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Talk Outline

@ Motivation
o Why compute GSF on Kerr?
© Foundations
e How do we compute GSF?
@ #1: Lorenz gauge/time domain
o Puncture/effective source schemes
e 2+1D and 3+1D approaches
e Mass and angular momentum
o Linear-in-t gauge modes
Q@ #2: Radiation gauge/freq domain
o Hertz potential/metric reconstruction
o Regularization
@ Results: Circular orbits on Kerr

o Gauge-invariant comparison

@ Prospects



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Motivation: Why study GSF on Kerr?

o Galactic BHs are rotating, a/M ~ 0.5 — 0.99.

e Structure : Rotation breaks symmetry leading to, e.g. ergodic
geodesics, frame-dragging, light-cone caustics become ‘tubes’; etc.

3y

o Orbital resonances: Generic orbits may pass through
resonance when w; /wp ~ ny/ne (Hinderer & Flanagan).

@ Orbital evolutions

o Gravitational wave signatures: eLISA?
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Supermassive BHs appear to be rapidly rotating ...

0.4

0.3

0.2

Fractional Spin Distribution

0.1

o Fig. 9 in Walton et al., “Observations of ‘bare’ active galactic
nuclei”, MNRAS 428, 2901 (2013), using X-ray reflection
spectroscopy.



Suzaku observations of ‘bare’ AGN 2907

Table 2. Key parameters obtained for the reflection-hased models constructed for the compiled sample (see Section 3.2 for details). Parameters
in pasentheses have not been allowed to vary, and where we wers uaable o cansirain the black hole spin this is indicated with 2 ‘U".
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Motivation: the general 2-body problem in relativity

Numerical Relativity

post-Newtonian

Pert. theory,
Self Force
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Motivation: the general 2-body problem in relativity
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Motivation: Orbital resonances

Event Horizon

FIG. 1: (Color online) The location of low order resonances around
a black hole superimposed on an embedding diagram. The line
width of each resonance is inversely proportional to the order of
the resonance to give an indication of the relative importance of a
particular resonance.

Fig. 1 in Brink, Geyer & Hinderer, arXiv:1304.0330.
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Motivation: Orbital resonances

Kolmogorov-Arnold-Moser theorem

For Hamiltonian system, perturbed dynamics will be a smooth and
‘small’ distortion if frequencies are sufficiently irrational:

|mw, — nwg| > K(€)/(n +m)3

cf van de Meent
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Motivation: Orbital resonances

e Two timescales: orbital period ~ M, radiation reaction p~'.

e Hinderer & Flanagan (2010) made two-timescale expansion for
EMRISs, using action-angle variables:

o Action : ‘constants’ of motion : J, = (E/,u, Lz/u,Q/,uQ)
o Angle : ‘phase’ variables qo = (qt, ¢r, G0, qe)-

@ ¢ — qr + 27 as orbit goes r = ryin — Tmax — Tmin With period
T =27 /W,
o Frequencies wy(J) = (wr, wa, wg)

o Isometries of Kerr = (¢, q4) ‘irrelevant’, (g,,qq) ‘relevant’
params.
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Motivation: Orbital resonances

1. Geodesic approximation (n = 0):

dqa
o - )
dJ,
dr 0
Solution :
Ga(T,n=0) = waT (1)
Jy(r,n=0) = const. (2)

Timescale : unchanging



Motivation Foundations Lorenz gauge Radiation gauge Comparison

Motivation: Orbital resonances

2. Adiabatic approximation:

490

ar wal)
dJ,
v (1)
dT 7’<Gz/ (qr,qe’J)>average
Solution :
a(mm) = n'q(nT)
Ju(r,m) = Jnr)

Timescale : Tred.reac. ~ N

Prospects
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Motivation: Orbital resonances

3. Post-adiabatic approximation:

dq
(T: = wa() + 1980 (qr, g0, T) + O(?)
dJ,

= nGM(ar, g0, J) + 1*G P (¢r, 0, T) + O(°).

Two timescales : ~ 77! (secular) and ~ 1 (oscillatory).

Prospects
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Motivation: Orbital resonances

o Is adiabatic approximation justified? i.e. is it OK to neglect
fast-oscillating parts?

o Consider Fourier decomposition

GV gr a0, 7)) = Y G, (D)eilbrarthoae)
Er ko

and ¢, = w, T+ W02+ ..., Qo = weT +WeT> + ...
krdr + kogo = (Krwr + kowo) T+ (ko + ko) 72 + ..

o Cannot neglect higher Fourier components if resonance
condition
krw, + kowe =0

is satisfied! i.e. when w,/wy passes through low-order integer
ratio.
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Motivation: Orbital resonances

e Duration of resonance set by (k,.w, + kgws) 72 ~ 1, i.c.

Tres ™ 1/\/]977
where p = |k, | + |ko|, 1= p/M.

Change in ‘constants’ of motion:

AJ ~/n/p

Change in phase:
Ag~1/y/np

@ Need to know precise first-order SF and (possibly) dissipative
part of 2nd-order SF to model resonance accurately.

Without complete knowledge, a resonance effectively resets the
phase and ‘kicks’ the orbital parameters.
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Motivation: Orbital resonances

o5 [ " Periodratio AJAg ——— |
~—_ Orbital eccentricity
2r ~———___Inclination angle (rads)

15 N T

05 1

0.12

0.1
0.08
0.06
0.04
0.02

3JI( Jve )

o from Hinderer & Flanagan, arXiv:1009.4923.
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Motivation: Structure of spacetime

AN

Light cone in Schwarzschild. See e.g. V. Perlick’s Living Review on
lensing.
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Singular structure of Green function

8 T T T Retarded Green function on a circular geodesic at ry = 6M
0.004 , . i
(1) (2)$ i(3) (7)
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MiSaTaQuWa: SF from worldline integral:

157 0 [T VG, ear

(scalar field case) see e.g. Casals et al. (2013), arXiv:1306.0884.
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Gravitational Self-Force (GSF)

Radiation gauge

Comparison

accelerated motion on a

background spacetime

Prospects
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Three (related) methods for GSF calculations

@ Worldline integral (MiSaTaQuWa equation, schematically):

F= = Jocal terms 4 p?utu” / ViaG UHV(Z(T),Z(T,)UH/uy,dT/
(i)lm

@ Mode sum regularization: hy, =", huo Ylgfl)(ﬁ, ®)

oo

qel Z ret — AL - B — C/L] -

where L =1+ 1/2.

© Effective source / puncture schemes: h = h® + b5 split
(Detweiler-Whiting ’03)

Self = _% (gaB + uauﬁ) (2hg’>';5 - hf&;ﬁ) ulu’.
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(2): ¢-mode regularization
Define Fii o = V“’“’hmt/s (as fields), then write
Fself = (Fret _FS)|p
= Z (FL, — F§) |p (¢-mode contributions are finite)
£=0
00 o
= > [FLi(p)—AL-B-C/L] - ) [Fi(p)— AL— B—C/L]
£=0 =0
= Y [Fi(p)—AL—B—-C/L]-D (where L=1{+1/2)
£=0

o Regularization Parameters A, B, C, D calculated analytically for

generic orbits in Kerr in Lorenz gauge h,,,

v =0.
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(3): Detweiler-Whiting split

singular radiative

Dirac’s split into singular and radiative fields is acausal in
curved spacetime

Detweiler & Whiting (’03) made causal split into S and R fields
Correct SF recovered from R part.

S part not known exactly, but can be computed in vicinity of
worldline via series expansions.
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Dissipative/Conservative part of GSF

Retarded and advanced fields Ayt and hagy(t)
Ret. and adv. ‘R’ fields, hﬁt = hyet — hg, BB = haav — hg

e adv —
Define conservative and dissipative parts of field
cons 1 R R 1
h 5 (hret + hadv) = 5 (hret + hadv - 2hS)
. 1 1
hdlss 5 (hgt - haRdV) - 5 (hret - hadv)

Dissipative part does not need regularization!
Conservative part needs knowledge of S field.

Dissipative part = secular loss of energy and angular
momentum.

Conservative part = shift in orbital parameters, periodic.

Prospects
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The Omnipotent Self-Force Calculator

Spacetime : () Schwarzschild @ Kerr () Other

Field : Scalar | EM.

() Circular @ Equatorial (0 Generic
Orbit Type: € D
038
(0 Instantaneous SF @ Orbital Evolution ) Waveforms

Calc Type : Freq. domain Hybrid

@ 1st order ) Hybrid () 2nd order (consistent)

Calculate! | s

This is what we need ...

Prospects



Approach #1: Lorenz gauge / time domain
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Approach #1: Lorenz-gauge time-domain

DITL;U/ + QROLMBVEQ,Q = —1671'6;’1—;“/7 77, v =0.

Q1. Why work in Lorenz-gauge h,,”” = 07

@ Hyperbolic (wave-like) formulation of equations for metric
perturbation

o S-field has ‘symmetric’ singular part hap ~ 1/7
= regularization is well-understood.

Q2. Why work in time-domain?

@ Lorenz-gauge metric perturbation is not separable on Kerr

= no ordinary differential equation formulation in freq. domain.

@ Self-consistent evolutions are most naturally handled within a

time-domain scheme.

Prospects
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241D vs 3+1D methods

Two related approaches:

Radiation gauge Comparison Prospects

@ 3+1D effective source method, developed by Vega, Detweiler,

Diener, Wardell et al.

@ 2+1D m-mode regularization scheme, developed by Barack, Sago,

Golbourn, Thornburg, Dolan, Wardell.

3+1D approach 2+1D approach

e Window function W:
S = S — O(Wd%)

e No mode sum required
@ Methods of Num. Relativity
@ Only scalar field so far

@ Puncture + worldtube:
Or =0 — Pp

o Mode sum reconstruction
o Isolate m =0, m = 1 parts

o Scalar & gravitational cases

v
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Formulation: Linearized equations

Linearized Einstein Eqs for Ricci-flat background:

Ohas + 2R, Y hea + 26, — Zap — Zpya = —167T 4,

Z.=h  where hap is the trace-reversed metric perturbation:

hab = hap — 2gaph, and  h=he,.

74 system and gauge choice

Introduce Generalized Lorenz gauge with gauge-driver H,(hpe, x)

Zo = Hy(z,hye) (=0 for Lor. gauge)
Z4 system: 10 eqns with 4 constraints,
Ohap + 2R Yheq + H ., — Hap — Hya = —167Ty,
Co=4s—H, = 0
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Formulation: Linearized equations

74 with constraint damping

Ohay + 2R, % heq + HE, — Hayp — Hya
+k (ngcp +npcy) = —167T,p,

where x(z) is a scalar function and n, is a vector, and
Co=2Z4g— H,.

@ Choose k, ng so that constraints are damped, under
Oe, = v
co = — (K(ngcp + npca))” .

@ Good choice: n, = ingoing principal null direction, with x < 0.

@ hgp is a solution of linearized Einstein eqns iff ¢, = 0.
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Formulation: Regularization

o Problem: hyy is divergent ~ 1/e towards worldline

@ Solution: Introduce puncture szb: a local approximation to
Detweiler-Whiting singular field 25;.

@ Covariant expansion of ho, = power-series in coordinate differences,

0z =z — 2%, where z = field pt, Z = worldline pt

@ Classification: nth order puncture iff
hlby, — hay ~ O (|0x] 62"7)

@ 2nd-order in Barack et al ’07, 4th+ order from Wardell.

@ Local — Global definition: let Z become a function of x, e.g. set £ = ¢,
X = Xp(t).

@ Global continuation is arbitrary, but should be smooth around circle,
except at worldline, for m-mode scheme

@ Use a periodic definition ¢, e.g. §¢? — 2(1 — cos ) = dp? + O(5p*)
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Formulation: Puncture scheme

=0T
Introduce a worldtube 7 surrounding o™
the worldline:

J3

or

e Outside worldtube T, evolve retarded field hgyp.

o Inside worldtube T, evolve residual field be, ie.

Dhay, = 0, outside T,
DhR = —167T<f, inside T,
h?}b = hgp — hapb, across 0T .

where T = T, — (—16m)~'Dh7,, and D is wave operator.

Prospects
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Formulation: m-mode decomposition

Exploit the axial symmetry: decompose MP in m-modes

= 241D eqns:
b = 3 B eime

m

Real field = h{7)* = h{,™
o Reconstruct self-force, field, etc. from mode sums, e.g.
A = lim (ij;m‘o) +23° Re [a;ﬁmemmw})

T2
m=0

Convergence-with-m depends on order of puncture

Prospects
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Formulation: Mode sums and convergence

For circular orbits, F;. is conservative and F,, is dissipative.

punc. order hfy C  Sen hfy*m e FZ'
1 dx/|dx| C~t  1/62®2 @ m™2 @ — —
2 |0x] O 1/|6z]  m™2 m™2 e M
3 |6x| 6z CY  Sx/|dx|] m* mTZ eAm
4 |6z| 2% C? |0x] m=* m™t eTAm
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Formulation: Mass and angular momentum

o Combine Killing vector X and stress-energy T,; to form

conserved current: j, = T,, X", J, % =0.

e Poincaré lemma: §j =0 = j = 0F (where § = *d*), i.e.
Ja=F, ;b, where  Fop = Flap),

(locally at least).

Abbott & Deser (1982): Conserved two-form

Fap = —(8m) 7" (X hefasp) + X ahoje + X(aZy)) 5

Prospects
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Formulation: Mass and angular momentum

v
-~ - T \022
y .92, \lrz
l LU
\ b3 -

Apply Stokes’ theorem to get ‘quasi-local’ definitions:

/Z jdS. = [ F*,d%,

I
N =
| — |

_ pX g, 11 <To < T2H
0, otherwise.

Prospects
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Formulation: Mass and angular momentum

1
Quasi-local quantity: F(X,0X%) = 5 F®dS.p.
%

Is F a useful definition of the mass/ang.mom. in
a given homogeneous metric perturbation h,,?

Property 1: F is gauge-invariant

o If hap = 2§ (qyp) then Fyp o 1,,., where

TNabe X X[aéb;c] + X[a;bgc]'

o It follows that F o< [(bg,0 — bg,¢)d0dep = [by]g = 0,
where b = *n.
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Formulation: Mass and angular momentum

1
Quasi-local quantity: F(X,0X%) = 5/ FdS,,.
ax

Is F a useful definition of the mass/ang.mom. in
a given homogeneous metric perturbation h.;,?

Property 2: F gives correct mass/ang. mom. for Kerr pert.

o X =1[1,0,0,0] & Fuy and X¢,) =[0,0,0,1] & Fy)

e Mass (M) and ang. mom (J = aM) perturbations:

0 Kerr
hap = p€ a7 Jab i

0
ha _ _~ _Kerr
b= pl p) Jgab
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Implementation: Circular orbits on Kerr

@ Particle on circular orbit with frequency w = v M/ (7"8/ >+ avV/M)
@ Define h,p w.r.t. Boyer-Lindquist coordinate system (¢, r, 8, ¢)

@ Introduce tortoise coords: ry = [~ +a r, o =¢+ f ~dr
@ Second-order puncture h%, ~ 4px.p/€ [Barack et al.’07], with

_ Juaup + Copdr  for ab = tt,t¢, ¢p¢
Xab = Copsindo for ab = tr, top.

@ m-mode decomposition:
67im(wt+A¢)

W = g [ Wia(o 00, 60)e % a(50)

Integrals have an elliptic integral representation.

m
@ Use scaled evolution variables uab ),

1
h(m) - ZaE bu{(lb)(t,né?) (no sum)

where E, = [1,1/(r — r4), 7, 7sin ).

Prospects
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Implementation: Circular orbits on Kerr

I used Lorenz-gauge Z4 system with constraint damping.

Cauchy evolution in (¢, 7y, ), with worldtube and effective
source.

Fourth-order-accurate finite-differencing . .. except at worldline
where residual field is not smooth.
Boundary conditions:

@ Regular MP at the poles

© Regular MP on the future horizon

Q v ~0(1) asr —
Trivial initial conditions, u((;;) =0 ... wait long enough and
‘Junk’ dissipates with time (in radiative sector).

Gauge-violation is driven to zero.

Prospects
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Results: Modal profiles

Slice 1: ¢ = 250M,0 = w/2 (and ro = 7TM, m = 2)

Metric perturbation in equatorial plane as a function of radius

-50 0 50 100
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Results: Modal profiles

Slice 2: t = 250M,r = ro (and 7o = TM, m = 2)

Angular profile of metric perturbations
0.2 T T T
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Results: Modal profiles (rg = 7M, m = 2)

Slice 3: 0 = /2, r =rg (and ro = 7TM, m = 2)

Regularized metric perturbation on worldline as a function of time

0 50 100 150 200 250
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Results: Gauge-constraint violation

r component of Lorenz-gauge violation

1 T T T T T T T

0.01

0.0001

& 1e-06

1e-08

1e-10

1e-12 ' I I I I I I I
-20 -10 0 10 20 30 40 50 60

s /M

o Constraint violation diminishes with increasing grid resolution
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Results: F; and energy balance

7.410°

(m=3)

F|

7.310°

7.210°

t/M

@ Showing time-domain value of F; for various grid resolutions
dr. = M/n.

@ In principle, F; = uBE, where E is energy loss rate (from Teuk. 1o, 14).
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Results: F; and energy balance

7.3510° ‘ —
extrapolation
time domain values @
freq. domain result H
7.3010° |
©™
Il
3 5
o 725107
7.2010° |
7.15.10-5 I 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
Are /M

e Extrapolate over grid resolution to obtain best estimate

e Convergence rate only z2Inx with 2nd-order puncture
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Results: F; validation at a = 0.5M (m = 2 mode)

Comparing Energy Flux (Finn Thorne 2000) with F, component of Self-For
0.005 T T T T T T

0.00495 [~ ino-- /o .

0.0049

u o o
0.00485 ‘ g
n=2 -
n=4 -
0.0048 n=6 7
n=8
a=0.5M, rig,, =4.233M dE/dt

0.00475 L L L L .
100 110 120 130 140 150 160 170 180 190 200

t/M

@ For each m-mode, validate E= Ft/uf) against results of Finn &
Thorne.

° Q.3% disagreement here because Finn & Thorne give FEo, whereas
E= Eoo + Ehor~
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Results: m-mode convergence: dissipative

0.001 T T T T
ro=7M
0.0001 4

1e-05 E

1e-06

Modal value
L]

1e-07 E

1e-08 ' : '

@ Modes of dissipative component of GSF, F}, converge exponentially,
F™ ~ exp(—Alm]).
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Results: m-mode convergence: conservative

0.1 T T T T
ro=7M
001F T .
"
e N
E . R
= ..
> RN LA
= 0001 F S - 9
L] ~ [
o o LA
= ° L
e Ll |
.
0.0001 | e, E
B e
“.‘.
1e-05 ' ' ' '
2 4 10 15
m.

@ Modes of conservative component, F,. (and h%,) converge with
power-law, F;™ ~ m™2 (for 2nd-order puncture).

Prospects
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Problem: Linear-in-t modes in Lorenz gauge

Problem: Modes m = 0,1 suffer from linear-in-t instabilities!

Linear-in-t modes are homogeneous, pure-Lorenz-gauge solutions

o Linear-in-t modes are regular on future horizon and asymp-flat.

Linear-in-t modes are excited by generic initial data.

In Schw., these modes are in [ = 0, [ = 1 sectors only.
e Analytic solutions of these modes in Dolan & Barack (2013)

e N.B. No [-mode time-domain scheme has successfully evolved
Schw. [ = 0,1 modes in Lorenz gauge.
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Problem: Time Evolution of m = 0 mode

Metric perturbations on the worldline : m =0
4 T T T T T T T

Regularized metric perturbations

0 20 40 60 80 100 120 140
t/M
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Radial Profile : m = 0 mode

Radial profile of metric perturbations at t = 50M
10 T T T

Metric perturbations

2+

-100 -50 0 50 100
r/M
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Radial Profile :

Metric perturbations

Foundations Lorenz gauge Radiation gauge Comparison Prospects
m = 0 mode
Radial profile of metric perturbations att = 100M
10 T T T
t———-
tr----
8 - tq) ———
r
6 60 - — - |
4
2
ofb— e =
A2
. 1
2 - N | -
S~ |/ t = 100M
4+ T~ //,' i
I ) I
-100 -50 0 50 100
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Radial Profile : m = 0 mode

Radial profile of metric perturbations att = 150M
10 T T T

Metric perturbations
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Detail: Monopole [ = 0 mode

Consider circular orbit on Schwarzschild (cf Detweiler & Poisson '04):
o Write down a basis of four linearly independent static
homogeneous monopole solutions
o Construct a unique physical monopole solution for circular orbit,
with following properties:
@ Solution of inhomogeneous eqn
© Lorenz gauge
@ Static: dthap = 0 and hy; = 0.
@ Continuous across r = rg.
@ Regular on future horizon H '
© Regular at infinity, huw/gu ~ O(1/7)
@ Has correct mass-energy
o But can’t satisfy all these properties simultaneously ...
o Relax condition (6). Then hy ~ —2ua where o = E/r¢ fo.
@ Move to asymptotically-regular but non-Lorenz gauge with
simple gauge transformation.

& = —pa(t+r. —r)oy.

D B IR VRN (T . D R RO NI A N
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Detail: Monopole [ = 0 mode

o Unique solution? There are stationary but not static (hy. # 0)
homogeneous gauge modes which satisfy all other conditions

e For example, a scalar gauge mode

hag = 26(ap),  Ea =[1/2,2/(r*f),0,0] = &,,, &= %t+1n(f).

@ There is a linearly-growing gauge mode which satisfies all
conditions, except (i) it is not stationary, and (ii) it is not
asymptotically-regular in ¢t component

13 2t r®+3r2 +12r + 241In(fr)

lin __ -2 lin _ =
t 1H(2f)+t/2+ 6 ’ gr T2f+ 67"2f

r
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Detail: Monopole [ = 0 mode

The linearly-growing mode homogeneous gauge mode is (M = 1)

—rt + 4t + 1% + 4r 4+ 8In(rf)

h?tn = a )
pin _t+ g +2In(2f)
tr T r2f ’
plin _ CAt(2r —3) + 5r2 — 12r + 8(2r — 3) In(r f)
(O rdf2 ’
r2hEn = et %; +8In(rf) = (rsin@) *hyg. (3)

Note that hy ~ 14+ O(1/r)

This mode is generically excited in our initial-value formulation.
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Solution : Generalized Lorenz gauge

e To recover stablhty, I experimented with using generalized
Lorenz gauges, h =H,

o I found an explic1t gauge driver of the form:
H, xng % h(m 0 /Tk, where n, is ingoing null vector

restores stability to m = 0 sector.
e For circular orbits, h¥. = 0, so this gauge is non-singular.
@ But leads to non-unique stationary solution which depends on
initial condition.
o The static solution (hy; = 0) is also in Lorenz gauge (H, = 0).
o Take linear combination of solutions to find static soln with
he = 0.
@ Schw.: combine two solns in monopole (I = 0) sector.
@ Kerr: combine three solns, as mass & ang. mom. pert. are no
longer decoupled.
o Unnecessary if we are only interested in gauge-invariant (e.g.

AU).
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Solution : m = 1 mode?

o I have not found a generalized Lorenz gauge that stabilizes the
m = 1 sector.

o Instead, I apply a frequency-filter to eliminate stationary and
linear-in-¢ modes:

h = —82 h
ab —7 — ab
w? Ot?
m=1 contribution to H, after applying frequency filter
-0.16 T T T T T T T T T
ro=6M a—OaZEha —
07 - ° a=05M ——
a=07M ——
-0.18 | I 1
-0.19 \' |\'| w\ﬂ‘h |v WIW\W’"'M"\'ANN o
I -0.2
5 V
0.21 - q
022 [ ]
-0.23 | B
024 I r L I I I I I I

150 160 170 180 190 200 210 220 230 240 250
t/M

o This trick will not work for general orbits
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Correcting the mass and angular momentum

Quasi-local mass and angular momentum in m=0 Lorenz-gauge perturbation

1 T T T T T
08 a=0.5M, ry=6M Azimuthal ang mom
1S Mass
3
€ 06 i
Q
£
o
= 04 R
% (worldtube)
2 o2} i
g .
=
j=2l
@ 0r i
f=
[im]
-0.2 - b
Qqp/u
(t) / Ut
. . . . Ao/ ——
-0.4
-10 0 10 20 30 40
r/M

o Take integrals over two-spheres to find ‘quasi-local’ mass F;) and

angular momentum 4y in numerical solution F_, (m=0)
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Correcting the mass and angular momentum

@ To correct the mass and ang.mom. I add homogeneous Lorenz-gauge
solutions which are regular on the future horizon,

0
h((l?)M) = Wgab i + gauge, hffzJ) = ﬁgab o —+ gauge.
@ ...but, once again, these solutions are not asymp-flat.

@ Recall that in Schw., the static Lorenz-gauge solution with correct
mass is not asymp-flat: hy — —2pa [Sago et al. ’08].

@ In Kerr, I find that Lorenz-gauge static solution with correct mass and
ang.mom. is not asymp-flat in two components:

htt ~ O(l) and ht¢ ~ 0(7’2).

@ In Schw., Ogqr/0J(a = 0) is already in Lorenz-gauge — this is not the
case in Kerr.



Approach #2: Radiation gauge / frequency
domain

(developed by Friedman, Shah, Keidl et al.)
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Method #2: Radiation-gauge frequency-domain

‘O%ZT, Yo =V, hu, =80, hy,m” =0=h,". ‘

Q1. Why work in radiation gauge?
@ Components of Weyl tensor satisfy decoupled, separable equation.
@ Can recover metric perturbation via Hertz potential.

@ Frequency domain = ODEs

Q2. What are the drawbacks?
@ Not obvious how to regularization in radiation gauge = hybrid gauges?

@ Add non-radiative perturbations (mass + angular momentum) ‘by
hand’

@ Suited to self-consistent evolutions?
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Weyl scalar

Hertz potential

Metric perturbation

cf. Shah, Friedman & Keidl.

Prospects



Motivation Foundations Lorenz gauge Radiation gauge Comparison Prospects

Metric reconstruction in radiation gauge on Kerr

Teukolsky (’73) showed that extreme-helicity components of Weyl
tensor, 1o and p~4¢4, satisfy decoupled, separable equations.

Cohen & Kegeles (’74) showed how to reconstruct vector
potential A, from Hertz potential satisfying decoupled equation.

Chrzanowksi (*75) showed how to get h,, in radiation gauge from
twice-differentiating Teukolsky functions.

Wald (’78) showed the connection between Teukolsky potential,
Hertz potential and metric reconstruction.

Ingoing RG Outgoing RG
hu 1l =0=h*, hyn” =0=h",
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Hertz and Debye potentials

Cohen and Kegeles (1974) analyzed EM using forms:

o Electromagnetism in vacuum:

dF = 0, = F=dA,
§F = 0,

i.e. F is closed and co-closed.

@ Suppose AP = (0 where A = d§ + §d and P is a two-form. Then
F=doP = —-4dP,

so F' is closed and co-closed.

@ The vector potential can be constructed from P,

A=46P
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Debye potential

o Most likely, AP = 0 is not separable. Instead, consider
AP =dG+6(*W)
where G and W are gauge one-forms. Then let
A=0P -G

SO
F=d(6P —G) = —6(dP — *W)

is again closed and co-closed.

Prospects

o Debye potential: Judicious choice of gauge one-forms G, W to

obtain separable equation for P in terms of scalar field.
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More on Debye potential

o Type-D spacetime = principle null directions, null tetrad
L, my,my,.

e Killing-Yano tensor: f,, = fju.,) and fu;y) =0,
Juw o< Timgmy + acos 0 ljgny).
@ Dual of KY is closed conformal Killing-Yano tensor, dh = 0.

o May use a CKY tensor h to achieve separation:

P = 4ygh, G=2updéh, W =0, and
P = 4p(*h), W =2gdh, G=0.

o Other choices possible (c.f. Teukolsky eqn. for extreme-helicity
component; Cohen & Kegeles approach).
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Wald/CCK approach

(suppressing indices, and denoting linear differential operators with
calligraphic letters e.g. £, S, etc.):

o Linearized equations:
E(h) =8rGT = 0. (4)

o A la Teukolsky, take linear combinations (S) to find a separable,
decoupled equation O in terms of new variable, 1) = T (h)

SE(h) = O = OT(h)

@ How to recover h from ‘Debye potential’ 1)? Find Hertz potential
U which satisfies
o'w =0

where T denotes the adjoint, defined by

LD — (L1D)D = s,
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Wald/CCK approach

o Summary

Teukolsky eqn: SE(h) = OT(h)
Hertz potential: 0w =0
Self-adjoint : Eh=¢

Take adjoint of operators in first equation, EST = TTOT.

e So
ESTO = 0.

and therefore h = STV is a solution of original equations.

Q. How to find Hertz potential ¥ from ‘Debye’ potential ¢ (i.e.
Teukolsky variables)?

o A. Use ¢ = TS, because

0=88TT =0 [TSTT]
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Metric reconstruction

@ Separation of variables: 1 = Y t;m, Where

Yimw = 2Rimw2Sime elme—wt)

@ 1) satisfies Teukolsky equation, with &, ¢’ and 6" source terms.
Solve with Green function methods.

o Relate Weyl scalar to Hertz potential:
1 _
o =g (L% + 12M o))

o Invert this relationship:

(_1)mD’J}l7m7w + 12iMwwlmw

Uy = 8
! D2 + 144M202

where D is the constant in Teukolsky-Starobinskii identity.
o Obtain metric in IRG/ORG

hyw = 8, (1,0, m)®
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Mode sum regularization

e Expand spheroidal harmonics in spherical harmonics (S — Y)

@ Mode sum regularization is understood in Lorenz gauge:
561 Z Eor — AL - B — Ca/L] -
£=0

o cf. Barack, Friedman et al., Linz, talk later by Merlin.

o Idea: Make gauge transformation to move to a locally-Lorenz
gauge,
hll\t/[vrad = h:f:/d + & + i

@ Does this change A%, B*, C*? (no)
@ Does this change D*? (yes)



Comparison of gauge-invariant quantities
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Gauge invariant comparison

e Dissipative GSF has an obvious gauge invariant effect (loss of
energy, ang momentum), so is easy to validate.

o Conservative GSF is more subtle and dependent on choice of
gauge.
For circular orbits:
e Two physically-observable were quantities identified by Detweiler:
U = ! and Q.

o First-order variations AU and A are invariant under
helically-symmetric gauge transformations

o First comparison of AU and A2 in Schwarzschild made in
2007/8: Sago, Barack, Detweiler.

o First comparison in Kerr made last year:
(RG) Friedman, Shah & Keidl vs Dolan, Barack & Wardell
(LG)
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Gauge invariant comparison

Variation at lowest order in p:
0
AU = #@U(M, Q)| u=0 (5)
0
AQ = N%Q(/‘v U)lu=0 (6)

These quantities depend on the renormalized metric perturbation, e.g.

AU = —u'H

where
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Gauge invariant comparison : AU for circular orbits

Comparison of results for Detweiler’s invariant AU on Kerr [June 2012]

-0.18 T T T T T
o =6M ASWF e
-0.2 o B
L]
2 i b SD/LB
< -0.22
*é °
8 I
g 024} g
£
()
=1 o
8 -0.26 I B
-0.28 B
Lorenz-gauge [Dolan/Barack] ——+—
] Radiation-gauge [Shah/Friedman1 .
-0.3 1 1 1
0.2 0.4 0.6 0.8

a/M

@ Preliminary comparison: June 2012 (at Capra).
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Gauge invariant comparison : AU for circular orbits

Comparison of results for Detweiler’s invariant AU on Kerr [Sep 2012]

-0.18 T T T T T
=6M
fo=6 ASIJF

-0.2 o
2 s ‘sDLB
< -022
5
8 s
S 024} -
£
(0]
[=2]
3 026 4
o &

-0.28 B

Lorenz-gauge [Dolan/Barack] +——+—
L Radiation-gauge [Shah/Friedmanl .
-0.3 L L L
0.2 0.4 0.6 0.8
a/M

@ Second comparison in Sep 2012. Much better!
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Prospects & Conclusion

Beneficial to have an ecosystem of methods for Kerr GSF

Time domain priorities:
e Mitigate gauge mode instabilities w. generalized Lorenz gauge
o Improve accuracy (1 part in 10°, ¢f Thornburg)
o Apply machinery of Numerical Relativity

Frequency domain priorities:

o Regularization in (modified) radiation gauge (cf Merlin)
o Compare with PN & EOB theory (cf Shah)

Next steps:
o Gauge-invariant comparisons
e Compute GSF on generic orbits & study orbital resonances
e Orbital evolutions
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