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EMRIs
✤ A major goal of the Capra 

programme is to study EMRIs.

✤ Many orbits

✤ No strong reasons not to expect 
generic orbits.

✤ Larger black hole generally 
spinning.

✤ Ultimate goal: ~104 accurate 
gravitational self-force evolved 
generic orbits in Kerr

Image credit: eLISA/NGO Yellow book (ftp://ftp.rssd.esa.int/pub/ojennric/NGO_YB/NGO_YB.pdf)



✤ Foundations and formalism by now well understood at first order.

✤ Solve the coupled system of equations for the motion of a point 
particle and its retarded field.

Formal prescription at first order
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✤ System is coupled: 𝚽ret depends on the entire past world-line and the 
world-line depends on  𝚽ret => delay differential equation. 

✤ δ-function sources are difficult to
handle numerically.

✤ 𝚽ret diverges like 1/r near the world-line.

Numerical considerations

Several considerations arise when trying to turn this formal 
prescription into a practical numerical scheme:



Approaches

✤ Several approaches have been developed for dealing with the 
numerical problems of point sources and singular fields.

✤ These broadly fall into three different categories

Effective SourceMode-sumGreen function
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Green function regularization

✤ MiSaTaQuWa equation gives the regularized self-force in terms of 
local components and a tail term.

✤ Local terms are easily calculated.

✤ Tail contains contribution to the self-force from the past.

✤ Integral of the retarded Green function over the entire past world-
line.
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Green function regularization

✤ MiSaTaQuWa equation suggests an natural approach for computing a 
regularized self-force.

✤ If we can compute the Green function along the world-line, then 
we’re done: just integrate this to get the regularized self-force for any 
orbit.

✤ The difficulty is in developing a strategy for computing the Green 
function over a sufficiently large portion of the world-line.
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Matched expansions

✤ One approach is to compute the Green function using matched 
asymptotic expansions [W. G. Anderson and A. G. Wiseman, Class. Quantum Grav. 22, S783 (2005); M. Casals, 
S. R. Dolan, A. C. Ottewill, and B. Wardell, Phys. Rev. D 79, 124043 (2009) ]

✤ Separately compute expansions of the Green function in the recent 
past and in the distant past.

✤ Recent past obtained through a series expansion
of the Hadamard form for the Green function,
distant past through a quasi-normal mode sum
 and branch-cut integral.

✤ Stitch together expansions in an overlapping
 matching region to give the full Green function.

Worldline of the particle

Current location of the particle - z(τ)

Matching point - z(τ -Δτ)
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Matched expansions
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Numerical time-domain evolution

✤ Another option is to numerically compute the Green function using 
time-domain evolution [A. Zenginoğlu, C. R. Galley, arXiv:1206.1109].

✤ Numerically evolve a wave equation for the Green function, rather 
than the field.

✤ Still need to make use of quasi-local expansion for the recent past, but 
distant past calculation is much easier than with quasi-normal modes 
+ branch cut.

http://arxiv.org/find/gr-qc/1/au:+Zenginoglu_A/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Zenginoglu_A/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Galley_C/0/1/0/all/0/1
http://arxiv.org/find/gr-qc/1/au:+Galley_C/0/1/0/all/0/1


Green function regularization

✤ Advantages:
✤ Just need to compute the 

Green function once and we 
have the self-force for all 
orbits.

✤ Avoids numerical 
cancellation by directly 
computing the regularized 
field.

✤ May yield geometric insight
✤ Green function can be 

applied to other problems

✤ Disadvantages:
✤ Computing the Green 

function can be hard.
✤ Have to compute the Green 

function for all pairs of 
points x and x’.

✤ Not naturally suited to self-
consistent evolution.

✤ Second order not so well 
understood.



Mode-sum regularization

✤ The retarded field diverges close to the world-line

✤ If we decompose this into spherical harmonics,

the singularity is “smeared out” over a 2-sphere. Each l,m mode is 
then finite on the world-line

✤ L. Barack and A. Ori, Phys. Rev. D 61, 061502
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Mode-sum regularization
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Mode-sum regularization
✤ Solve a 2D wave equation for each l,m mode

✤ Similar equations for electromagnetic and gravitational cases.

✤ Solution can be found in time domain as either 1+1D or characteristic 
evolution. δ-function needs careful treatment through particular finite 
differencing schemes/multi-domain methods.

✤ In the frequency domain this becomes an ordinary differential 
equation for each l,m,!. This is particularly convenient for orbits 
where the number of frequencies is small (e.g. circular orbits). δ-
function  appears as matching condition between two homogeneous 
solutions.
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Mode-sum regularization

✤ Solve a 2D wave equation for each l,m mode

✤ Differentiate and sum over m to get l-modes of the unregularized  
self-force

✤ Each l-mode is finite, but their sum diverges like l
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Mode-sum regularization

✤ In order to regularize, decompose        into spherical harmonic modes

and subtract mode by mode.

✤ Typically only know        approximately as an expansion for large l.

✤ Coefficients of this expansion are known as regularization parameters.

✤ Compute a regularized self-force by subtracting regularization 
parameters from unregularized self-force 
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Mode-sum regularization
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Mode-sum regularization
✤ Advantages:

✤ Suitable for fast, high-
accuracy frequency domain 
calculations.

✤ In time domain leads to fast, 
accurate 1+1D evolutions.

✤ Relatively easy to implement

✤ Disadvantages:

✤ Requires numerical 
cancellation of large 
quantities.

✤ Not particularly suited to 
Kerr due to use of spherical 
harmonic decomposition.

✤ No clear extension to second 
order yet.

✤ Not naturally suited to self-
consistent evolution.



Mode-sum regularization

✤ The success of the mode-sum approach is clear from the number of 
papers based on it.
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✤ Derive an evolution equation for
[Barack and Golbourn (2007), Detweiler and Vega (2008)]

✤ Always work with        instead of     .

✤ No distributional sources and no 
singular fields.

✤ If       is chosen appropriately, then we 
can directly use        in the equations 
of motion.

Effective source regularization
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✤ If        is exactly the Detweiler-
Whiting singular field,       is a 
solution of the homogeneous wave 
equation.

✤ If        is only approximately the 
Detweiler-Whiting singular field, 
then the equation for        has an 
effective source, S.

✤ S is typically finite, but of limited 
differentiability on the world line.

Effective source regularization

�R

�R

�S

�S



Window function

✤ Detweiler-Whiting singular field defined through a Hadamard form 
Green function which is not defined globally.

✤ Need to introduce a method for restricting the singular field to a 
region near the particle.

✤ Two common approaches: window function and world-tube.

✤ In window function approach, we multiply the singular field by a 
function which is 1 at the particle and goes to 0 far away:

⇤�R = �⇤(W�S)



World tube

✤ Alternatively, introduce a tube around the particle.

✤ Inside the tube, solve for the regularized field, outside solve 
homogeneous equation for the full retarded field.

✤ On the world-tube boundary, apply the boundary condition

FIG. 2: Field modes (m = 0, 1, 2, 5) on a constant time slice (at t = t
max

) for circular orbits at r
0

= 10M , for
a range of Kerr parameters (a/M = �0.9,�0.5, 0, 0.5, 0.9). The left plots show field modes at fixed ✓ = ⇡/2
and the right plots show field modes at fixed r = r

0

. Inside the worldtube we show both the residual field
 ̂m

R (forming the ‘trough’) and the full retarded field  ̂m, which is divergent on the worldline. We note that
the rotation rate a/M has only a subtle e↵ect on the field profile.

three slices: (i) t = t
max

, ✓ = ⇡/2, i.e., in the equatorial plane, (ii) t = t
max

, r⇤ = r⇤0, i.e., from
pole to pole, crossing the worldline, and (iii) r⇤ = r⇤0, ✓ = ⇡/2, i.e., along the worldline.

Fig. 2 shows typical m-mode contributions to the field along the constant-t slices (i) and (ii),
for an orbit at r

0

= 10M and a range of Kerr parameters a. The worldtube is visible as a central
‘trough’; inside the tube, we show both the residual  ̂m

R and the full field  ̂m (which diverges
logarithmically as r ! r

0

, ✓ ! ⇡/2). These plots are similar to those for the Schwarzschild
implementation (see Fig. 4 in Paper I). We note that the e↵ect of black hole rotation upon the
field mode profiles is quite subtle, although it has a more profound e↵ect on the SF.

Figure 3 shows plots of  ̂m
R, Fm

r and Fm
� as functions of t on the worldline [i.e., on slice (iii)],

for runs with r
0

= 10M , a = 0.5M and modes m = 0, 2, 4 and 6. After an initial burst of
junk radiation (due to imperfect initial conditions, Sec. IVC), the modal quantities settle towards
steady-state values. Visible in the figures are two types of transients: Initially, there are regular
high-frequency oscillations (for m 6= 0) which may be identified as quasi-normal ringing (indeed,the
ringing frequency is proportional to m as expected, and the exponential decay rate of the ringing
seems roughly independent of m, also as expected). At later times the modes exhibit a second type
of transient behavior: a power-law decay with an m-dependent exponent. In Paper I (Sec. IVA5
with, e.g., Fig. 10) we explored this power-low behavior in some detail, and demonstrated that, by
fitting the decay of the field with an asymptotic model, we can extrapolate to t ! 1 to extract a
steady-state value. We implement the same method here.
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2+1D m-mode scheme

✤ Exploit the azimuthal symmetry of the Kerr spacetime by 
decomposing into Fourier modes

✤ Evolve 2+1D wave equation in (r,θ,t) for each m-mode.

✤ Potentially improved efficiency relative to 3+1D.

✤ Needs a 2D effective source. This may be computed by either 
numerically or analytically integrating the 3D effective source.

�m(r, ✓, t) =

Z ⇡

�⇡
�e�im�d�

⇤m�m(r, ✓, t) = Sm



3+1D scheme

✤ Evolve the full 3+1 dimensional wave equation.

✤ Reuse much of the code and tools developed for Numerical Relativity.

⇤� = S



✤ Solve the coupled system of 
equations for the motion of the 
particle and its regularized 
field.

✤       =          in the wave zone

✤       finite and (typically) twice 
differentiable on the world-line
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Effective source regularization

✤ Advantages:
✤ Everything is finite. No 

distributional sources or 
singular fields.

✤ Does not rely on any 
underlying symmetry. Can 
be applied to generic orbits 
in generic spacetimes.

✤ Naturally suited to self-
consistent evolution.

✤ Possible extension to second 
order

✤ Disadvantages:
✤ Relatively costly 

computationally when 
evolved in 2+1D or 3+1D.

✤ Effective source is often a 
very complicated expression.

✤ Problems with evolving 
Lorenz gauge metric 
perturbations in time 
domain.



Conclusions and prospects

✤ Many different approaches to numerical self-force calculations.

✤ Each has advantages and disadvantages; no clear winner.

✤ All existing calculations purely at first perturbative order.

✤ Key component of most calculations is knowledge of the Detweiler-
Whiting singular field. The more accurately this is known, the more 
accurately we can compute the self-force

✤ Recent formal work to extend things to second order [Detweiler 
(2012), Pound (2012), Gralla (2012)]. Second order singular field and 
effective source.


