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Outlook

Warburton, van de Meent, Tanaka, Isoyama and Dolan’s talks

eMotivation: resonances in EMRIs systems

¢Osculating element formalism

eAction angle variable formalism

eOsculating evolution + action angle variable for studying resonances




¥ Motivation
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e Extreme-mass-ratio inspirals (EMRIs) can cross several resonant points
during its evolution. This resonant points affect the orbital dynamics, and
hence the gravitational waves (GWs) emitted and their fluxes, and possibly
could have an impact on GW detection and parameter estimation.

e Resonant behavior is not chaotic, but makes the system highly dependent
on the parameters at the moment that it enters in a resonant region. 6Q\'\“‘?’

‘AO

e Resonances shift the orbital phase (by several tens to ~102rd ) Lo

e The location of the resonances depend on the spacetime geometry of the
system. Resonances might help to study strong-gravity aspects.

[Flanagan & Hinderer (2012), Flanagan et al (2012), Brink et al (2013)]




Motivation

e To determine whether resonances are important, it is necessary to model EMRI systems
as they evolve through them, and evaluate its effects:

* Need of a formalism to evolve the system through resonances

Osculating evolution + Action angle variable formalism



Osculating Evolution
Newtonian systems



Osculating Evolution. Newtonian Systems

Celestial mechanics: The method of variation of constants for treating highly nonlinear

problems [7=(z, y, 2]
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e Initial set of second order ordinary differential equations as a particular solution of an

inhomogeneous or driven system.



Osculating Evolution. Newtonian Systems

eThe constants of motion are allowed to evolve with time

Six constants, Ci(t) for three, second order, differential equations
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and satisfy a specified constraint given by the forcing term
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Ambiguity in parameterizing the orbit

The number of variables exceeds, by three, the number of equations {C;, C;} (i=1,..,6)

Lagrange decided to make the instantaneous orbital elements C;(¢) osculating, i.e., model
trajectory as instantaneous ellipses tangential to the physical trajectory.
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To bear iIn mind

« Two time scales: the time scales associated with the solution of the homogeneous solutions, are
embedded in the inhomogeneous problem with a driver that evolves with time in a different way

 The osculating conditions do not influence the shape of the physical trajectory and neither the rate
of motion along that curve. We could choose some different supplementary condition

of dC. .
E L= @
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the physical motion does not change (the expressions are more involved), but eventually could
yield different solutions for the orbital elements.

« Accumulation of numerical errors could lead to a "gauge shift” (non-zero RHS)

Efroimsky (2002)



Osculating Evolution
General Relativity



Osculating Evolution for EMRI Systems

Pound & Poisson (2008) developed a method to integrate the equations of
motion that govern bound, accelerated orbits in Schwarzschild spacetime.
Valid for arbitrary forces acting only within the orbital plane SO
Y a Bry — fa
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At each instant the true worldline is assumed to lie tangent to a reference
geodesic: osculating orbit. I = (7,7)
 The worldline evolves smoothly from one geodesic to other. " ;}e w. T, O}
» The transition between osculating orbits corresponds to an evolution of
the elements. 7% o
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reduces second-order differential equations to a set of coupled first-
order equations.



Osculating Evolution for EMRI Systems

Although the method is valid for any perturbing force, it is most useful when the force is small, since
we can use it to construct an averaged evolution.

Gair et al (2011) Generalization to Kerr spacetime.

Identify the orbit at any time with a geodesic I = {E, L., Q, 0, o, xo}  of the unperturbed
system ( 0 f* = 0 ) that passes through the same position with the same velocity.
Du*  d?z*
_ Y A
DTt dr2 g0 = 0J

The osculating elementsevolveas [ =V,] -7+ V,[-# =V, -6f

Final equation follows from orthogonality of acceleration to velocity, i.e., «,0f" =0



Osculating Evolution for EMRI Systems

The two relevant phase angles are defined by writing

_ p 20 _ o2 2
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The Boyer-Lindquist coordinates t and ¢ are not oscillatory. The osculating element
equations for? — 7o and ¢ — ¢¢ are equivalent to integrating the geodesic equations for
these coordinates with the evolving orbit on the right hand side.

Kerr geodesics parameterized with “Mino” time: di = % d: The radial and polar motion decouple
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Osculating Evolution for EMRI Systems

Equations for (£, L., Q)are derived from covariant equations of motion

E = —0 Jt

L. = 0fy

. .9 .9

K = EZ(w4E —aw?L,) + LZZ(CRLZ —aw’E) — 2Au,.0 f,

where K =Q+ (L, —aF)?, w?=1r%+d?

This formulation lead to apparent singularities at the turning points that are inconvenient
for numerical implementation:

The equations for phase constants appear singular at turning points
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Osculating Evolution for EMRI Systems

If we take the radial geodesic equation 27 = V,.(r, L., E, Q) and differentiate with respect

to(E, L., Q) and then combine the expressions, we find an alternative expression for ¢,

. ¢geo 8_ . Or or . Or . Or ﬁ
Yo = 25y Tar [2 <E8E+ 9L, QaQ t2xr | Bap +Lagr + @55
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where X2 = 72 4 42 cos® 6 . We can derive a similar expression for Xo using the polar geodesic
equation. oV../0r



Osculating Evolution for EMRI Systems

We can also find a manifestly non-singular form of the equations by decomposing the force on the

Kinnersley tetrad _ ~
Of = =0ful =6fin+0frm—+0dfmnm

Osculating conditions given in terms of the acceleration components
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then, the evolution of the orbital constants is given by
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Osculating Evolution for EMRI Systems

The evolution of the phase constants can be found to be
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Wherexo = x — xo and ,. = 1 — 1) .



Action Angle Variables



Action Angle Variables

Geodesic evolution equations in generalized action angle variables

0,0 = g, =0 40 = 0,00+ qu
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Ji = (E,L.,Q)  Conserved quantities of the geodesic motion
do = (41, 4r, 90, 45)Generalized angle variables associated with t,7, 6, ¢

g, G G Given by the first and second orders self-forces (2 77 periodic in 44, 4. )

Hinderer & Flanagan (2012)



Action Angle Variables

The forcing terms can be expanded as a double Fourier series
1 1 -
Gg, )(%, g, J) = Zk,nngk)n (J)ez(kq@ +nq,)

oIn terms of A, the motions in »,# become periodic
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Hinderer & Flanagan (2012)

Drasco (2007)



Action Angle Variables

«Bound orbits can be uniquely expressed as:
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Drasco (2007)



Osculating Evolution + Action Angle Variable



Osculating Evolution + Action Angle Variable
Geodesic parameterized by: 14 = {E, Lz, Q,v0, x0, ¢0}

Use the fact that we can map the BL coordinates 7°, 6 onto w'0= Y, g\
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Osculating Evolution + Action Angle Variable

Applying the osculating conditions to w' 0= Y,,, o\ we obtain the evolution of the
positional elements in terms of the fundamental frequencies

[ iy (am dE | dY, dQ) > dy
dr

“\dE dr " dOQ dr ) Y, dr
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we can keep track of the initial phases when we cross a resonant point.

Using r = r( w,.), 6 = 6( Wwg) we can expand the self-force into a Fourier series

GO (w, wp, I Zg(l) )i (x(r) +0(w0))



Osculating Evolution + Action Angle Variable

v~ From the initial orbital parameters (¢, p,.) —, (E L, Q) — (Y, Ty, Yo, Top)
v~ Compute E, LZ, Q at leading post-Newtonian order

v Compute the osculating conditions for the initial positional elements %0, X0

Studying the evolution of the trajectory



Summary & Prospects

Osculating evolution provides a natural scheme to evolve EMRI systems through resonances.
Using the action angle variable formalism the initial phases can be evolved through resonances
and incorporate their effects on the EMRI evolution.

Knowing the evolution of the positional elements we could build a Kludge waveform model
including resonant effects.

» Basis for modeling resonant transitions in a easy way
» Is an adiabatic evolution enough for studying resonances?
« Which resonances are important?

« Effect of resonances in parameter estimation.



Thank you for your attention!



