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Outline

• Gauge freedom on Schwarzschild

• Infinitesimal gauge transformations

• Lorenz gauge

• Modified Regge-Wheeler gauge
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Gauge freedom

• In GR, gauge freedom is coordinate freedom

• Zeroth order: use Schwarzschild coordinates

• First-order options:

• Lorenz

• Regge-Wheeler

• Modified Regge-Wheeler?
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Lorenz gauge
gµ⌫ = gSchwµ⌫ + pµ⌫
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Lorenz gauge
gµ⌫ = gSchwµ⌫ + pµ⌫

p̄µ⌫ |⌫ = 0⇤p̄µ⌫ + 2R↵µ�⌫ p̄
↵� = �16⇡Tµ⌫ ,
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Lorenz gauge

• 10 coupled wave equations

• Locally isotropic solutions

• Regularization procedure in Lorenz gauge

• Other gauges may be possible ...

gµ⌫ = gSchwµ⌫ + pµ⌫

p̄µ⌫ |⌫ = 0⇤p̄µ⌫ + 2R↵µ�⌫ p̄
↵� = �16⇡Tµ⌫ ,
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Regge-Wheeler gauge

• Schematically:

• Set four components of        to zero

• Field equations simplify greatly:

• Reconstruct metric perturbation:
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RW gauge fields: odd-parity

• Two non-vanishing amplitudes: 
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RW gauge fields: even-parity
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• Four non-vanishing amplitudes: h`m
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tr , h`m
rr , K`m
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Benefits and drawbacks of RW gauge
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• Benefits:

• Simple field equations

• Computationally efficient



Benefits and drawbacks of RW gauge
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• Benefits:

• Simple field equations

• Computationally efficient

• Drawbacks:

• Only valid for radiative modes, 

• Singularities/discontinuities at the particle

• Self-force not well-defined
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A regular, well-defined self-force

9

• Barack and Ori, 2001  
- “Gravitational self force and gauge transformations”
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• Lorenz gauge yields a regular, well-defined SF 
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A regular, well-defined self-force
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• Barack and Ori, 2001  
- “Gravitational self force and gauge transformations”

• Lorenz gauge yields a regular, well-defined SF 
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self
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�
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i• SF transformation with gauge vector     :

(

d2x′α

dτ ′2
+ Γα

µν(x′)
dx′µ

dτ ′
dx′ν

dτ ′

)

=

(

dτ

dτ ′

)2 [

d2x′α

dτ2
+ Γα

µν(x′)
dx′µ

dτ

dx′ν

dτ

]

+
d2τ

dτ ′2
u′α, (5)

where u′α ≡ dx′α/dτ . Recalling that the term in squared brackets is already O(m), we may omit the factor (dτ/τ ′)2 =
1 + O(m), so at the required order we have

F ′α
self = m

(

d2x′α

dτ2
+ Γα

µν(x′)
dx′µ

dτ

dx′ν

dτ

)

+ βu′α,

where β ≡ m d2τ
dτ ′2 . Now, the force F ′α

self must be normal to the worldline (i.e., F ′α
selfu

′
α = 0) by its definition in Eq. (4).

We can therefore calculate it by projecting our last result on the direction normal to the worldline. Noting that the
term βu′α contributes nothing to this projection, we obtain

F ′α
self = m(δα

λ + u′αu′
λ)

(

d2x′λ

dτ2
+ Γλ

µν(x′)
dx′µ

dτ

dx′ν

dτ

)

.

Rewriting Fα
self in the same form but with all primes omitted, and subtracting it from F ′α

self [evaluated at x′(x)], we
find at order m2

δFα
self = m(δα

λ + uαuλ)
(

q′λ − qλ
)

,

where

q′λ ≡
d2x′λ

dτ2
+ Γλ

µν(x′)
dx′µ

dτ

dx′ν

dτ

and qλ is the same but with all primes omitted. [The term proportional to u′αu′
λ − uαuλ does not contribute at the

relevant order, because it is itself proportional to ξµ, and qλ and q′λ are both O(m).] All we now need is to calculate
q′λ − qλ to leading order in ξµ [expanding Γλ

µν(x′) about xµ to leading order in ξµ]. This is a standard calculation (it
is often done when constructing the Jacobi equation for geodesic deviation), and one finds

q′λ − qλ = −
(

ξ̈λ + Rλ
µανuµξαuν

)

,

where an overdot denotes a covariant differentiation with respect to τ and Rλ
µαν is the Riemann tensor associated

with the background metric.3 Now, the term uαuλ in the above projection operator yields vanishing contribution
when applied to the term including the Riemann tensor, due to the antisymmetry of the latter. Therefore, the final
result is

δFα
self = −m

[

(

gαλ + uαuλ
)

ξ̈λ + Rα
µλνuµξλuν

]

. (6)

(Since the calculation is carried out here at order m2 only, in the last expression we may replace g by g0.)
The important message that arises from our discussion so far, is that the gravitational self force is a gauge-dependent

notion. Specifying Fα
self(τ) by itself tells us almost nothing about the physical self force. In order for the information

on the self force to have physical meaning, one must accompany it by the information on the gauge in which Fα
self

was derived. Putting it in other words: The meaningful description of the gravitational self force must include both
Fα

self and the metric perturbation hαβ. (Obviously, hαβ contains the full information about the gauge.) This is closely
related to a more general feature of general-relativistic kinematics (in the non-perturbative framework): Specifying
the coordinate value of a worldline xµ(τ) tells one almost nothing about the physical nature of this trajectory, unless
one is also given the metric gαβ associated with the coordinates xµ.

A remark should be made here concerning the regularity of the gravitational self force in various gauges. The
construction by MSTQW yields a regular, well-defined, self force in the harmonic gauge. Therefore, in a given gauge
G, the self force will be well defined if and only if δFα

self is well defined. Obviously, if the gauge transformation from
H to G is defined through a perfectly regular vector field ξλ, the force in the G-gauge will be well defined. In most
commonly used gauges, however, the vector field ξλ associated with the transformation from the H-gauge to the

3We use here the convention of Ref. [14] for the Riemann tensor. Notice the different convention used by Mino et al. in [1].
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• If vector      is well-defined, the SF will be also
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First-order gauge transformations
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• Transform from RW to Lorenz gauge:

x

µ
L = x

µ
RW + ⌅µ

RW!L, |⌅µ
RW!L| ⇠ |pµ⌫ | ⌧ |gSchwµ⌫ |



First-order gauge transformations

• Metric perturbation transforms:

pLµ⌫ = pRWµ⌫ � ⌅RW!L
µ|⌫ � ⌅RW!L

⌫|µ
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First-order gauge transformations

• Metric perturbation transforms:

pLµ⌫ = pRWµ⌫ � ⌅RW!L
µ|⌫ � ⌅RW!L

⌫|µ

• Gauge vector satisfies a wave equation:

⇤⌅µ
RW!L = p̄µ⌫RW|⌫
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• Transform from RW to Lorenz gauge:
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µ
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µ
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RW->Lorenz gauge vector: odd-parity

−100

−75

−50

−25

0

25

50

75

100

−1000 −800 −600 −400 −200 0 200 400 600 800 1000 1200 1400 1600 1800 2000
r∗/M

ξ o
("
,m

=
2,
1)

Real

Imaginary

−0.8
−0.6
−0.4
−0.2

0
0.2

0 10 20 30 40 50

−0.02

0

0.02

−1000 −800 −600 −400 −200 0

• Transform the global solution, mode-by-mode

11



Lorenz gauge fields: odd-parity
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Benefits/drawbacks of global gauge transf.
⇤⌅µ

RW!L = p̄µ⌫RW|⌫
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Benefits/drawbacks of global gauge transf.

• Benefits:

• Gives the solution, everywhere in Lorenz gauge

• Gives solution to low-order modes

⇤⌅µ
RW!L = p̄µ⌫RW|⌫
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Benefits/drawbacks of global gauge transf.

• Benefits:

• Gives the solution, everywhere in Lorenz gauge

• Gives solution to low-order modes

⇤⌅µ
RW!L = p̄µ⌫RW|⌫
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• Drawbacks:

• Computationally difficult and expensive

• Discontinuous, extended source terms

• Excessive, if you just want the self-force



A modified RW gauge
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• Gralla, 2011 - Simple gauge transf. to reach 
“parity-regular” gauge



A modified RW gauge

• Split gauge transformation into two steps
⌅µ
RW!L = ⌅µ

RW!MRW + ⌅µ
MRW!L
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A modified RW gauge

• Split gauge transformation into two steps
⌅µ
RW!L = ⌅µ

RW!MRW + ⌅µ
MRW!L

Smooth enough to ignoreRemove major discontinuities
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• Gralla, 2011 - Simple gauge transf. to reach 
“parity-regular” gauge



A modified RW gauge
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• The metric perturbation in MRW gauge is

1
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A modified RW gauge
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• Decompose into spherical harmonics, e.g.

h`m,MRW
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A modified RW gauge
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• We demand
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A modified RW gauge
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• SF is well-defined if and only if         is also

• If vector      is well-defined, the SF will be also

(

d2x′α

dτ ′2
+ Γα

µν(x′)
dx′µ

dτ ′
dx′ν

dτ ′

)

=

(

dτ

dτ ′

)2 [

d2x′α

dτ2
+ Γα

µν(x′)
dx′µ

dτ

dx′ν

dτ

]

+
d2τ

dτ ′2
u′α, (5)

where u′α ≡ dx′α/dτ . Recalling that the term in squared brackets is already O(m), we may omit the factor (dτ/τ ′)2 =
1 + O(m), so at the required order we have

F ′α
self = m

(

d2x′α

dτ2
+ Γα

µν(x′)
dx′µ

dτ

dx′ν

dτ

)

+ βu′α,

where β ≡ m d2τ
dτ ′2 . Now, the force F ′α

self must be normal to the worldline (i.e., F ′α
selfu

′
α = 0) by its definition in Eq. (4).

We can therefore calculate it by projecting our last result on the direction normal to the worldline. Noting that the
term βu′α contributes nothing to this projection, we obtain

F ′α
self = m(δα

λ + u′αu′
λ)

(

d2x′λ

dτ2
+ Γλ

µν(x′)
dx′µ

dτ

dx′ν

dτ

)

.

Rewriting Fα
self in the same form but with all primes omitted, and subtracting it from F ′α

self [evaluated at x′(x)], we
find at order m2

δFα
self = m(δα

λ + uαuλ)
(

q′λ − qλ
)

,

where

q′λ ≡
d2x′λ

dτ2
+ Γλ

µν(x′)
dx′µ

dτ

dx′ν

dτ

and qλ is the same but with all primes omitted. [The term proportional to u′αu′
λ − uαuλ does not contribute at the

relevant order, because it is itself proportional to ξµ, and qλ and q′λ are both O(m).] All we now need is to calculate
q′λ − qλ to leading order in ξµ [expanding Γλ

µν(x′) about xµ to leading order in ξµ]. This is a standard calculation (it
is often done when constructing the Jacobi equation for geodesic deviation), and one finds

q′λ − qλ = −
(

ξ̈λ + Rλ
µανuµξαuν

)

,

where an overdot denotes a covariant differentiation with respect to τ and Rλ
µαν is the Riemann tensor associated

with the background metric.3 Now, the term uαuλ in the above projection operator yields vanishing contribution
when applied to the term including the Riemann tensor, due to the antisymmetry of the latter. Therefore, the final
result is

δFα
self = −m

[

(

gαλ + uαuλ
)

ξ̈λ + Rα
µλνuµξλuν

]

. (6)

(Since the calculation is carried out here at order m2 only, in the last expression we may replace g by g0.)
The important message that arises from our discussion so far, is that the gravitational self force is a gauge-dependent

notion. Specifying Fα
self(τ) by itself tells us almost nothing about the physical self force. In order for the information

on the self force to have physical meaning, one must accompany it by the information on the gauge in which Fα
self

was derived. Putting it in other words: The meaningful description of the gravitational self force must include both
Fα

self and the metric perturbation hαβ. (Obviously, hαβ contains the full information about the gauge.) This is closely
related to a more general feature of general-relativistic kinematics (in the non-perturbative framework): Specifying
the coordinate value of a worldline xµ(τ) tells one almost nothing about the physical nature of this trajectory, unless
one is also given the metric gαβ associated with the coordinates xµ.

A remark should be made here concerning the regularity of the gravitational self force in various gauges. The
construction by MSTQW yields a regular, well-defined, self force in the harmonic gauge. Therefore, in a given gauge
G, the self force will be well defined if and only if δFα

self is well defined. Obviously, if the gauge transformation from
H to G is defined through a perfectly regular vector field ξλ, the force in the G-gauge will be well defined. In most
commonly used gauges, however, the vector field ξλ associated with the transformation from the H-gauge to the

3We use here the convention of Ref. [14] for the Riemann tensor. Notice the different convention used by Mino et al. in [1].
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• SF is well-defined if and only if         is also

• If vector      is well-defined, the SF will be also

(

d2x′α

dτ ′2
+ Γα

µν(x′)
dx′µ

dτ ′
dx′ν

dτ ′

)

=

(

dτ

dτ ′

)2 [

d2x′α

dτ2
+ Γα

µν(x′)
dx′µ

dτ

dx′ν

dτ

]

+
d2τ

dτ ′2
u′α, (5)

where u′α ≡ dx′α/dτ . Recalling that the term in squared brackets is already O(m), we may omit the factor (dτ/τ ′)2 =
1 + O(m), so at the required order we have

F ′α
self = m

(

d2x′α

dτ2
+ Γα

µν(x′)
dx′µ

dτ

dx′ν

dτ

)

+ βu′α,

where β ≡ m d2τ
dτ ′2 . Now, the force F ′α

self must be normal to the worldline (i.e., F ′α
selfu

′
α = 0) by its definition in Eq. (4).

We can therefore calculate it by projecting our last result on the direction normal to the worldline. Noting that the
term βu′α contributes nothing to this projection, we obtain

F ′α
self = m(δα

λ + u′αu′
λ)

(

d2x′λ

dτ2
+ Γλ

µν(x′)
dx′µ

dτ

dx′ν

dτ

)

.

Rewriting Fα
self in the same form but with all primes omitted, and subtracting it from F ′α

self [evaluated at x′(x)], we
find at order m2

δFα
self = m(δα

λ + uαuλ)
(

q′λ − qλ
)

,

where

q′λ ≡
d2x′λ

dτ2
+ Γλ

µν(x′)
dx′µ

dτ

dx′ν

dτ

and qλ is the same but with all primes omitted. [The term proportional to u′αu′
λ − uαuλ does not contribute at the

relevant order, because it is itself proportional to ξµ, and qλ and q′λ are both O(m).] All we now need is to calculate
q′λ − qλ to leading order in ξµ [expanding Γλ

µν(x′) about xµ to leading order in ξµ]. This is a standard calculation (it
is often done when constructing the Jacobi equation for geodesic deviation), and one finds

q′λ − qλ = −
(

ξ̈λ + Rλ
µανuµξαuν

)

,

where an overdot denotes a covariant differentiation with respect to τ and Rλ
µαν is the Riemann tensor associated

with the background metric.3 Now, the term uαuλ in the above projection operator yields vanishing contribution
when applied to the term including the Riemann tensor, due to the antisymmetry of the latter. Therefore, the final
result is

δFα
self = −m

[

(

gαλ + uαuλ
)

ξ̈λ + Rα
µλνuµξλuν

]

. (6)

(Since the calculation is carried out here at order m2 only, in the last expression we may replace g by g0.)
The important message that arises from our discussion so far, is that the gravitational self force is a gauge-dependent

notion. Specifying Fα
self(τ) by itself tells us almost nothing about the physical self force. In order for the information

on the self force to have physical meaning, one must accompany it by the information on the gauge in which Fα
self

was derived. Putting it in other words: The meaningful description of the gravitational self force must include both
Fα

self and the metric perturbation hαβ. (Obviously, hαβ contains the full information about the gauge.) This is closely
related to a more general feature of general-relativistic kinematics (in the non-perturbative framework): Specifying
the coordinate value of a worldline xµ(τ) tells one almost nothing about the physical nature of this trajectory, unless
one is also given the metric gαβ associated with the coordinates xµ.

A remark should be made here concerning the regularity of the gravitational self force in various gauges. The
construction by MSTQW yields a regular, well-defined, self force in the harmonic gauge. Therefore, in a given gauge
G, the self force will be well defined if and only if δFα

self is well defined. Obviously, if the gauge transformation from
H to G is defined through a perfectly regular vector field ξλ, the force in the G-gauge will be well defined. In most
commonly used gauges, however, the vector field ξλ associated with the transformation from the H-gauge to the

3We use here the convention of Ref. [14] for the Riemann tensor. Notice the different convention used by Mino et al. in [1].
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agree with fluxes

• Working on the conservative SF
- Want same value on both sides of particle
- If not, why not?

• Non-radiative modes should follow from a 
“Modified Zerilli gauge”

• Solving field equations in Mathematica yields 
high (theoretically arbitrary) accuracy
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• Regge-Wheeler gauge is very convenient for 

solving the field equations on Schwarzschild

• Local singularities make a “well-defined” self-
force impossible in this gauge

• Global gauge transformations to Lorenz are 
possible but difficult

• Modified RW gauge (hopefully) yields a way to 
find the self-force with no extra computational 
cost
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