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Motivation: Why study GSF on Kerr?

Galactic BHs are rotating, a/M ∼ 0.5− 0.99.

Structure : Rotation breaks symmetry leading to, e.g. ergodic
geodesics, frame-dragging, light-cone caustics become ‘tubes’, etc.
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Orbital resonances: Generic orbits may pass through
resonance when ωr/ωθ ∼ n1/n2 (Hinderer & Flanagan).

Orbital evolutions

Gravitational wave signatures: eLISA?
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Supermassive BHs appear to be rapidly rotating ...

Fig. 9 in Walton et al., “Observations of ‘bare’ active galactic
nuclei”, MNRAS 428, 2901 (2013), using X-ray reflection
spectroscopy.
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Motivation: the general 2-body problem in relativity
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Motivation: the general 2-body problem in relativity
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Motivation: Orbital resonances

Fig. 1 in Brink, Geyer & Hinderer, arXiv:1304.0330.
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Motivation: Orbital resonances

Kolmogorov-Arnold-Moser theorem

For Hamiltonian system, perturbed dynamics will be a smooth and
‘small’ distortion if frequencies are sufficiently irrational:

|mωr − nωθ| > K(ε)/(n+m)3

cf van de Meent
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Motivation: Orbital resonances

Two timescales: orbital period ∼M , radiation reaction µ−1.

Hinderer & Flanagan (2010) made two-timescale expansion for
EMRIs, using action-angle variables:

Action : ‘constants’ of motion : Jν =
(
E/µ,Lz/µ,Q/µ

2
)

Angle : ‘phase’ variables qα = (qt, qr, qθ, qφ).

qr → qr + 2π as orbit goes r = rmin → rmax → rmin with period
τr = 2π/ωr.

Frequencies ωα(J) = (ωr, ωθ, ωφ)

Isometries of Kerr ⇒ (qt, qφ) ‘irrelevant’, (qr, qθ) ‘relevant’
params.
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Motivation: Orbital resonances

1. Geodesic approximation (η = 0):

dqα
dτ

= ωα(J)

dJν
dτ

= 0

Solution :

qα(τ, η = 0) = ωα τ (1)

Jν(τ, η = 0) = const. (2)

Timescale : unchanging
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Motivation: Orbital resonances

2. Adiabatic approximation:

dqα
dτ

= ωα(J)

dJν
dτ

= η
〈
G(1)
ν (qr, qθ, J)

〉
average

Solution :

qα(τ, η) = η−1q̂(ητ)

Jν(τ, η) = Ĵ(ητ)

Timescale : τrad.reac. ∼ η−1
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Motivation: Orbital resonances

3. Post-adiabatic approximation:

dqα
dτ

= ωα(J) + ηg(1)
α (qr, qθ, J) +O(η2)

dJν
dτ

= ηG(1)
ν (qr, qθ, J) + η2G(2)

ν (qr, qθ, J) +O(η3).

Two timescales : ∼ η−1 (secular) and ∼ 1 (oscillatory).
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Motivation: Orbital resonances

Is adiabatic approximation justified? i.e. is it OK to neglect
fast-oscillating parts?

Consider Fourier decomposition

G(1)
ν (qr, qθ, J) =

∑
kr,kθ

G
(1)
νkr,kθ

(J)ei(krqr+kθqθ)

and qr = ωrτ + ω̇rτ
2 + . . ., qθ = ωθτ + ω̇θτ

2 + . . .

krqr + kθqθ = (krωr + kθωθ) τ + (krω̇r + kθω̇θ) τ
2 + . . .

Cannot neglect higher Fourier components if resonance
condition

krωr + kθωθ = 0

is satisfied! i.e. when ωr/ωθ passes through low-order integer
ratio.
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Motivation: Orbital resonances

Duration of resonance set by (krω̇r + kθω̇θ) τ
2 ∼ 1, i.e.

τres ∼ 1/
√
pη

where p ≡ |kr|+ |kθ|, η = µ/M .

Change in ‘constants’ of motion:

∆J ∼
√
η/p

Change in phase:
∆q ∼ 1/

√
ηp

Need to know precise first-order SF and (possibly) dissipative
part of 2nd-order SF to model resonance accurately.

Without complete knowledge, a resonance effectively resets the
phase and ‘kicks’ the orbital parameters.



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Motivation: Orbital resonances

from Hinderer & Flanagan, arXiv:1009.4923.
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Motivation: Structure of spacetime
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Motivation: Structure of spacetime

Light cone in Schwarzschild. See e.g. V. Perlick’s Living Review on
lensing.
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Singular structure of Green function
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MiSaTaQuWa: SF from worldline integral:

f (SF )
µ ∼ q

∫ τ−

−∞
∇µG(z(τ), z(τ ′))dτ ′.

(scalar field case) see e.g. Casals et al. (2013), arXiv:1306.0884.



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Foundations
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Gravitational Self-Force (GSF)

accelerated motion on a
background spacetime

µ~ag = ~Fself = ~Fdiss + ~Fcons

m

geodesic motion in a perturbed
spacetime

µ~ag+h = 0

gµν = g̃µν + µhµν + . . . and Fαret/S ≡ µ∇
αµνh

ret/S
µν
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Three (related) methods for GSF calculations

1 Worldline integral (MiSaTaQuWa equation, schematically):

F self
α = local terms+µ2uµuν

∫ τ−

−∞
∇[αḠµ]νµ′ν′(z(τ), z(τ ′)uµ

′
uν
′
dτ ′

2 Mode sum regularization: hµν =
∑
ilm h

(i)lm
µν Y

(i)
lm (θ, φ)

Fαself =

∞∑
`=0

[
F `ret(p)−AL−B − C/L

]
−D

where L = l + 1/2.

3 Effective source / puncture schemes: h = hR + hS split
(Detweiler-Whiting ’03)

Fαself = −µ
2

(
gαβ + uαuβ

) (
2hRβγ;δ − hRγδ;β

)
uγuδ.
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(2): `-mode regularization

Define Fαret/S ≡ µ∇
αµνh

ret/S
µν (as fields), then write

Fself = (Fret − FS)|p

=

∞∑
`=0

(
F `ret − F `S

)∣∣
p

(`-mode contributions are finite)

=

∞∑
`=0

[
F `ret(p)−AL−B − C/L

]
−
∞∑
`=0

[
F `S(p)−AL−B − C/L

]
=

∞∑
`=0

[
F `ret(p)−AL−B − C/L

]
−D (where L = `+ 1/2)

Regularization Parameters A,B,C,D calculated analytically for
generic orbits in Kerr in Lorenz gauge h̄ ;ν

µν = 0.
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(3): Detweiler-Whiting split

Dirac’s split into singular and radiative fields is acausal in
curved spacetime

Detweiler & Whiting (’03) made causal split into S and R fields

Correct SF recovered from R part.

S part not known exactly, but can be computed in vicinity of
worldline via series expansions.
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Dissipative/Conservative part of GSF

Retarded and advanced fields hret and hadv(t)

Ret. and adv. ‘R’ fields, hRret = hret − hS , hRadv = hadv − hS
Define conservative and dissipative parts of field

hcons =
1

2

(
hRret + hRadv

)
=

1

2
(hret + hadv − 2hS)

hdiss =
1

2

(
hRret − hRadv

)
=

1

2
(hret − hadv)

Dissipative part does not need regularization!

Conservative part needs knowledge of S field.

Dissipative part ⇒ secular loss of energy and angular
momentum.

Conservative part ⇒ shift in orbital parameters, periodic.
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This is what we need ...
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Approach #1: Lorenz gauge / time domain



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Approach #1: Lorenz-gauge time-domain

�h̄µν + 2Rα β
µ ν h̄αβ = −16πGTµν , h̄ ;ν

µν = 0.

Q1. Why work in Lorenz-gauge h̄ ;ν
µν = 0?

Hyperbolic (wave-like) formulation of equations for metric
perturbation

S-field has ‘symmetric’ singular part h̄ab ∼ 1/r
⇒ regularization is well-understood.

Q2. Why work in time-domain?

Lorenz-gauge metric perturbation is not separable on Kerr
⇒ no ordinary differential equation formulation in freq. domain.

Self-consistent evolutions are most naturally handled within a
time-domain scheme.
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2+1D vs 3+1D methods

Two related approaches:

3+1D effective source method, developed by Vega, Detweiler,
Diener, Wardell et al.

2+1D m-mode regularization scheme, developed by Barack, Sago,
Golbourn, Thornburg, Dolan, Wardell.

3+1D approach

Window function W :

Seff = S −�(WΦS)

No mode sum required

Methods of Num. Relativity

Only scalar field so far

2+1D approach

Puncture + worldtube:

ΦR = Φ− ΦP

Mode sum reconstruction

Isolate m = 0, m = 1 parts

Scalar & gravitational cases
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Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

�h̄ab + 2Rc da bh̄cd + Zc;c − Za;b − Zb;a = −16πTab,

Za ≡ h̄ ;b
ab , where h̄ab is the trace-reversed metric perturbation:

h̄ab = hab − 1
2gabh, and h = haa.

Z4 system and gauge choice

Introduce Generalized Lorenz gauge with gauge-driver Ha(hbc, x)

Za = Ha(x, hbc) (= 0 for Lor. gauge)

Z4 system: 10 eqns with 4 constraints,

�h̄ab + 2Rc da bh̄cd +Hc
;c −Ha;b −Hb;a = −16πTab,

ca ≡ Za −Ha = 0
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Formulation: Linearized equations

Z4 with constraint damping

�h̄ab + 2Rc da bh̄cd +Hc
;c −Ha;b −Hb;a

+κ (nacb + nbca) = −16πTab,

where κ(x) is a scalar function and na is a vector, and

ca = Za −Ha.

Choose κ, na so that constraints are damped, under

�ca = − (κ(nacb + nbca))
;b
.

Good choice: na = ingoing principal null direction, with κ < 0.

hab is a solution of linearized Einstein eqns iff ca = 0.
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Formulation: Regularization

Problem: h̄ab is divergent ∼ 1/ε towards worldline

Solution: Introduce puncture h̄Pab: a local approximation to
Detweiler-Whiting singular field h̄Sab.

Covariant expansion of h̄Sab ⇒ power-series in coordinate differences,

δxa = xa − x̄a, where x = field pt, x̄ = worldline pt

Classification: nth order puncture iff

hPab − hSab ∼ O
(
|δx| δxn−2)

2nd-order in Barack et al ’07, 4th+ order from Wardell.

Local → Global definition: let x̄ become a function of x, e.g. set t̄ = t,
x̄ = xp(t).

Global continuation is arbitrary, but should be smooth around circle,
except at worldline, for m-mode scheme

Use a periodic definition ϕ, e.g. δϕ2 → 2(1− cos δϕ) = δϕ2 +O(δϕ4)
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Formulation: Puncture scheme

Introduce a worldtube T surrounding
the worldline:

Outside worldtube T , evolve retarded field h̄ab.

Inside worldtube T , evolve residual field h̄Rab, i.e.
D̂hab = 0, outside T ,
D̂hRab = −16πT eff

ab , inside T ,
hRab = hab − hPab, across ∂T .

where T eff
ab ≡ Tab − (−16π)−1D̂hPab, and D̂ is wave operator.
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Formulation: m-mode decomposition

Exploit the axial symmetry: decompose MP in m-modes
⇒ 2+1D eqns:

h̄ab =
∑
m

h̄
(m)
ab eimϕ.

Real field ⇒ h̄
(m)∗
ab = h̄

(−m)
ab

Reconstruct self-force, field, etc. from mode sums, e.g.

h̄Rab = lim
x→z

(
h̄
R(m=0)
ab + 2

∞∑
m=0

Re
[
h̄
R(m)
ab eimϕ0(t)

])

Convergence-with-m depends on order of puncture
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Formulation: Mode sums and convergence

For circular orbits, Fr is conservative and Fϕ is dissipative.

punc. order h̄Rµν C Seff h̄R,mµν Fmr Fmϕ

1 δx/ |δx| C−1 1/δx2 m−2 — —

2 |δx| C0 1/|δx| m−2 m−2 e−λm

3 |δx| δx C1 δx/|δx| m−4 m−2 e−λm

4 |δx| δx2 C2 |δx| m−4 m−4 e−λm
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Formulation: Mass and angular momentum

Combine Killing vector Xa and stress-energy Tab to form

conserved current: ja ≡ TabXb, j ;a
a = 0.

Poincaré lemma: δj = 0 ⇒ j = δF (where δ = ∗d∗), i.e.

ja = F ;b
ab , where Fab = F[ab],

(locally at least).

Abbott & Deser (1982): Conserved two-form

Fab ≡ −(8π)−1
(
Xch̄c[a;b] +Xc

;[ah̄b]c +X[aZb]
)
,
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Formulation: Mass and angular momentum















Apply Stokes’ theorem to get ‘quasi-local’ definitions:

∫
Σ

jadΣa =

∫
Σ

F ab;b dΣa

=
1

2

[∫
∂Σ

F abdSab

]r2
r1

=

{
µXaua, r1 < r0 < r2,

0, otherwise.
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Formulation: Mass and angular momentum

Quasi-local quantity: F(X, ∂Σ) ≡ 1

2

∫
∂Σ

F abdSab.

Is F a useful definition of the mass/ang.mom. in
a given homogeneous metric perturbation hab?

Property 1: F is gauge-invariant

If hab = 2ξ(a;b) then Fab ∝ η ;c
abc , where

ηabc ∝ X[aξb;c] +X[a;bξc].

It follows that F ∝
∫

(bφ,θ − bθ,φ)dθdφ = [bφ]
π
0 = 0,

where b = ∗η.
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Formulation: Mass and angular momentum

Quasi-local quantity: F(X, ∂Σ) ≡ 1

2

∫
∂Σ

F abdSab.

Is F a useful definition of the mass/ang.mom. in
a given homogeneous metric perturbation hab?

Property 2: F gives correct mass/ang. mom. for Kerr pert.

Xa
(t) = [1, 0, 0, 0] ⇔ F(t) and Xa

(φ) = [0, 0, 0, 1] ⇔ F(φ)

Mass (M) and ang. mom (J ≡ aM) perturbations:

hab = µE ∂

∂M
gKerr
ab

∣∣∣∣
J

⇒ F(t) = µE , F(φ) = 0.

hab = µL ∂

∂J
gKerr
ab

∣∣∣∣
M

⇒ F(t) = 0, F(φ) = µL.



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Implementation: Circular orbits on Kerr

Particle on circular orbit with frequency ω =
√
M/(r

3/2
0 + a

√
M)

Define h̄ab w.r.t. Boyer-Lindquist coordinate system (t, r, θ, φ)

Introduce tortoise coords: r∗ =
∫
r2+a2

∆
dr, ϕ = φ+

∫
a
∆
dr

Second-order puncture h̄Pab ∼ 4µχab/ε [Barack et al.’07], with

χab =

{
uaub + Cabδr for ab = tt, tφ, φφ

Cab sin δφ for ab = tr, tφ.

m-mode decomposition:

h̄
P(m)
ab =

e−im(ωt+∆φ)

2π

∫ π

−π
h̄Pab(δr, δθ, δφ)e−imδφd(δφ)

Integrals have an elliptic integral representation.

Use scaled evolution variables u
(m)
ab ,

h̄
(m)
ab =

1

r
ΞaΞbu

(m)
ab (t, r, θ) (no sum)

where Ξa = [1, 1/(r − rh), r, r sin θ].
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Implementation: Circular orbits on Kerr

I used Lorenz-gauge Z4 system with constraint damping.

Cauchy evolution in (t, r∗, ϕ), with worldtube and effective
source.

Fourth-order-accurate finite-differencing . . . except at worldline
where residual field is not smooth.

Boundary conditions:
1 Regular MP at the poles
2 Regular MP on the future horizon
3 u

(m)
ab ∼ O(1) as r →∞

Trivial initial conditions, u
(m)
ab = 0 ... wait long enough and

‘Junk’ dissipates with time (in radiative sector).

Gauge-violation is driven to zero.
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Results: Modal profiles
Slice 1: t = 250M, θ = π/2 (and r0 = 7M , m = 2)
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Results: Modal profiles
Slice 2: t = 250M, r = r0 (and r0 = 7M , m = 2)
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Results: Modal profiles (r0 = 7M , m = 2)
Slice 3: θ = π/2, r = r0 (and r0 = 7M , m = 2)
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Results: Gauge-constraint violation

Constraint violation diminishes with increasing grid resolution
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Results: Ft and energy balance

Showing time-domain value of Ft for various grid resolutions
dr∗ = M/n.

In principle, Ft = ut0Ė, where Ė is energy loss rate (from Teuk. ψ0, ψ4).
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Results: Ft and energy balance

Extrapolate over grid resolution to obtain best estimate

Convergence rate only x2 lnx with 2nd-order puncture
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Results: Ft validation at a = 0.5M (m = 2 mode)
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Results: m-mode convergence: dissipative

Modes of dissipative component of GSF, Ft, converge exponentially,
Fmt ∼ exp(−λ|m|).
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Results: m-mode convergence: conservative

Modes of conservative component, Fr (and hRuu) converge with
power-law, Fmt ∼ m−2 (for 2nd-order puncture).
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Problem: Linear-in-t modes in Lorenz gauge

Problem: Modes m = 0, 1 suffer from linear-in-t instabilities!

Linear-in-t modes are homogeneous, pure-Lorenz-gauge solutions

Linear-in-t modes are regular on future horizon and asymp-flat.

Linear-in-t modes are excited by generic initial data.

In Schw., these modes are in l = 0, l = 1 sectors only.

Analytic solutions of these modes in Dolan & Barack (2013)

N.B. No l-mode time-domain scheme has successfully evolved
Schw. l = 0, 1 modes in Lorenz gauge.
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Problem: Time Evolution of m = 0 mode
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Radial Profile : m = 0 mode
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Radial Profile : m = 0 mode
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Radial Profile : m = 0 mode
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Detail: Monopole l = 0 mode

Consider circular orbit on Schwarzschild (cf Detweiler & Poisson ’04):

Write down a basis of four linearly independent static
homogeneous monopole solutions
Construct a unique physical monopole solution for circular orbit,
with following properties:

1 Solution of inhomogeneous eqn

2 Lorenz gauge

3 Static: ∂thαβ = 0 and hti = 0.

4 Continuous across r = r0.

5 Regular on future horizon H+

6 Regular at infinity, hµν/gµν ∼ O(1/r)

7 Has correct mass-energy

But can’t satisfy all these properties simultaneously . . .
Relax condition (6). Then htt ∼ −2µα where α = E/r0f0.
Move to asymptotically-regular but non-Lorenz gauge with
simple gauge transformation.

ξν = −µα(t+ r∗ − r)δνt .
Resulting solution is not static, htr 6= 0.
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Detail: Monopole l = 0 mode

Unique solution? There are stationary but not static (htr 6= 0)
homogeneous gauge modes which satisfy all other conditions

For example, a scalar gauge mode

hαβ = 2ξ(α;β), ξα = [1/2, 2/(r2f), 0, 0] = Φ;α, Φ =
1

2
t+ ln(f).

There is a linearly-growing gauge mode which satisfies all
conditions, except (i) it is not stationary, and (ii) it is not
asymptotically-regular in tt component

ξlin
t = ln(2f)+t/2+

13

6
, ξlin

r =
2t

r2f
+
r3 + 3r2 + 12r + 24 ln(fr)

6r2f
− r

6f
.
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Detail: Monopole l = 0 mode

The linearly-growing mode homogeneous gauge mode is (M = 1)

hlin
tt = −−r

4 + 4t+ r2 + 4r + 8 ln(rf)

r4
,

hlin
tr = −

t+ 1
3 + 2 ln(2f)

r2f
,

hlin
rr = −4t(2r − 3) + 5r2 − 12r + 8(2r − 3) ln(rf)

r4f2
,

r−2hlin
θθ =

4t+ r2 + 4r + 8 ln(rf)

r3
= (r sin θ)−2hφφ. (3)

Note that htt ∼ 1 +O(1/r)

This mode is generically excited in our initial-value formulation.
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Solution : Generalized Lorenz gauge

To recover stability, I experimented with using generalized
Lorenz gauges, h̄ ;b

ab = Ha

I found an explicit gauge driver of the form:

Ha ∝ na × h(m=0)
tr /rk, where na is ingoing null vector

restores stability to m = 0 sector.

For circular orbits, hStr = 0, so this gauge is non-singular.

But leads to non-unique stationary solution which depends on
initial condition.

The static solution (hti = 0) is also in Lorenz gauge (Ha = 0).
Take linear combination of solutions to find static soln with
htr = 0.

1 Schw.: combine two solns in monopole (l = 0) sector.
2 Kerr: combine three solns, as mass & ang. mom. pert. are no

longer decoupled.

Unnecessary if we are only interested in gauge-invariant (e.g.
∆U).
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Solution : m = 1 mode?

I have not found a generalized Lorenz gauge that stabilizes the
m = 1 sector.

Instead, I apply a frequency-filter to eliminate stationary and
linear-in-t modes:

hab → −
1

ω2

∂2

∂t2
hab
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m=1 contribution to H, after applying frequency filter
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This trick will not work for general orbits
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Correcting the mass and angular momentum
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Take integrals over two-spheres to find ‘quasi-local’ mass F(t) and

angular momentum Q(φ) in numerical solution F (m=0)
ab .
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Correcting the mass and angular momentum

To correct the mass and ang.mom. I add homogeneous Lorenz-gauge
solutions which are regular on the future horizon,

h
(∂M)
ab =

∂

∂M
gab

∣∣∣∣
J

+ gauge, h
(∂J)
ab =

∂

∂J
gab

∣∣∣∣
M

+ gauge.

. . . but, once again, these solutions are not asymp-flat.

Recall that in Schw., the static Lorenz-gauge solution with correct
mass is not asymp-flat: htt → −2µα [Sago et al. ’08].

In Kerr, I find that Lorenz-gauge static solution with correct mass and
ang.mom. is not asymp-flat in two components:

htt ∼ O(1) and htφ ∼ O(r2).

In Schw., ∂gab/∂J(a = 0) is already in Lorenz-gauge – this is not the
case in Kerr.
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Approach #2: Radiation gauge / frequency
domain

(developed by Friedman, Shah, Keidl et al.)
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Method #2: Radiation-gauge frequency-domain

Oψ0 = T , ψ0 → Ψ, hµν = S†Ψ, hµνn
ν = 0 = h µ

µ .

Q1. Why work in radiation gauge?

Components of Weyl tensor satisfy decoupled, separable equation.

Can recover metric perturbation via Hertz potential.

Frequency domain ⇒ ODEs

Q2. What are the drawbacks?

Not obvious how to regularization in radiation gauge ⇒ hybrid gauges?

Add non-radiative perturbations (mass + angular momentum) ‘by
hand’

Suited to self-consistent evolutions?
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cf. Shah, Friedman & Keidl.
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Metric reconstruction in radiation gauge on Kerr

Teukolsky (’73) showed that extreme-helicity components of Weyl
tensor, ψ0 and ρ−4φ4, satisfy decoupled, separable equations.

Cohen & Kegeles (’74) showed how to reconstruct vector
potential Aµ from Hertz potential satisfying decoupled equation.

Chrzanowksi (’75) showed how to get hµν in radiation gauge from
twice-differentiating Teukolsky functions.

Wald (’78) showed the connection between Teukolsky potential,
Hertz potential and metric reconstruction.

Ingoing RG

hµν l
ν = 0 = hµµ

Outgoing RG

hµνn
ν = 0 = hµµ
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Hertz and Debye potentials

Cohen and Kegeles (1974) analyzed EM using forms:

Electromagnetism in vacuum:

dF = 0, ⇒ F = dA,

δF = 0,

i.e. F is closed and co-closed.

Suppose ∆P = 0 where ∆ = dδ + δd and P is a two-form. Then

F = dδP = −δdP,

so F is closed and co-closed.

The vector potential can be constructed from P ,

A = δP



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Debye potential

Most likely, ∆P = 0 is not separable. Instead, consider

∆P = dG+ δ(∗W )

where G and W are gauge one-forms. Then let

A = δP −G

so
F = d(δP −G) = −δ(dP − ∗W )

is again closed and co-closed.

Debye potential: Judicious choice of gauge one-forms G, W to
obtain separable equation for P in terms of scalar field.
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More on Debye potential

Type-D spacetime ⇒ principle null directions, null tetrad
lµ,nµ,mµ,m̄µ.

Killing-Yano tensor: fµν = f[µν] and fµ(ν;γ) = 0,

fµν ∝ r im̄[amb] + a cos θ l[anb].

Dual of KY is closed conformal Killing-Yano tensor, dh = 0.

May use a CKY tensor h to achieve separation:

P = ψEh, G = 2ψEδh, W = 0, and

P = ψB(∗h), W = 2ψBδh, G = 0.

Other choices possible (c.f. Teukolsky eqn. for extreme-helicity
component; Cohen & Kegeles approach).
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Wald/CCK approach

(suppressing indices, and denoting linear differential operators with
calligraphic letters e.g. E , S, etc.):

Linearized equations:

E(h) = 8πGT = 0. (4)

A la Teukolsky, take linear combinations (S) to find a separable,
decoupled equation Oψ in terms of new variable, ψ = T (h)

SE(h) = Oψ = OT (h)

How to recover h from ‘Debye potential’ ψ? Find Hertz potential
Ψ which satisfies

O†Ψ = 0

where † denotes the adjoint, defined by

ΦLΦ− (L†Φ)Φ = sµ;µ
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Wald/CCK approach

Summary

Teukolsky eqn: SE(h) = OT (h)

Hertz potential: O†Ψ = 0

Self-adjoint : E† = E

Take adjoint of operators in first equation, ES† = T †O†.

So
ES†Ψ = 0.

and therefore h = S†Ψ is a solution of original equations.

Q. How to find Hertz potential Ψ from ‘Debye’ potential ψ (i.e.
Teukolsky variables)?

A. Use ψ = T S†Ψ, because

0 = SES†Ψ = O
[
T S†Ψ

]
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Metric reconstruction

Separation of variables: ψ0 =
∑
ψlmω where

ψlmω = 2Rlmω2Slmωe
i(mφ−ωt)

ψ0 satisfies Teukolsky equation, with δ, δ′ and δ′′ source terms.
Solve with Green function methods.

Relate Weyl scalar to Hertz potential:

ψ0 =
1

8

(
L4ψ̄ + 12M∂tψ

)
Invert this relationship:

Ψlmω = 8
(−1)mDψ̄l−m−ω + 12iMωψlmω

D2 + 144M2ω2

where D is the constant in Teukolsky-Starobinskii identity.

Obtain metric in IRG/ORG

hµν = S†µν(l, n,m)Φ
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Mode sum regularization

Expand spheroidal harmonics in spherical harmonics (S → Y )

Mode sum regularization is understood in Lorenz gauge:

Fαself =

∞∑
`=0

[
F `lor(p)−AαL−Bα − Cα/L

]
−Dα

cf. Barack, Friedman et al., Linz, talk later by Merlin.

Idea: Make gauge transformation to move to a locally-Lorenz
gauge,

hMrad
µν = hrad

µν + ξµ;ν + ξν;µ.

Does this change Aα, Bα, Cα? (no)

Does this change Dα? (yes)
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Comparison of gauge-invariant quantities
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Gauge invariant comparison

Dissipative GSF has an obvious gauge invariant effect (loss of
energy, ang momentum), so is easy to validate.

Conservative GSF is more subtle and dependent on choice of
gauge.

For circular orbits:

Two physically-observable were quantities identified by Detweiler:
U = ut and Ω.

First-order variations ∆U and ∆Ω are invariant under
helically-symmetric gauge transformations

First comparison of ∆U and ∆Ω in Schwarzschild made in
2007/8: Sago, Barack, Detweiler.

First comparison in Kerr made last year:
(RG) Friedman, Shah & Keidl vs Dolan, Barack & Wardell
(LG)
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Gauge invariant comparison

Variation at lowest order in µ:

∆U = µ
∂

∂µ
U(µ,Ω)|µ=0 (5)

∆Ω = µ
∂

∂µ
Ω(µ,U)|µ=0 (6)

These quantities depend on the renormalized metric perturbation, e.g.

∆U = −utH

where

H ≡ 1

2
hRαβu

αuβ .
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Gauge invariant comparison : ∆U for circular orbits
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Preliminary comparison: June 2012 (at Capra).
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Gauge invariant comparison : ∆U for circular orbits
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Prospects & Conclusion

Beneficial to have an ecosystem of methods for Kerr GSF

Time domain priorities:

Mitigate gauge mode instabilities w. generalized Lorenz gauge
Improve accuracy (1 part in 106, cf Thornburg)
Apply machinery of Numerical Relativity

Frequency domain priorities:

Regularization in (modified) radiation gauge (cf Merlin)
Compare with PN & EOB theory (cf Shah)

Next steps:

Gauge-invariant comparisons
Compute GSF on generic orbits & study orbital resonances
Orbital evolutions
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