Self-force on a scalar particle on a generic orbit in Kerr spacetime Jonathan Thornburg

in collaboration with

Barry Wardell

Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington, Indiana, USA School of Mathematical Sciences and Complex & Adaptive Systems Laboratory University College Dublin Dublin, Ireland

()

June 11, 2012

1 / 20

イロト イポト イヨト イヨト

Goals, overall plan of the computation

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) method

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) method

Some details of the computation

- time-domain evolution with AMR
- *m*-mode decomposition and 2+1D evolution
- worldtube scheme
 moving the worldtube
- computing the puncture function and effective source \blacktriangleright efficient numerical computation of the ϕ integrals

 - elliptic integrals \Rightarrow much more efficient computation of the ϕ integrals
 - efficiently evaluating the series expansion
- finite differencing for C^2 functions near the particle

(日)

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) method

Some details of the computation

- time-domain evolution with AMR
- *m*-mode decomposition and 2+1D evolution
- worldtube scheme
 moving the worldtube
- computing the puncture function and effective source \blacktriangleright efficient numerical computation of the ϕ integrals

 - elliptic integrals \Rightarrow much more efficient computation of the ϕ integrals
 - efficiently evaluating the series expansion
- finite differencing for C^2 functions near the particle

Preliminary results

Conclusions

• Kerr

• scalar field for now develop techniques for future work with gravitational field

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle highly eccentric orbits (stellar dynamics in dense star clusters may lead to $|e| \sim 0.98$)

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle highly eccentric orbits (stellar dynamics in dense star clusters may lead to $|e| \sim 0.98$)
- compute self-force very accurately (eLISA/NGO will eventually need templates with phase error $\lesssim 0.01$ radians over ${\sim}10^5$ orbits of inspiral)

(日) (同) (三) (三) (三)

• Kerr

()

- scalar field for now develop techniques for future work with gravitational field
- be able to handle highly eccentric orbits (stellar dynamics in dense star clusters may lead to $|e| \sim 0.98$)
- compute self-force very accurately (eLISA/NGO will eventually need templates with phase error $\lesssim 0.01$ radians over ${\sim}10^5$ orbits of inspiral)
- as efficient as possible (orbital evolution!)

This is work in progress: some goals accomplished, some not yet!

イロト イポト イヨト イヨト 二日

June 11, 2012

3 / 20

Effective-Source (also known as puncture-function) method

Effective-Source (also known as puncture-function) method

- use Barry Wardell's 4th order puncture fn and effective src
- scalar field for now
- gravitational field in the future? (m = 0 and m = 1 instabilities)

Effective-Source (also known as puncture-function) method

- use Barry Wardell's 4th order puncture fn and effective src
- scalar field for now
- gravitational field in the future? (m = 0 and m = 1 instabilities)

m-mode decomposition

Time domain (2+1D numerical evolution for each m)

- can handle (almost) any orbit, including high eccentricity
- Cauchy evolution, AMR

Effective-Source (also known as puncture-function) method

- use Barry Wardell's 4th order puncture fn and effective src
- scalar field for now
- gravitational field in the future? (m = 0 and m = 1 instabilities)

m-mode decomposition

Time domain (2+1D numerical evolution for each m)

- can handle (almost) any orbit, including high eccentricity
- Cauchy evolution, AMR
- (almost) causally-disconnected spatial boundaries (with AMR we hope this won't be too expensive)
- higher order finite differencing for improved accuracy/efficiency
- special finite differencing for C^2 fields near the particle

Effective-Source (also known as puncture-function) method

- use Barry Wardell's 4th order puncture fn and effective src
- scalar field for now
- gravitational field in the future? (m = 0 and m = 1 instabilities)

m-mode decomposition

Time domain (2+1D numerical evolution for each m)

- can handle (almost) any orbit, including high eccentricity
- Cauchy evolution, AMR
- (almost) causally-disconnected spatial boundaries (with AMR we hope this won't be too expensive)
- higher order finite differencing for improved accuracy/efficiency
- special finite differencing for C^2 fields near the particle

Worldtube scheme to treat far-from-the-particle region

• wordtube moves in (r, θ) to follow the particle around its orbit

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

We construct a "puncture function" φ_p which approximates the Detweiler-Whiting singular field $\varphi_{\text{singular}}$, such that for some n > 0

- $\varphi_{p} \varphi_{\text{singular}} = \mathcal{O}\left(\left|x x_{\text{particle}}(t)\right|^{n}\right)$ close to the particle
- the "residual field" $\varphi_r := \varphi \varphi_p$ is C^{n-2} near the particle

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

We construct a "puncture function" φ_p which approximates the Detweiler-Whiting singular field $\varphi_{\text{singular}}$, such that for some n > 0

- $\varphi_{p} \varphi_{\text{singular}} = \mathcal{O}\left(\left|x x_{\text{particle}}(t)\right|^{n}\right)$ close to the particle
- the "residual field" $\varphi_r := \varphi \varphi_p$ is C^{n-2} near the particle
- the radiation-reaction self-force is given by $F^a = q \left(\nabla^a \varphi_r \right) \Big|_{\text{particle}}$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

We construct a "puncture function" φ_p which approximates the Detweiler-Whiting singular field $\varphi_{\text{singular}}$, such that for some n > 0

- $\varphi_{p} \varphi_{\text{singular}} = \mathcal{O}\left(\left|x x_{\text{particle}}(t)\right|^{n}\right)$ close to the particle
- the "residual field" $\varphi_r := \varphi \varphi_p$ is C^{n-2} near the particle
- the radiation-reaction self-force is given by $F^a = q \left(\nabla^a \varphi_r \right) \Big|_{\text{particle}}$

Then the residual field satisfies

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$

= $\delta (x - x_{\text{particle}}(t)) - \Box \varphi_p =: S_{\text{effective}}$

where the "effective source" $S_{\text{effective}}$ is C^{n-4} near the particle.

June 11, 2012 5 / 20

▲ロト ▲掃ト ▲ヨト ▲ヨト ニヨー わんの

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

We construct a "puncture function" φ_p which approximates the Detweiler-Whiting singular field $\varphi_{\text{singular}}$, such that for some n > 0

- $\varphi_{p} \varphi_{\text{singular}} = \mathcal{O}\left(\left|x x_{\text{particle}}(t)\right|^{n}\right)$ close to the particle
- the "residual field" $\varphi_r := \varphi \varphi_p$ is C^{n-2} near the particle
- the radiation-reaction self-force is given by $F^a = q \left(\nabla^a \varphi_r \right) \Big|_{\text{particle}}$

Then the residual field satisfies

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$

= $\delta (x - x_{\text{particle}}(t)) - \Box \varphi_p =: S_{\text{effective}}$

where the "effective source" $S_{\text{effective}}$ is C^{n-4} near the particle.

In practice we choose n = 4, $\Rightarrow S_{\text{effective}}$ is C^0 near the particle; φ_r is C^2 near the particle

Problems:

• φ_p and $S_{\rm effective}$ are only defined in a neighbourhood of the particle

Problems:

- $\varphi_{\rm p}$ and $S_{\rm effective}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Problems:

- $\varphi_{\rm p}$ and $S_{\rm effective}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)

Problems:

- φ_p and $S_{\rm effective}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \\ (this has a jump discontinuity by <math>\pm \varphi_p$ across the worldtube boundary) • numerically solve $\Box \varphi_{num} = \begin{cases} S_{\text{effective}} & \text{outside the worldtube} \\ 0 & \text{outside the worldtube} \\ \text{outside the worldtube} \end{cases}$ (hence we only need to know $S_{\text{effective}}$ within the worldtube)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

Problems:

- $\varphi_{\rm p}$ and $S_{\rm effective}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to φ , not φ_r

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)
- (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary) • numerically solve $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ (hence we only need to know $S_{effective}$ within the worldtube)
- the radiation-reaction self-force is given by $F^a = q \left(
 abla^a arphi_{\mathsf{num}}
 ight) \Big|_{\mathsf{particle}}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

• $\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{num,m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{num,m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon)
- now each $\varphi_{num,m}$ satisfies

 $\Box_m \varphi_{\operatorname{num},m} = \begin{cases} S_{\operatorname{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{num,m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon)
- now each $\varphi_{num,m}$ satisfies

 $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

 $\begin{bmatrix} numerically \\ solve this \\ for each m \\ in 2+1D \end{bmatrix}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} \\ 0 \end{cases}$ inside the worldtube outside the worldtube in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{num,m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon) • now each $\varphi_{num,m}$ satisfies [numerically]

 $\Box_{m} \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases} \begin{bmatrix} \text{numerically} \\ \text{solve this} \\ \text{for each } m \\ \text{in } 2+1D \end{bmatrix}$ • the radiation-reaction self-force is given by $F^{a} = q \sum_{m=0}^{\infty} (\nabla^{a} \varphi_{\text{num},m}) |_{\text{particle}}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

• $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{\text{num}, m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon)

• now each $\varphi_{num,m}$ satisfies

 $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases} \begin{bmatrix} \text{solve this} \\ \text{for each } m \\ \text{in } 2+1D \end{bmatrix}$

| numerically

- the radiation-reaction self-force is given by $F^a = q \sum_{n=1}^{\infty} (\nabla^a \varphi_{num,m}) \Big|_{\text{particle}}$
- solve numerically for $0 < m < m_{max} \sim 15$; fit large-*m* asymptotic series to estimate contributions from $m > m_{max}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

- $\varphi_{\text{num}}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{\text{num},m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon)
- now each $\varphi_{num,m}$ satisfies

 $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases} \begin{bmatrix} \text{solve this} \\ \text{for each } m \\ \text{in } 2+1D \end{bmatrix}$

- the radiation-reaction self-force is given by $F^a = q \sum_{n=1}^{\infty} (\nabla^a \varphi_{num,m}) \Big|_{\text{particle}}$
- solve numerically for $0 \le m \le m_{\max} \sim 15$; fit large-*m* asymptotic series to estimate contributions from $m > m_{max}$
- move the wordtube in (r, θ) to follow particle around eccentric orbit

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

• $\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\tilde{\phi}} \varphi_{num,m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid infinite-twisting at horizon)

• now each $\varphi_{num,m}$ satisfies

()

 $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases} \quad \text{solve this} \quad \text{for each } m \\ \text{in } 2 + 1 D \end{cases}$

| numerically in 2+1D

- the radiation-reaction self-force is given by $F^a = q \sum_{n=1}^{\infty} (\nabla^a \varphi_{num,m}) \Big|_{\text{particle}}$
- solve numerically for $0 \le m \le m_{\max} \sim 15$; fit large-*m* asymptotic series to estimate contributions from $m > m_{max}$
- move the wordtube in (r, θ) to follow particle around eccentric orbit
- more efficient than numerical evolution in 3+1D
 - can use different numerical parameters for each m
 - multiple 2+1D evolutions vs. single 3+1D evolution (a) (a) (a)
 - June 11, 2012 7 / 20

For a given t, Barry Wardell's puncture function φ_p is a series expansion

$$\varphi_{p}(\delta r, \delta \theta, \delta \phi) = \frac{\sum_{ijk} N_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k}}{\left(\sum_{ijk} D_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k} \right)^{3/2}}$$

where $\delta x^i := x^i - x^i_{\text{particle}}$

and where the N_{ijk} and D_{ijk} coefficients (there are 30–50 of them) depend on the central black hole's mass and spin and on the particle position and 4-velocity, but do **not** depend on δx^i .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

1.

For a given t, Barry Wardell's puncture function φ_p is a series expansion

$$\varphi_{p}(\delta r, \delta \theta, \delta \phi) = \frac{\sum_{ijk} N_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k}}{\left(\sum_{ijk} D_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k} \right)^{3/2}}$$

where $\delta x^i := x^i - x^i_{\text{particle}}$

and where the N_{ijk} and D_{ijk} coefficients (there are 30–50 of them) depend on the central black hole's mass and spin and on the particle position and 4-velocity, but do **not** depend on δx^i .

The effective source $S_{\text{effective}} := \delta(x - x_{\text{particle}}(t)) - \Box_m \varphi_{p,m}$ is similar, but more complicated.

June 11, 2012 8 / 20

<□> <@> < E> < E> E 9000

For a given t, Barry Wardell's puncture function φ_p is a series expansion

$$\varphi_{p}(\delta r, \delta \theta, \delta \phi) = \frac{\sum_{ijk} N_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k}}{\left(\sum_{ijk} D_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k} \right)^{3/2}}$$

where $\delta x^i := x^i - x^i_{\text{particle}}$

and where the N_{ijk} and D_{ijk} coefficients (there are 30–50 of them) depend on the central black hole's mass and spin and on the particle position and 4-velocity, but do **not** depend on δx^i .

The effective source $S_{\text{effective}} := \delta(x - x_{\text{particle}}(t)) - \Box_m \varphi_{p,m}$ is similar, but more complicated. Note that the derivatives in \Box_m must be computed analytically, not numerically!

June 11, 2012 8 / 20

<□> <@> < E> < E> E 9000

For a given t, Barry Wardell's puncture function φ_p is a series expansion

$$\varphi_{\rho}(\delta r, \delta \theta, \delta \phi) = \frac{\sum_{ijk} N_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k}}{\left(\sum_{ijk} D_{ijk} (\delta r)^{i} (\delta \theta)^{j} \left(\sin(\frac{1}{2} \delta \phi) \right)^{k} \right)^{3/2}}$$

where $\delta x^i := x^i - x^i_{\text{particle}}$

and where the N_{ijk} and D_{ijk} coefficients (there are 30–50 of them) depend on the central black hole's mass and spin and on the particle position and 4-velocity, but do **not** depend on δx^i .

June 11, 2012 8 / 20

The effective source $S_{\text{effective}} := \delta(x - x_{\text{particle}}(t)) - \Box_m \varphi_{p,m}$ is similar, but more complicated. Note that the derivatives in \Box_m must be computed analytically, not numerically!

 N_{ijk} and D_{ijk} coefficients computed by Barry Wardell via lengthly symbolic-algebra manipulations of the series expansions. (Details omitted here.)

We need to compute the Fourier integral

$$S_{ ext{effective},m}(\delta r,\delta heta) := rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$$

at each (r, θ) grid point in the worldtube, at each time step.

We need to compute the Fourier integral

$$S_{ ext{effective},m}(\delta r,\delta heta) := rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$$

at each (r, θ) grid point in the worldtube, at each time step.

Numerical ϕ integration:

We need to compute the Fourier integral

$$S_{ ext{effective},m}(\delta r,\delta heta) := rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$$

at each (r, θ) grid point in the worldtube, at each time step.

Numerical ϕ integration:

• compared to naive numerical quadrature,

can speedup by a factor of ~ 5 by using "Fourier quadrature" subroutine which "knows" the $sin(m\tilde{\phi})/cos(m\tilde{\phi})$ factors analytically

We need to compute the Fourier integral

$$S_{ ext{effective},m}(\delta r,\delta heta) := rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$$

at each (r, θ) grid point in the worldtube, at each time step.

Numerical ϕ integration:

• compared to naive numerical quadrature,

can speedup by a factor of ~ 5 by using "Fourier quadrature" subroutine which "knows" the $sin(m\tilde{\phi})/cos(m\tilde{\phi})$ factors analytically

• even so, the numerical quadrature is very slow, and accuracy is marginal

We need to compute the Fourier integral

$$S_{ ext{effective},m}(\delta r,\delta heta) := rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$$

at each (r, θ) grid point in the worldtube, at each time step.

Numerical ϕ integration:

- compared to naive numerical quadrature,
 - can speedup by a factor of ~ 5 by using "Fourier quadrature" subroutine which "knows" the $sin(m\tilde{\phi})/cos(m\tilde{\phi})$ factors analytically
- even so, the numerical quadrature is very slow, and accuracy is marginal

Elliptic integrals:

- construct series expansions such that denominator is of degree 2 in $sin(\frac{1}{2}\delta\phi)$
- Fourier integrals can then be written in terms of complete elliptic integrals *E*(*k*) and *K*(*k*)

(日)

We need to compute the Fourier integral

$$S_{ ext{effective},m}(\delta r,\delta heta) := rac{1}{2\pi} \int_{-\pi}^{\pi} S_{ ext{effective}} e^{-im ilde{\phi}} \, d ilde{\phi}$$

at each (r, θ) grid point in the worldtube, at each time step.

Numerical ϕ integration:

- compared to naive numerical quadrature,
 - can speedup by a factor of ~ 5 by using "Fourier quadrature" subroutine which "knows" the $sin(m\tilde{\phi})/cos(m\tilde{\phi})$ factors analytically
- even so, the numerical quadrature is very slow, and accuracy is marginal

Elliptic integrals:

- construct series expansions such that denominator is of degree 2 in $sin(\frac{1}{2}\delta\phi)$
- Fourier integrals can then be written in terms of complete elliptic integrals E(k) and K(k)
- this is \sim 300imes faster than even an optimized numerical ϕ integration
- the elliptic-integral form should also be more accurate

Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state

Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- equatorial orbit: evolve until φ_{num,m} is periodic generic orbit: evolve until φ_{num,m} is the same for different initial data choices (integrated in parallel)

Boundary Conditions:

• in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Initial data, boundary conditions

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
- equatorial orbit: evolve until φ_{num,m} is periodic generic orbit: evolve until φ_{num,m} is the same for different initial data choices (integrated in parallel)

Boundary Conditions:

- in theory: use domain large enough that inner/outer boundaries are causally disconnected from particle worldline
- in practice: for φ_{num,m} = 0 initial data, boundary reflections are only significant when outgoing junk radiation reaches the boundaries ⇒ domain only needs to be about ¹/₂ the causally-disconnected size to reduce boundary reflections to a negligible level

(日)

June 11, 2012 10 / 20

elliptic-integral puncture fn & effective src for equatorial circular orbits

elliptic-integral puncture fn & effective src for equatorial circular orbits numerical ϕ integration for equatorial eccentric orbits

elliptic-integral puncture fn & effective src for equatorial circular orbits numerical ϕ integration for equatorial eccentric orbits code is currently unigrid (no AMR) \Rightarrow limited resolution, very slow

elliptic-integral puncture fn & effective src for equatorial circular orbits numerical ϕ integration for equatorial eccentric orbits code is currently unigrid (no AMR) \Rightarrow limited resolution, very slow

- code currently uses a uniform grid in (r_*, θ)
- typical worldtube size $\sim 4M$ in r_{*} , $\pi/8~(22.5^{\circ})$ in heta
- 4th order spatial finite differencing, 4th order Runge-Kutta time integration

(日)

Falloff of F^m at large m for equatorial circular orbit Should have $F_m \sim \frac{k_4}{m^4} + \frac{k_5}{m^5} + \frac{k_6}{m^5} + \cdots$ at large m

Self-force for equatorial circular orbit

()

Kerr spin 0.6, particle in equatorial circular orbit at r = 10M

June 11, 2012 13 / 20

Dependence of self-force on central black hole spin

particle in equatorial circular orbit at r = 10M resolution: $\Delta r_* = M/16$

June 11, 2012

14 / 20

()

Self-force for low-eccentricity orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.2 resolution: $\Delta r_* = M/12$

Self-force for low-eccentricity orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.2resolution: $\Delta r_* = M/12$ Large-m Decay of F_m modes at t=3M before periastron

Conservative and dissipative parts of the self-force

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.2resolution: $\Delta r_* = M/12$

16 / 20

()

Self-force for moderately eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.4 resolution: $\Delta r_* = M/12$

Self-force for moderately eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.4resolution: $\Delta r_* = M/12$ Large-m Decay of F_m modes at t=5M after periastron

Conservative and dissipative parts of the self-force Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.4

()

June 11, 2012 18 / 20

"Self-force" for highly eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M, e = 0.9 resolution: mixture of $\Delta r_* = M/12$ and M/8

"Self-force" for highly eccentric orbit

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"
- moving worldtube is easy to implement at the finite differencing level

()

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"
- moving worldtube is easy to implement at the finite differencing level
- evaluating Barry Wardell's 4th order puncture fn and effective src:
 - numerical ϕ integration is very slow, accuracy is marginal
 - \blacktriangleright elliptic-integral form is $\sim 300 \times$ faster, also more accurate

イロト 不得下 イヨト イヨト 二日

June 11, 2012

20 / 20

interpolate near the particle to preserve accuracy

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"
- moving worldtube is easy to implement at the finite differencing level
- evaluating Barry Wardell's 4th order puncture fn and effective src:
 - numerical ϕ integration is very slow, accuracy is marginal
 - \blacktriangleright elliptic-integral form is $\sim 300 \times$ faster, also more accurate

イロト 不得下 イヨト イヨト 二日

June 11, 2012

20 / 20

- interpolate near the particle to preserve accuracy
- preliminary results:

()

- nice $1/m^4$ falloff of F_m at large m
- good agreement of self-force with Niels Warburton's frequency-domain results for circular and e = 0.2 orbits

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"
- moving worldtube is easy to implement at the finite differencing level
- evaluating Barry Wardell's 4th order puncture fn and effective src:
 - numerical ϕ integration is very slow, accuracy is marginal
 - \blacktriangleright elliptic-integral form is $\sim 300 \times$ faster, also more accurate
 - interpolate near the particle to preserve accuracy
- preliminary results:
 - nice $1/m^4$ falloff of F_m at large m
 - good agreement of self-force with Niels Warburton's frequency-domain results for circular and e = 0.2 orbits
 - moderate agreement for e = 0.4 (need higher-*m* modes)

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"
- moving worldtube is easy to implement at the finite differencing level
- evaluating Barry Wardell's 4th order puncture fn and effective src:
 - numerical ϕ integration is very slow, accuracy is marginal
 - \blacktriangleright elliptic-integral form is $\sim 300 \times$ faster, also more accurate
 - interpolate near the particle to preserve accuracy
- preliminary results:
 - nice $1/m^4$ falloff of F_m at large m
 - good agreement of self-force with Niels Warburton's frequency-domain results for circular and e = 0.2 orbits
 - moderate agreement for e = 0.4 (need higher-*m* modes)
 - ▶ have partial results for e = 0.9, but accuracy is poor and we don't yet understand the major noise sources

- puncture-function regularization works well
- *m*-mode decomposition and 2+1D evolution are very nice
 - gives moderate parallelism "for free"
- moving worldtube is easy to implement at the finite differencing level
- evaluating Barry Wardell's 4th order puncture fn and effective src:
 - numerical ϕ integration is very slow, accuracy is marginal
 - \blacktriangleright elliptic-integral form is $\sim 300 \times$ faster, also more accurate
 - interpolate near the particle to preserve accuracy
- preliminary results:
 - nice $1/m^4$ falloff of F_m at large m
 - good agreement of self-force with Niels Warburton's frequency-domain results for circular and e = 0.2 orbits
 - moderate agreement for e = 0.4 (need higher-*m* modes)
 - have partial results for e = 0.9, but accuracy is poor and we don't yet understand the major noise sources
- eccentric-orbit elliptic integrals and AMR should greatly improve this; better finite differencing at the particle should also help

June 11, 2012

20 / 20