lost due to radiation leads to orbital decay
 - possible source for space based GW antenna
- 10⁵ wave cycles / year
 - below noise level
 - accurate modeling to detect signal
 - encode geometry around central object
- employ small mass ratio approach
 - first order expansion in μ/M
 - no weak-field or slow motion assumption

Scalar self force in Schwarzschild



self-consistent evolution must evolve field and particle simultaneously

Accelerated motion

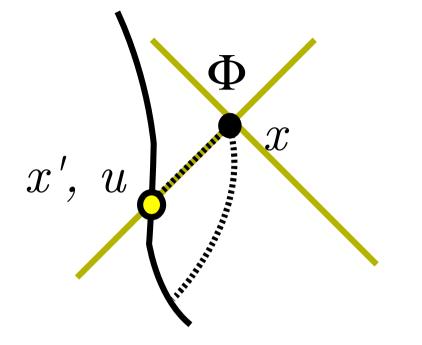
Motivation

- current mode-sum approach calculates the self-force on a geodesic
- one inspiral calculation requires data from a large number of geodesics ⇒ is calculated as a postprocessing step
- inefficient, since a large bank of self-force templates has to be computed in advance

Idea

- calculate the self-force self-consistently along an accelerated world line and use it to evolve forward in time
- calculation of self-force and evolution of orbit occur at the same time

Detweiler-Whiting decomposition



waves travel both

- directly along the light cone
- by scattering off curvature in the tail
- particle interacts with its own radiation

direct piece is singular and must be removed
 tail piece is regular and solely responsible for the force

controls motion
$$\longrightarrow \nabla_{\alpha} \Phi^{R} = \nabla_{\alpha} \Phi - \nabla_{\alpha} \Phi^{S}$$

compute numerically known analytically

Singular field removal

Mode sum regularization

- regularizes after computing
- efficient in Schwarzschild, hard to extent to Kerr
- first method to be used successfully [Barack, Mino, Nakano, Ori, Sasaki 2002]
- Effective source method
 - regularizes source term in wave equation
 - full 3D simulation for field, extension to Kerr is simpler
 - first method to compute self-consistent motion [Diener, Vega, Wardell, Detweiler 2011]
- m-mode regularization
 - combines aspects of effective source and mode sum regularization
- designed to work in Kerr [Barack, Golbourn, Sago 2007]
 Green function methods

Mode sum regularization

Spacetime is spherically symmetric

- decompose field into spherical harmonic modes
- modes decouple
- each mode is finite at location of particle

$$\nabla_{\alpha} \Phi^{S} = \sum_{\ell} \left(\nabla_{\alpha} \Phi^{S} \right)_{\ell} P_{\ell} \text{ vanishes}$$

$$\left(\nabla_{\alpha} \Phi^{S} \right)_{\ell} = \left(\ell + 1/2 \right) A_{\alpha} + B_{\alpha} + \frac{C_{\alpha}}{\ell + 1/2} + \frac{1}{\ell + 1/2} + \frac{1$$

(numerical $\nabla_{\alpha} \Phi$ must match this structure)

Singular field near the world line

$$\Phi^{S}(x) = \frac{q}{2r}U(x, x') + \frac{q}{2r_{\text{adv}}}U(x, x'') - \frac{1}{2}q \int_{u}^{v} V(x, z)d\tau$$

$$x', u$$
retarded/advanced point

• Expand (bi-)tensors in terms of $\sigma^{\bar{\alpha}} \equiv \nabla^{\bar{\alpha}} \sigma(x, \bar{x})$ (covariant) $A(x, \bar{x}) = A(\bar{x}) + A_{\bar{\alpha}}(\bar{x})\sigma^{\bar{\alpha}} + \dots$

• Expand σ^{α} in terms of $(x - \bar{x})^{\bar{\alpha}}$ (not covariant)

$$\sigma^{\bar{\alpha}} = (x - \bar{x})^{\bar{\alpha}} + B^{\bar{\alpha}}_{\bar{\beta}\bar{\gamma}}(x - \bar{x})^{\bar{\beta}}(x - \bar{x})^{\bar{\gamma}} + \dots$$

Changes due to acceleration

Covariant local expansion of the singular field

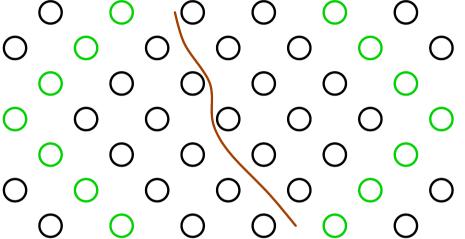
- Synge's world function σ links points on the world line
 ⇒ acceleration and higher derivatives appear in its expansion along the world line
- Retarded and advanced times depend on $\sigma \Rightarrow$ acceleration appears
- Coordinate expansion of bitensors
 - Unchanged as the point x on the world line is arbitrary

$$A_{(\mu)} = \hat{A}_{(\mu)}(x^{\alpha}, u^{\alpha}) \operatorname{sign}(\Delta)$$
$$B_{(\mu)} = \hat{B}_{(\mu)}(x^{\alpha}, u^{\alpha}, a^{\alpha})$$
$$C_{(\mu)} = 0$$
$$D_{(\mu)} = \hat{D}_{(\mu)}(x^{\alpha}, u^{\alpha}, a^{\alpha}, \dot{a}^{\alpha})$$

Retarded field

$$\Box_{\text{flat}}^{1+1} \left(r \Phi_{\ell m} \right) - V \Phi_{\ell m} = S_{\ell m} \,\delta(r - r(\tau))$$

- Fourth-order accurate algorithm
- No boundary conditions
 are enforced, instead the
 Oracle
 <pOracle</p>
 Oracle
 <pOracle</p>
 Oracle
 Oracle</

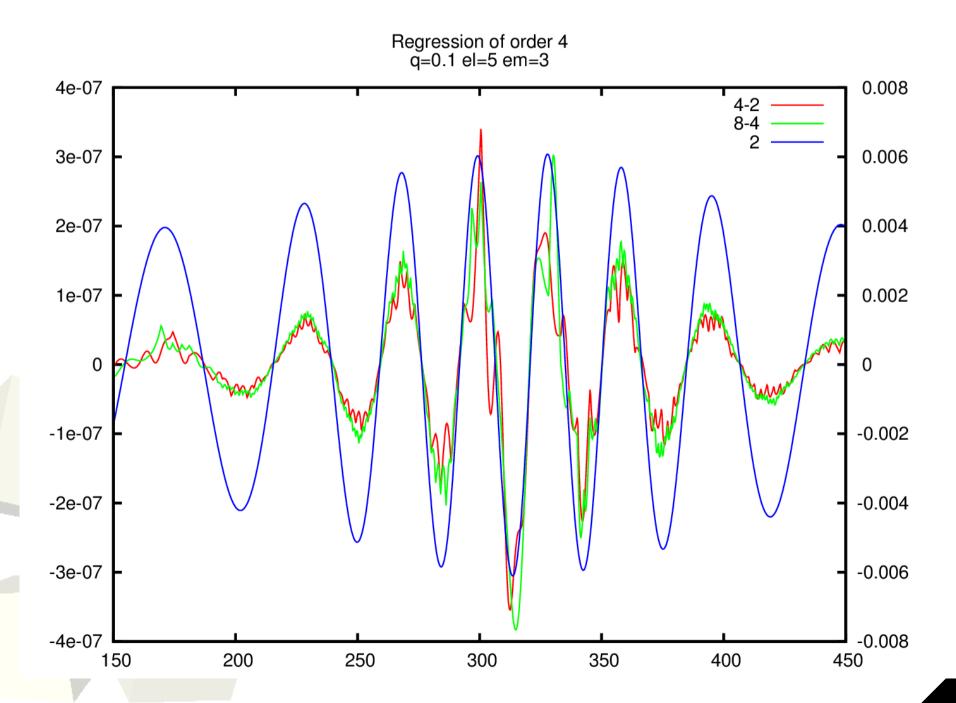


 No physical initial data is specified, we wait until the initial radiation contents has propagated away
 Both the field and the source term are evolved concurrently using a predictor-corrector scheme

Changes to handle acceleration

- field evolved using the original fourth-order accurate algorithm of [Lousto 2009]
 - time update requires only two time slices
 - straightforward to adapt to accelerated motion
 - fast
- particle evolved in step with field using an Adams-Bashforth-Moulton multistep timestepper
 - only uses time steps for which field values are available
 - 4th order accurate in time
- extraction of field value at particle location uses partial information on jumps. Only jumps independent of acceleration are used

Code convergence

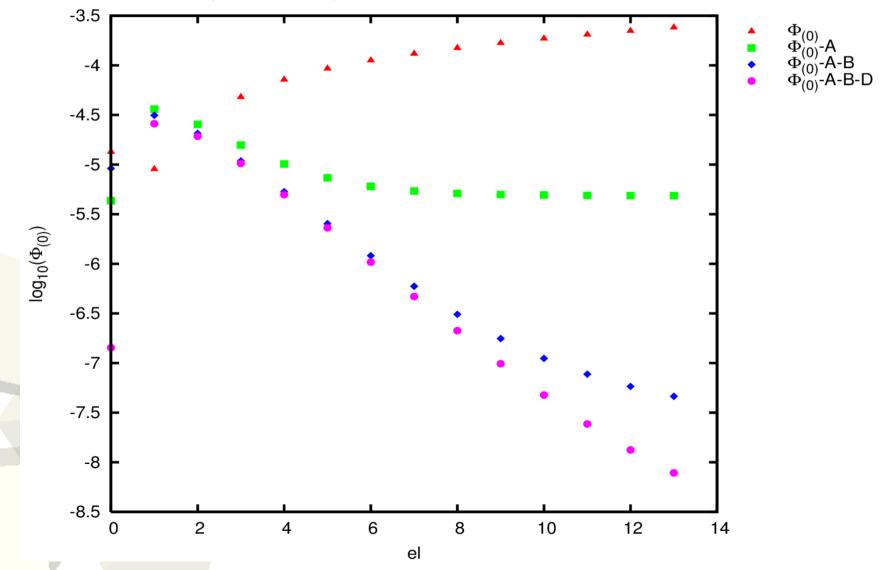


12

Mode falloff for geodesic orbits

$$\left(\nabla_{\alpha}\Phi^{S}\right)_{\ell} = (\ell + 1/2)A_{\alpha} + B_{\alpha} + \frac{C_{\alpha}}{\ell + 1/2} + \frac{D_{\alpha}}{(2\ell - 1)(2\ell - 3)}$$

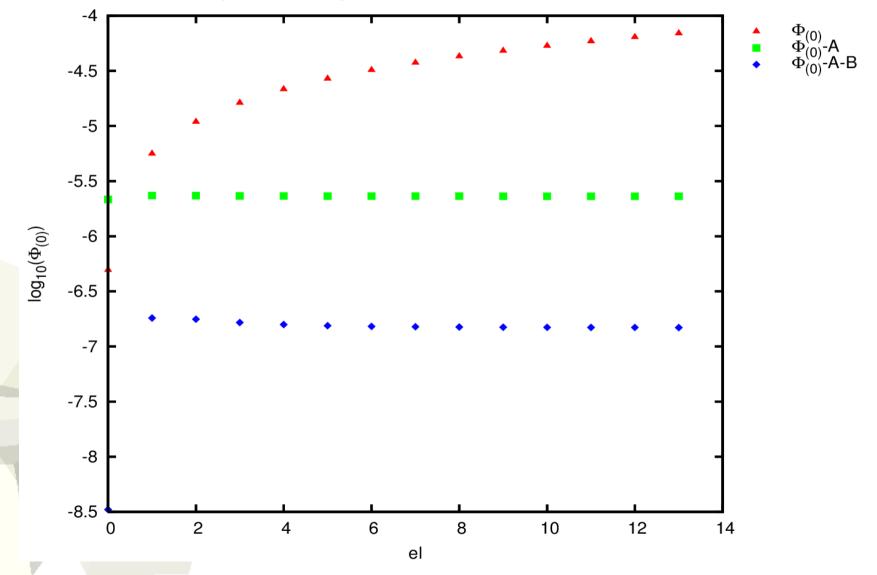
3.622713, e = 0.500000, p = 7.200000, q = 0.050000, Delta_t = 0.00416667, Delta_rstar = 0.00833333, t_extract = 10



13

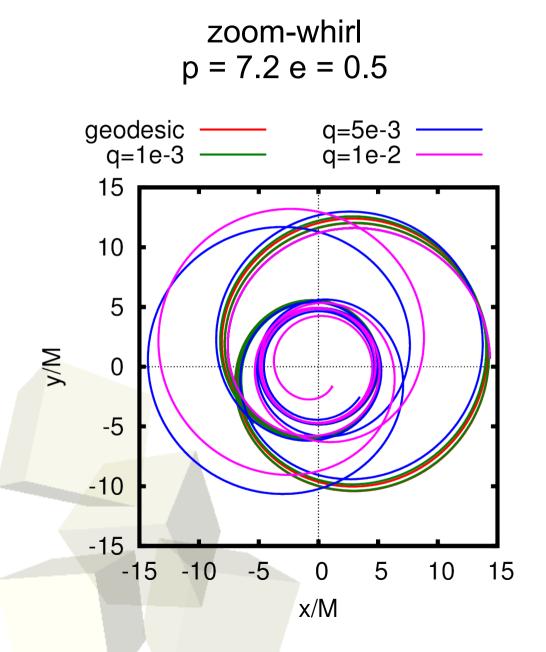
$$(\nabla_{\alpha}\Phi^{S})_{\ell} = (\ell + 1/2)A_{\alpha} + B_{\alpha} + \frac{C_{\alpha}}{\ell + 1/2} + \frac{D_{\alpha}}{(2\ell - 1)(2\ell - 3)}$$

= 3.622713, e = 0.500000, p = 7.200000, q = 0.005000, Delta_t = 0.00416667, Delta_rstar = 0.00833333, t_extract =



14

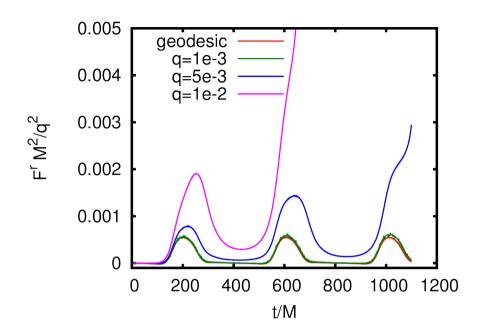
Trajectories

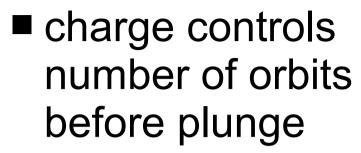


zoom whirl orbit

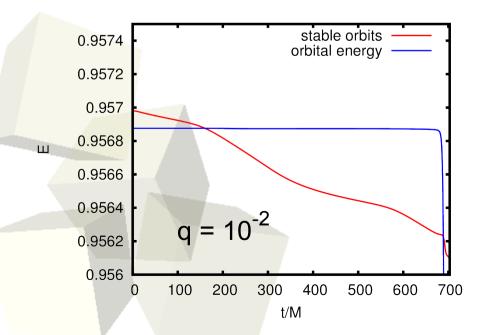
- copious radiation emitted during whirl phase
- penetrates deep within the strong field region
- self force computed locally
- increased perihelion advance due to self force
- sudden transition from inspiral to plunge

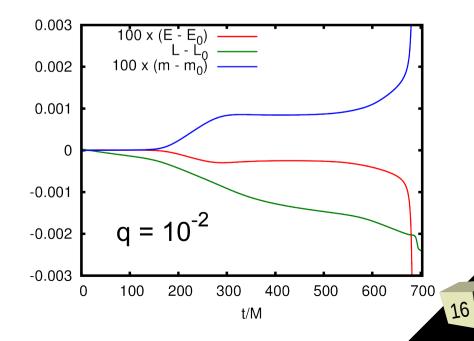
Variable constants of motion





 mass loss due to scalar radiation





- self-consistent evolution of charge under the influence seems possible but there are still bugs in the code
- self-force likely increases perihelion advance
- onset of plunge once
 - angular momentum is sufficiently low
 - particle on inbound trajectory

