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Kerr as an integrable system

Geodesic motion in Kerr has 3 constants of motion E, L, and Q.

The specific energy E.

The specific angular momentum L.

Carter's constant Q.

(and technically the invariant mass m.)
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Resonant Orbits

Frequencies as constants of motion

Simpler coordinates on phase space:

wy =", T, =0,
wy = Ty T9:07
Wy =Ty Ty=0

For Mino time the relation between (T,, Ty, Ty) and (E, L, Q) is
1-1.
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Generic orbits
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Resonant orbits
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e Resonant orbits close 4

e Invariant torus is foliated by
resonant orbits

Wy
)

e Need phase difference 4 in
addition to constants of motion
to determine orbit.
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Resonant Orbits

Resonance locations




Self-force
Include self-force

In the extreme mass ratio limit (n = u/M << 1) corrections due to
the finite mass of the object can be added order by order:

—

where W = (w,, wyp, wy), T = (T,, Ty, Ty), etc.



Self-force

Fourier expand

Focussing on nG M (T, w) we can Fourier expand the dependence
on the phases w, and wy.

T

w
T = )+ nz ) cos(nw, + mwg) + 7(T) sin(nw, + mw)
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Resonant orbits
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e Suppose system evolves through
a resonant orbit with 4
nT,+mTy=0.
(Happens generically!)
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Resonant orbits

N

w

e Suppose system evolves through
a resonant orbit with 4
nT,+mTy=0.
(Happens generically!)

Wy
)

e Adiabatic approximation fails.

[

e The nw, + mwy = 0 harmonics
remain relevant near the
harmonic surface.

—
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Resonant evolution

Suppose there is just one resonant harmonic. Then the equations
of motion become: [Gair et al. "12]

iy = Tr = v (T) + ke (T) cos(nw, + mw,)

=t

wy = Tg = vp(T) + kg(T) cos(nw, + mw,)
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Resonant evolution

Suppose there is just one resonant harmonic. Then the equations
of motion become: [Gair et al. "12]

=t

) + ke (T) cos(nw, + mw,)

wy = Tg = vp(T) + kg(T) cos(nw, + mw,)

w,="T, = Ve (

Introduce convenient coordinates (and drop dependence on 'T")

w, = vy + ki cos(wy)

W|| =V + kH COS(WL),

with X| = nX; + mXy and X = nX, — mXy.



Resonant evolution
k <<v,

Solution for late times:

vk
V2|vi|
p

k 2
T” = W|| = tV” + ﬁ I COS(WL(O) :|:7T/4) + O(t_l, 7J2')

V2|vi| 'L

cos(w, (0) & 7/4) + O(t72, %)

TJ_:V.VJ_:tVJ_—i_




Resonant evolution

Solution for late times:

VTkL
V2lv|
k2

k
T = iy =y + cos(w_ (0) £ m/4) + O(t ™", )

V2|vi|

Constants of motion make a jump of order /7 across a resonance.
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Resonant evolution

Solution for late times:

vk
V2|vi|
p

k 2
T =y =ty + vk cos(w, (0) £ m/4) + O(t ™, g)

V2lvL | v

Constants of motion make a jump of order /7 across a resonance.
Over the entire inspiral the phases accumulate a correction of order

1/,/7.

cos(w, (0) & 7/4) + O(t72, %)

TJ_:V.VJ_:tVJ_—i_




Resonant evolution
Higher harmonics

Easy to include other harmonic terms

\/7L/
tv—i—g COSIW 0)xn/4)+

Zm

7TkH

= tv+
I Zm

Z \/\/;Tsm iw, (0) +7/4) + O(t71, %)

2
sin(iw, (0) £ 7/4) + O(t™ ,k—é)
Vi

cos(iw, (0) + w/4)+




Resonant evolution

Higher harmonics

Easy to include other harmonic terms

TJ_—tVJ_—‘FZ VL, cos(iwy (0) £ w/4)+

\/2i|vy |

2
)£ 7/4) + Ot L, 5
stm iw, (0) £ m/4) (t Vi)

7TkH
= ty+ Z m

Z \/\/;Tsm iw, (0) +7/4) + O(t71, %)

Dissipative and conservative terms appear on same footing.

cos(iw, (0) + w/4)+



Sustained resonances

The equation of motion
w, = v, + ky cos(w,)
Allows a first integral:

%(V'VL)2 =viw, + k| sinw + V'VL(O)



Sustained resonances

Potential

o If k| < v, the potential is
monotonic.
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Potential

e If k|, > v, the potential has
local minima. Sustained
‘ resonances.




Sustained resonances

Phase portrait




Sustained resonances

Do sustained resonances occur?

e Not generically. k| is typically much smaller than v, .



Sustained resonances

Do sustained resonances occur?

e e.g. [Flanagan, Hughes Ruangrsi, '12] find variations no larger
than a few tenth of percent.



Sustained resonances

Do sustained resonances occur?

e Most likely to occur for low order resonance (e.g. 2:3).



Sustained resonances

Thank You

. and that all | have to say about that.
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