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Gauge freedom

e In GR, gauge freedom is coordinate freedom
e Zeroth order: use Schwarzschild coordinates

e First-order options:
e |orenz

o Regge-Wheeler

e Modified Regge-Wheeler?
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LLorenz gauge

Schw
Juv — g;u(j T Puv

p,uz/ + 2Rau6upa6 — _167TT,W/7 p:u”‘y

e 10 coupled wave equations
e Locally isotropic solutions

e Regularization procedure in Lorenz gauge

e Other gauges may be possible ..
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Regge-Wheeler gauge

: Im~x¥tm
e Schematically: P ™ > oy
/.m
e Set four components of r;} to zero

e Field equations simplity greatly:

52 9 '
o5 T 55— Vi) | Yem(t,7) = Sem (1)

e Reconstruct metric perturbation:

\Ijém (ta T) — Puv
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RW gauge fields: odd-parity

e Two non-vanishing amplitudes: h{™, RE™
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RW gauge fields: even-parity

e Four non-vanishing amplitudes: A", hi™, him K™

(£,m) = (2,2)
/
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Benefits and drawbacks of RW gauge

e Benefits:
e Simple field equations

e Computationally efficient



Benefits and drawbacks of RW gauge

e Benefits:
e Simple field equations

e Computationally efficient

e Drawbacks:
e Only valid for radiative modes, £ > 2
e JSingularities/discontinuities at the particle

e Self-force not well-defined
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A regular, well-defined self-force

e Barack and Ori, 2001

- “Gravitational self force and gauge transformations”

e Lorenz gauge yields a regular, well-defined SF

e SF transformation with gauge vector =*:

0F e = — 1 {(go‘ﬂ + uO‘uB) =5+ R*, 5, u"=E u”

o SF is well-defined if and only if 0Fg,; relative to
Lorenz gauge IS

e |f vector =* is well-defined, the SF will be also

e [hen, regularization is done with Lorenz gauge
parameters A, B*,C*, D¢
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First-order gauge transtormations
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First-order gauge transtormations

e Transform from RW to Lorenz gauge:

Mo Schw

T1 = Tryw T ERw 1L ErwoLl ~ pw| <K 90

e Metric perturbation transforms:

_ —RW—=L —=RW-=L
Puv = p,ul/ —u|v —v|u

e (Gauge vector satisfies a wave equation:

=RW L, = — PrRw|v




RW->Lorenz gauge vector. odd-parity

e Transtorm the global solution, mode-by-mode
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Lorenz gauge fields: odd-parity

e Amplitudes are now C° and asymptotically flat
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Benefits/drawbacks of global gauge transf.
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Benefits/drawbacks of global gauge transf.

=1 -
—RW—L — PRw|v

e Benefits:

e Gives the solution, everywhere in Lorenz gauge
e (ives solution to low-order modes
e Drawbacks:
e Computationally difficult and expensive
e Discontinuous, extended source terms

e [EXxcessive, if you just want the self-force
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A modified RW gauge

e (Gralla, 2011 - Simple gauge transt. to reach
“parity-regular” gauge

e Split gauge transformation into two steps

— __ /M _I_
—RW-—L = —“"RW-—->MRW _‘MRW—>L

_— N\

Remove major discontinuities Smooth enough to ignore




A modified RW gauge

e [he metric perturbation in MBRW gauge Is

MRW _ RW  o—RW-—MRW
Puv = Puv — 22(w)



A modified RW gauge

e [he metric perturbation in MBRW gauge Is

MRW _ RW  o—RW-—MRW
Puv = Puv — 22(w)

e Decompose into spherical harmonics, e.g.

Im , MRW 1 /m,RW
ht — ht atgodd
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RN
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A modified RW gauge

e Restrictions on [ul, [0:£584], [0-£054
e Away from the particle, no restrictions

e A possible vector:

ggld (t,r) = (r— Tp)[[hfim’RW]]e r— 1)

(p,e,t,) = (8.75455,0.764124,80.17)  ({,m) = (2,1)
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Metric perturbation in modified RW gauge

(p, e, t,) = (8.75455,0.764124, 80.17) (£,m) = (2,1)

hi@,MRW b

¢m , MRW
h,

hi_m ¢+ MRW 0,004




Even-parity gauge vector

(p, e, t,) = (8.75455,0.764124, 80.17) (£, m) = (2,2)
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Metric perturbation in modified RW gauge

hi”;_’ MRW 0004

h;/t”.gl MRW 0.00 I . . L L | L L . . I . . . . I . . . . I .

(p, e, tp) = (8.75455,0.764124,80.17)

20

(£, m) = (2,2)

pd

/

p / B
#m , MRW
hrr,




Metric perturbation in modified RW gauge

(p,e,t,) = (8.75455,0.764124, 80.17) (£, m) = (2,2)
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Is this good enough!

e Split gauge transtformation into two steps

— =k _I_
—RW-—L — —RW-—-MRW _‘MRW—>L

_— N\

Remove major discontinuities Smooth enough to ignore
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e Split gauge transtformation into two steps
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Is this good enough?

e Split gauge transtformation into two steps

— =k _|_
—RW-—L — —RW-—-MRW _‘MRW—>L

_— N\

Remove major discontinuities Smooth enough to ignore

e The remaining transformation comes from

EMRW L = PMRW v

/

This is now C"

e But we can do better
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Extending the modified RW gauge

e We demand [0,-h;™™"™] = [0.-h™"]
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Extending the modified RW gauge

e We demand [0,-h;™™"™] = [0.-h™"]

o Therefore [0:0:&m] = [00hy™ ™™ ] — [0,hy™"]
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Extending the modified RW gauge

e We demand [0,-h;™™"™] = [0.-h™"]

N/

We know these

e Therefore [0:0:6504] = [0rhy
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Extending the modified RW gauge

e We demand [0,-h;™™"™] = [0.-h™"]

o Therefore [0:0-655u] = [0, ] — [9:hy™"]

/ ./

Restriction on the gauge vector We know these
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Updated gauge vector. odd-parity

(p,e,t,) = (8.75455,0.764124,80.17)
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Updated gauge vector. even-parity

(p, e, t,) = (8.75455,0.764124, 80.17) (£, m) = (2,2)

0.04
§/m 002+ [
even /

0

0.04 =
seim < B

é‘r,/m 0 /
even




And so on ...

e Jumps in RW amplitudes and jumps in Lorenz
amplitudes yield new restrictions on gauge vector
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And so on ...

e Jumps in RW amplitudes and jumps in Lorenz
amplitudes yield new restrictions on gauge vector

e Will always disagree with Lorenz by:

L _  MRW  o=MRW-—L
Puv = Puv ™ — 223(ufv)

e Modified RW gauge will have the same
discontinuities as Lorenz gauge, to arbitrary
orders of discontinuity
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Where does this leave us’

o SF is well-defined if and only if 0F; is also

e |f vector =* is well-defined, the SF will be also
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Where does this leave us’

o SF is well-defined if and only if 0F; is also

e |f vector =* is well-defined, the SF will be also

—H
e We can make the gauge vector =} pw_,1 @S
smooth as necessary
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Preliminary results

Dissipative SF yields local E and J losses which
agree with fluxes

Working on the conservative SF

- Want same value on both sides of particle
- If not, why not?

Non-radiative modes should follow from a
“Moditied Zerilli gauge”

Solving field equations in Mathematica yields
high (theoretically arbitrary) accuracy
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Conclusions

e Regge-Wheeler gauge is very convenient for
solving the field equations on Schwarzschild

e Local singularities make a “well-defined” selt-
force impossible in this gauge

e (Global gauge transtormations to Lorenz are
possible but difficult

e Modified RW gauge (hopefully) yields a way to
find the self-force with no extra computational
cost
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