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Motion of Small Bodies 

Consider a body that is small compared to the scale of variation of the 
external universe.  Imagine expanding in the size/mass M of the body. 

M^0: zero (geodesic motion).  ~100 years old; many derivations; no controversy. 
 
M^1: MiSaTaQuWa force. ~15 years old; several derivations; some controversy. 
 
M^2: no standard expression; much controversy 
 
M^n: ??? 

What is the acceleration of the worldline? 

“second order gravitational self-force” 

At least to some finite order in M, one would expect to be able to 
describe the body as following a worldline in a background spacetime. 



Difficulties with Point Particles 

Point particle sources don’t make sense in GR (Geroch and Traschen 1987)  

We could try to fix things by taking M small, 

Now the equation is linear and makes sense. What about going to order M^2? 

no mathematical meaning 

meaningful 

no mathematical meaning 
Involves products of the distribution g(1); 
Off Z, diverges as (x-Z)-4  not locally integrable 

M^1: 

M^2: 

Full GR: 

okay okay 

not a distribution 



What equation gives the metric 
of a small body to O(M^2)??? 

We must return to a finite size body and consider a limit of small size/mass M.  
One way to do this is with the formalism of SEG & Wald 2008. 

To motivate our assumptions, consider approximating the Schwarzschild deSitter 
metric by using a parameter lambda, 

As λ0 we recover deSitter (the “background metric”),  

The body has shrunk to zero size and disappeared altogether. 



1-param family: 

Now the limit as λ0 yields the “body metric” of Schwarzschild, 

This procedure has “zoomed in” on the body, because the coordinates 
scale at the same rate as the body. 

But there is another interesting limit.  Introduce “scaled coordinates”  
and the family becomes, 

Also introduce a new, scaled metric and you get 



We assume a one-parameter-family g(λ) where ordinary and scaled limits of 
this sort exist and are smoothly related to each other in a certain sense.  
The main output is a form of the perturbative metric, 

(Notice how this behavior was present in the example family, 

) 

These coordinates have the background worldline of the 
particle (the place where it “disappeared to”) at r=0. 

The n^th order perturbation diverges as 1/r^n near the background worldline 

anm are functions of time and angles  



Einstein’s equation 

The perturbed Einstein equations… 

…together with the assumed (singular) metric form contain the 
complete information about the metric perturbations. 

g: background (smooth) 
h: first perutrbation (1/r) 
j: second perturbation (1/r^2) 

New notation: 

Okay, great.  How do you find h and j in practice? 

In SEG&Wald we proved that, at first order, the above description is 
equivalent to the linearized Einstein equation sourced by a point paticle. 
(This derives the point particle description from extended bodies!  See also Pound’s work.) 

But what do we do at second order, which 
doesn’t play nice with point particles? 



Answer: Effective Source Method! 

Barack and Golbourn and Detweiler and Vega introduced a technique for 
determining the field of a point particle by considering smooth sources. 

We can recast their method in our language without ever mentioning 
point particles.  Things then generalize to second order. 

(The only new wrinkle at first order is the gauge freedom; previous 
effective source work has considered Lorenz gauge only.) 



We know that  

Effective source at first order in our approach: 

and h ~ 1/r near r=0 

At some level we have a “singular boundary condition”.  How to remove it?  Solve  
analytically for h in series in r.  Find the general solution in a particular gauge. 

The solution contains free functions.  But note by inspection that we may 
isolate off  a “singular piece” hS such that 

(explicit expressions given) 

1) hS has no free functions (depends only on M and background curvature) 
 

2) hP – hS is C^2 at r=0 (or some desired smoothness) 

Pick this hS and call it the “singular field”. 



Our choice of “singular field”: 

(expressed in a local inertial coordinate 
system of the background metric about 
the background worldline) 

The claim is that the general solution has h-hS sufficiently regular when h is 
expressed in a particular gauge (“P gauge”). 
 
But now consider any smoothly related gauge (“P-smooth gauges”), 

(Xi smooth) 

It is of course still true that h-hS is sufficiently regular. 



So we have a “singular field” and a corresponding class of gauges such 
that h-hS is always sufficiently regular. 
 
Choose an arbitrary extension of hS to the entire manifold and define   

becomes 
Can drop! 

The right-hand-side is the “effective source” and is C^0.  No more  
“singular boundary condition”.  Numerical integrators happy. 

(hats denote extended quantities) 

Then Einstein’s equation, 

Pick initial/boundary conditions representing the physics of interest and pick 
any gauge condition (such as Lorenz on hR) such that hR is C^2.  Then h = hR+hS 
is the physical metric perturbation expressed in a P-smooth gauge. 



Effective source at second order: 

New subtlety: a smooth gauge transformation changes j by a singular amount! 

(explicit expressions given) 

We have and j ~ 1/r^2 near r=0 

To remove the “singular boundary condition” find the 
general solution in a particular gauge in series in r. 

also singular! singular 

(xi, Xi smooth) 

We must include the second term in the singular field jS.   
We need to determine xi! 



Determining xi 

We gave a prescription for computing h in a P-smooth gauge, 

(Xi smooth) 

Now that we know h we need to “invert” this equation and solve for xi. 

Recall that hP contains free functions.  It turns out these are determined 
uniquely by h and xi.  Then we have an equation just for xi.  After some work 
we find a complicated expression for the general solution, which depends on  

1) Background curvature 
 
2) The regular field 
 
3) A choice of “initial data” for the value and 
derivative of xi on the background worldline. 

(A and B obey transport equations) 

(A and B are value and derivative of 
xi on the background worldline) 



Xi 



Singular Field 



Choose the second-order singular field to be 

becomes 

The right-hand-side is the “effective source” and is bounded.  No more 
“singular boundary condition”.  Numerical integrators happy. 

(hats denote extended quantities) 

Then Einstein’s equation, 

Pick initial/boundary conditions representing the physics of interest and pick 
any gauge condition (such as Lorenz on jR) such that jR is C^1.  Then j = jR+jS 
is the physical metric perturbation expressed in a P-smooth gauge. 

Can drop! 

Choose an arbitrary extension of jS to the entire manifold and define   



This provides a prescription for computing the metric of a small body 
through second order in its size/mass.  You can do a lot with just this: 
fluxes, snapshot waveforms, etc. 

But what about the motion?  Actually, with all this hard work done, it’s trivial. 

The secret is that we chose this P gauge to be “mass centered”: 
 
If you take the near-zone limit of the P-gauge metric perturbation, then the near-
zone metric is just the ordinary Schwarzschild metric in isotropic coordinates. 

So, we say that the perturbed position of the particle vanishes in P gauge. 
But we worked in P-smooth gauges.  What is the description there?  Well, how 
does a point on the manifold “change” under a gauge transformation… 

New perturbed position: 



So, we need to find the gauge vectors.  Or do we?  Here’s a trick: 

Let where this equation holds only in the P gauge. 

Since the background motion is geodesic, vanishing perturbed motion means that 
the motion is geodesic in                               .  
 
This is an invariant statement and holds in any gauge!   The motion is geodesic in 
the BG fields.  This can be simply related to the regular fields that arise in practice, 
completing the prescription for determining the metric and motion. 

In a P smooth gauge we have 

Recall 

jBG hBG 



Second order Motion 

“self-force” 



The Prescription 

1) Choose a vacuum background spacetime and geodesic. 
 

2) Find a coordinate transformation between your favorite global coordinate 
system and my favorite local coordinate system (“RWZ coordinates”). 
 

3) Compute hS from the RWZ formula I give, choose an extension and compute 
the effective source, and solve for hR in some convenient gauge. 
 

4) Integrate some transport equations along the worldline to determine A and B, 
choosing trivial initial data.  (A is the first-order motion.) 
 

5) Compute jS from the RWZ formula I give (involving also hR,A,B), choose an 
extension and compute the second-order effective source, and solve for jR a a 
convenient gauge. 
 

6) Integrate some more transport equations to get the second perturbed motion 
in your gauge. 



What I have done… 

Given a prescription for computing the second order metric and motion 
perturbation of a small body. 
 
Good for local-in-time observables. 

What I haven’t done… 
Told you how to compute a long-term inspiral waveform. 
 
However, one should be able to apply adiabatic approaches (Mino; 
Hinderer and Flanagan) or self-consistent approaches, provided the role of 
gauge can be understood. 

Understand the role of gauge in adiabatic and self-consistent approaches.  

What I would like to do… 
(or see others do!) 



Fine 
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