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Goals

• Kerr

• scalar field for now
develop techniques for future work with gravitational field

• be able to handle highly eccentric orbits
(stellar dynamics in dense star clusters may lead to |e| ∼ 0.98)

• compute self-force very accurately
(eLISA/NGO will eventually need templates with
phase error . 0.01 radians over ∼105 orbits of inspiral)

• as efficient as possible (orbital evolution!)

This is work in progress: some goals accomplished, some not yet!
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• use Barry Wardell’s 4th order puncture fn and effective src

• scalar field for now

• gravitational field in the future? (m = 0 and m = 1 instabilities)

m-mode decomposition

Time domain (2+1D numerical evolution for each m)

• can handle (almost) any orbit, including high eccentricity

• Cauchy evolution, AMR

• (almost) causally-disconnected spatial boundaries
(with AMR we hope this won’t be too expensive)

• higher order finite differencing for improved accuracy/efficiency

• special finite differencing for C 2 fields near the particle

Worldtube scheme to treat far-from-the-particle region

• wordtube moves in (r , θ) to follow the particle around its orbit
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The effective-source (puncture-function) method

The particle’s physical (retarded) field ϕ satisfies �ϕ = δ
(

x − xparticle(t)
)
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Then the residual field satisfies

�ϕr = �(ϕ− ϕp) = �ϕ−�ϕp

= δ
(

x − xparticle(t)
)

−�ϕp =: Seffective

where the “effective source” Seffective is C n−4 near the particle.

In practice we choose n = 4,
⇒ Seffective is C 0 near the particle; ϕr is C

2 near the particle
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The worldtube

Problems:

• ϕp and Seffective are only defined in a neighbourhood of the particle
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m-mode decomposition

Instead of numerically solving �ϕnum =

{

Seffective inside the worldtube
0 outside the worldtube

in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

• ϕnum(t, r , θ, ϕ) =
∑

m

e imφ̃ϕnum,m(t, r , θ)

(where φ̃ := φ+ f (r) to avoid infinite-twisting at horizon)
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∞
∑
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• solve numerically for 0 ≤ m ≤ mmax∼ 15;
fit large-m asymptotic series to estimate contributions from m > mmax

• move the wordtube in (r, θ) to follow particle around eccentric orbit

• more efficient than numerical evolution in 3+1D
◮ can use different numerical parameters for each m
◮ multiple 2+1D evolutions vs. single 3+1D evolution

() June 11, 2012 7 / 20



Series expansions for the puncture fn and effective src

For a given t, Barry Wardell’s puncture function ϕp is a series expansion

ϕp(δr , δθ, δφ) =

∑

ijk Nijk(δr)
i (δθ)j

(

sin( 12δφ)
)k

(

∑

ijk Dijk(δr)i (δθ)j
(

sin( 12δφ)
)k
)3/2

where δx i := x i − x iparticle

and where the Nijk and Dijk coefficients (there are 30–50 of them) depend on the
central black hole’s mass and spin and on the particle position and 4-velocity, but
do not depend on δx i .
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and where the Nijk and Dijk coefficients (there are 30–50 of them) depend on the
central black hole’s mass and spin and on the particle position and 4-velocity, but
do not depend on δx i .

The effective source Seffective := δ
(

x − xparticle(t)
)

−�mϕp,m is similar,
but more complicated. Note that the derivatives in �m must be computed
analytically, not numerically!

Nijk and Dijk coefficients computed by Barry Wardell via
lengthly symbolic-algebra manipulations of the series expansions.
(Details omitted here.)
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Computing the m-mode effective src (and puncture fn)

We need to compute the Fourier integral

Seffective,m(δr , δθ) :=
1

2π

∫ π

−π

Seffectivee
−imφ̃ d φ̃

at each (r , θ) grid point in the worldtube, at each time step.
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can speedup by a factor of ∼ 5 by using “Fourier quadrature” subroutine
which “knows” the sin(mφ̃)

/

cos(mφ̃) factors analytically

• even so, the numerical quadrature is very slow, and accuracy is marginal

Elliptic integrals:

• construct series expansions such that denominator is of degree 2 in sin( 12δφ)

• Fourier integrals can then be written in terms of
complete elliptic integrals E (k) and K (k)

• this is ∼ 300× faster than even an optimized numerical φ integration

• the elliptic-integral form should also be more accurate
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Initial data, boundary conditions

Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium state
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Boundary Conditions:
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Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium state

• equatorial orbit: evolve until ϕnum,m is periodic
generic orbit: evolve until ϕnum,m is the same for different

initial data choices (integrated in parallel)

Boundary Conditions:

• in theory: use domain large enough that inner/outer boundaries
are causally disconnected from particle worldline

• in practice: for ϕnum,m = 0 initial data, boundary reflections
are only significant when outgoing junk radiation reaches the boundaries
⇒ domain only needs to be about 1

2 the causally-disconnected size
to reduce boundary reflections to a negligible level
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Current Status

elliptic-integral puncture fn & effective src for equatorial circular orbits
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Current Status

elliptic-integral puncture fn & effective src for equatorial circular orbits

numerical φ integration for equatorial eccentric orbits

code is currently unigrid (no AMR) ⇒ limited resolution, very slow

• code currently uses a uniform grid in (r∗, θ)

• typical worldtube size ∼ 4M in r∗, π/8 (22.5◦) in θ

• 4th order spatial finite differencing,
4th order Runge-Kutta time integration
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Falloff of Fm at large m for equatorial circular orbit

Should have Fm ∼ k4
m4 +

k5
m5 +

k6
m6 + · · · at large m
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Self-force for equatorial circular orbit

Kerr spin 0.6, particle in equatorial circular orbit at r = 10M

Self-force in units of 10−6q2/M2:
this work: −7.4999± 0.0060 (resolution ∆r∗ = M/24)

of which 1/m4 tail sum (m ≥ 11) is −0.8%
1/m5 tail sum (m ≥ 11) is −0.4%
total tail sum (m ≥ 11) is −1.2%

Niels Warburton: −7.491205 (very accurate frequency-domain calculation)

difference (error): −0.0087± 0.0060 (∼ 0.1%)
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Dependence of self-force on central black hole spin

particle in equatorial circular orbit at r = 10M
resolution: ∆r∗ = M/16
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Self-force for low-eccentricity orbit
Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.2
resolution: ∆r∗ = M/12
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Self-force for low-eccentricity orbit
Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.2
resolution: ∆r∗ = M/12
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Conservative and dissipative parts of the self-force
Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.2
resolution: ∆r∗ = M/12
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Self-force for moderately eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.4
resolution: ∆r∗ = M/12
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Self-force for moderately eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.4
resolution: ∆r∗ = M/12
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Conservative and dissipative parts of the self-force
Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.4
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“Self-force” for highly eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.9
resolution: mixture of ∆r∗ = M/12 and M/8
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“Self-force” for highly eccentric orbit

Kerr spin 0.6, particle in equatorial eccentric orbit: p = 8M , e = 0.9
resolution: mixture of ∆r∗ = M/12 and M/8
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Conclusions

• puncture-function regularization works well

• m-mode decomposition and 2+1D evolution are very nice
◮ gives moderate parallelism “for free”
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• puncture-function regularization works well

• m-mode decomposition and 2+1D evolution are very nice
◮ gives moderate parallelism “for free”

• moving worldtube is easy to implement at the finite differencing level

• evaluating Barry Wardell’s 4th order puncture fn and effective src:
◮ numerical φ integration is very slow, accuracy is marginal
◮ elliptic-integral form is ∼ 300× faster, also more accurate
◮ interpolate near the particle to preserve accuracy

• preliminary results:
◮ nice 1/m4 falloff of Fm at large m
◮ good agreement of self-force with Niels Warburton’s

frequency-domain results for circular and e = 0.2 orbits
◮ moderate agreement for e = 0.4 (need higher-m modes)
◮ have partial results for e = 0.9, but accuracy is poor

and we don’t yet understand the major noise sources

• eccentric-orbit elliptic integrals and AMR shoulod greatly improve this;
better finite differencing at the particle should also help
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