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Kerr as an integrable system

Geodesic motion in Kerr has 3 constants of motion E , L, and Q.

• The speci�c energy E .

• The speci�c angular momentum L.

• Carter's constant Q.

• (and technically the invariant mass m.)
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Frequencies as constants of motion

Simpler coordinates on phase space:

ẇr = Υr Υ̇r = 0,

ẇθ = Υθ Υ̇θ = 0,

ẇφ = Υφ Υ̇φ = 0

For Mino time the relation between (Υr ,Υθ,Υφ) and (E , L,Q) is
1-1.



Resonant Orbits Self-force Resonant evolution Sustained resonances

Frequencies as constants of motion

Simpler coordinates on phase space:
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ẇθ = Υθ Υ̇θ = 0,
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Frequency space
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Generic orbits

• Generic orbits ergodicly �ll the
phase plane (invariant torus).

• Orbit is uniquely determined by
constants of motion. (E , L, Q)
or (Υr , Υθ, Υφ)
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Resonant orbits

• Resonant orbits close

• Invariant torus is foliated by
resonant orbits

• Need phase di�erence δ in
addition to constants of motion
to determine orbit.
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Resonance locations
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Include self-force

In the extreme mass ratio limit (η ≡ µ/M << 1) corrections due to
the �nite mass of the object can be added order by order:

~̇w = ~Υ + η~g(~Υ, ~w) + O(η2)

~̇Υ = η ~G (1)(~Υ, ~w) + η2 ~G (2)(~Υ, ~w) + O(η3),

where ~w = (wr ,wθ,wφ), ~Υ = (Υr ,Υθ,Υφ), etc.
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Fourier expand

Focussing on η ~G (1)(~Υ, ~w) we can Fourier expand the dependence
on the phases wr and wθ.

~̇w = ~Υ

~̇Υ = η~v(~Υ) + η
∑
n,m

~k(~Υ) cos(nwr + mwθ) + ~κ(~Υ) sin(nwr + mwθ)
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Generic (non-resonant) orbits

• Inspiral time scale (O(η−1)) is
much longer than orbital time
scale (O(1)).

• Generic (non-resonant) orbits
ergodicly sample the invariant
torus.

• Consequently, the oscillatory
terms average to zero.
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Resonant orbits

• Suppose system evolves through
a resonant orbit with
nΥr + mΥθ = 0.
(Happens generically!)

• Adiabatic approximation fails.

• The nwr + mwθ = 0 harmonics
remain relevant near the
harmonic surface.
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Resonant evolution

Suppose there is just one resonant harmonic. Then the equations
of motion become: [Gair et al. '12]

ẅr = Υ̇r = vr (~Υ) + kr (~Υ) cos(nwr + mwr )

ẅθ = Υ̇θ = vθ(~Υ) + kθ(~Υ) cos(nwr + mwr )

Introduce convenient coordinates (and drop dependence on ~Υ):

ẅ⊥ = v⊥ + k⊥ cos(w⊥)

ẅ‖ = v‖ + k‖ cos(w⊥),

with X⊥ ≡ nXr + mXθ and X‖ ≡ nXr −mXθ.
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k⊥ << v⊥

Solution for late times:

Υ⊥ = ẇ⊥ = tv⊥ +

√
πk⊥√
2|v⊥|

cos(w⊥(0)± π/4) + O(t−1,
k2⊥
v2⊥

)

Υ‖ = ẇ‖ = tv‖ +

√
πk‖√
2|v⊥|

cos(w⊥(0)± π/4) + O(t−1,
k2⊥
v2⊥

)

Constants of motion make a jump of order
√
η across a resonance.

Over the entire inspiral the phases accumulate a correction of order
1/
√
η.
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Υ‖ = ẇ‖ = tv‖ +

√
πk‖√
2|v⊥|

cos(w⊥(0)± π/4) + O(t−1,
k2⊥
v2⊥

)

Constants of motion make a jump of order
√
η across a resonance.

Over the entire inspiral the phases accumulate a correction of order
1/
√
η.



Resonant Orbits Self-force Resonant evolution Sustained resonances

Higher harmonics

Easy to include other harmonic terms

Υ⊥ = tv⊥+
∑
i

√
πk⊥,i√
2i |v⊥|

cos(iw⊥(0)± π/4)+

∑
i

√
πκ⊥,i√
2i |v⊥|

sin(iw⊥(0)± π/4) + O(t−1,
k2⊥
v2⊥

)

Υ‖ = tv‖+
∑
i

√
πk‖,i√
2i |v⊥|

cos(iw⊥(0)± π/4)+

∑
i

√
πκ‖,i√
2i |v⊥|

sin(iw⊥(0)± π/4) + O(t−1,
k2⊥
v2⊥

)

Dissipative and conservative terms appear on same footing.
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Large k⊥

The equation of motion

ẅ⊥ = v⊥ + k⊥ cos(w⊥)

Allows a �rst integral:

1
2

(ẇ⊥)2 = v⊥w⊥ + k⊥ sinw⊥ + ẇ⊥(0)
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Potential

• If k⊥ < v⊥ the potential is
monotonic.

• If k⊥ > v⊥ the potential has
local minima. Sustained
resonances.
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Phase portrait
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Do sustained resonances occur?

• Not generically. k⊥ is typically much smaller than v⊥.

• e.g. [Flanagan, Hughes Ruangrsi, '12] �nd variations no larger
than a few tenth of percent.

• Most likely to occur for low order resonance (e.g. 2:3).



Resonant Orbits Self-force Resonant evolution Sustained resonances

Do sustained resonances occur?

• Not generically. k⊥ is typically much smaller than v⊥.

• e.g. [Flanagan, Hughes Ruangrsi, '12] �nd variations no larger
than a few tenth of percent.

• Most likely to occur for low order resonance (e.g. 2:3).



Resonant Orbits Self-force Resonant evolution Sustained resonances

Do sustained resonances occur?

• Not generically. k⊥ is typically much smaller than v⊥.

• e.g. [Flanagan, Hughes Ruangrsi, '12] �nd variations no larger
than a few tenth of percent.

• Most likely to occur for low order resonance (e.g. 2:3).



Resonant Orbits Self-force Resonant evolution Sustained resonances

Thank You

... and that all I have to say about that.
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