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Motivation:
Second order
✤ Second order self-force will 

require high accuracy
⇒ Frequency domain.

✤ Spherical harmonic modes at 
first order finite on world line ⇒ 
mode-sum regularization.

✤ Second order, modes diverge 
logarithmically.

✤ At second order need 
derivatives of first order R field.

✤ Avoid computing retarded field 
on world line ⇒ effective source
(Adam’s talk).

FIG. 2: Field modes (m = 0, 1, 2, 5) on a constant time slice (at t = t
max

) for circular orbits at r
0

= 10M , for
a range of Kerr parameters (a/M = �0.9,�0.5, 0, 0.5, 0.9). The left plots show field modes at fixed ✓ = ⇡/2
and the right plots show field modes at fixed r = r

0

. Inside the worldtube we show both the residual field
 ̂m

R (forming the ‘trough’) and the full retarded field  ̂m, which is divergent on the worldline. We note that
the rotation rate a/M has only a subtle e↵ect on the field profile.

three slices: (i) t = t
max

, ✓ = ⇡/2, i.e., in the equatorial plane, (ii) t = t
max

, r⇤ = r⇤0, i.e., from
pole to pole, crossing the worldline, and (iii) r⇤ = r⇤0, ✓ = ⇡/2, i.e., along the worldline.

Fig. 2 shows typical m-mode contributions to the field along the constant-t slices (i) and (ii),
for an orbit at r

0

= 10M and a range of Kerr parameters a. The worldtube is visible as a central
‘trough’; inside the tube, we show both the residual  ̂m

R and the full field  ̂m (which diverges
logarithmically as r ! r

0

, ✓ ! ⇡/2). These plots are similar to those for the Schwarzschild
implementation (see Fig. 4 in Paper I). We note that the e↵ect of black hole rotation upon the
field mode profiles is quite subtle, although it has a more profound e↵ect on the SF.

Figure 3 shows plots of  ̂m
R, Fm

r and Fm
� as functions of t on the worldline [i.e., on slice (iii)],

for runs with r
0

= 10M , a = 0.5M and modes m = 0, 2, 4 and 6. After an initial burst of
junk radiation (due to imperfect initial conditions, Sec. IVC), the modal quantities settle towards
steady-state values. Visible in the figures are two types of transients: Initially, there are regular
high-frequency oscillations (for m 6= 0) which may be identified as quasi-normal ringing (indeed,the
ringing frequency is proportional to m as expected, and the exponential decay rate of the ringing
seems roughly independent of m, also as expected). At later times the modes exhibit a second type
of transient behavior: a power-law decay with an m-dependent exponent. In Paper I (Sec. IVA5
with, e.g., Fig. 10) we explored this power-low behavior in some detail, and demonstrated that, by
fitting the decay of the field with an asymptotic model, we can extrapolate to t ! 1 to extract a
steady-state value. We implement the same method here.
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Motivation:
First order
✤ Assessing the “geodesic” self-

force approximation in orbital 
evolution appears to require 
higher accuracy than feasible 
with current 3+1D codes.
(Niels’ talk)

✤ One option: evolve 1+1D time 
domain system.

✤ Main complication is deriving 
analytic expression for effective 
source in 1+1D - identical 
calculation as for frequency 
domain effective source. 
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Other benefits

✤ Equivalence of world tube and 
window function approaches to 
effective source.

✤ Recover standard mode-sum 
scheme in the limit of a zero-
width effective source.

✤ Regularization parameters for 
tensor harmonic modes - avoid 
tensor/scalar re-expansion
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✤ Basic idea: use approximation to Detweiler-Whiting singular field,     , to 
derive an evolution equation for approximation to the regular field,   .
[Barack and Golbourn (2007), Detweiler and Vega (2008)]

✤ No distributional sources and no singular fields. Motion purely determined 
by     . 

Effective source approach

�R
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✤ Seff is typically finite, but of limited
differentiability on the world line.

✤ Typically solve for        in time domain
using 3+1D or 2+1D m-mode.

✤ Potentially more accuracy using 1+1D
or 1D frequency domain because:

✤ Extra mode decomposition smoothens out the source.

✤ Lower dimensionality is generally more accurate to numerically solve.

✤ Both 1+1D and frequency domain require l,m modes of singular field.

✤ Desirable to have this mode decomposition analytically.

Effective source approach

�R



✤ Decompose Detweiler-Whiting singular field into spherical harmonic 
and Fourier modes (circular orbit ⇒ Fourier decomposition trivial 
since ω = m 𝛺)

✤ Decomposition analytic with methods from mode-sum regularization.
✤ In a coordinate system where the world line is on the north pole

Worked example - scalar, circular
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✤ Spherical harmonic modes in unrotated coordinate system (where 
particle is on an equatorial orbit) obtained by rotating using Wigner-D 
symbol

✤ Effective source obtained by applying wave operator to singular field.
✤ Additional complexity relative to standard Barack-Ori mode sum 

scheme:
✤ Need decomposition for Δr ≠ 0.
✤ Need to be careful to take account of time dependence of rotation.
✤ Second t-derivatives in wave operator mean we need m’ ≤ 2 modes.

Worked example - scalar, circular

�S
lm =

X̀

m0=�`

�S
lm0D`

mm0(0,⇡/2,⌦t)



✤ Standard mode-sum frequency domain approach:

✤ Find solutions to homogeneous equation which satisfy outgoing 
boundary conditions on horizon and at  in(inity, respectively.

✤ Construct inhomogeneous solutions by matching on the world line

where W is the Wronskian of the homogeneous solutions.

Worked example - scalar, circular
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✤ Effective source in frequency domain:

✤ Find solutions to homogeneous equation which satisfy outgoing 
boundary conditions on horizon and at  in(inity, respectively.

✤ Construct inhomogeneous solutions using variation of parameters

where W is the Wronskian of the homogeneous solutions.

Worked example - scalar, circular
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Worked example - scalar, circular
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Window function
✤ Multiply the singular field by a 

function which is 1 at the 
particle and goes to 0 far away

World tube
✤ World tube around the particle.
✤ Inside solve for the R field, 

outside solve for retarded field.
✤ On the world tube boundary, 

apply the boundary condition

Window function - world tube 
equivalence
✤ Detweiler-Whiting singular field defined through a Hadamard form 

Green function which is not defined globally.
✤ Need to introduce a method for restricting the singular field to a 

region near the particle. Two common approaches:

⇤�R = �⇤(W�S)

�ret = �S + �R



Window function - world tube 
equivalence
✤ Both approaches can be shown to be equivalent in frequency domain 

by choosing a Heaviside distribution as the window function
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Window function - world tube 
equivalence
✤ Effective source splits into two terms, one coming from the interior of 

the puncture region and the other from the boundary of the puncture

where
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Window function - world tube 
equivalence
✤ Integrating the δ-function terms analytically, we find that the scaling 

coefficients are equivalent to world tube jumps
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Relation to mode-sum scheme
✤ Taking the limit of the world tube width to a point, i.e. a ➝ r0, b ➝ r0, 

we recover the familiar Barack-Ori mode sum regularization method.
✤ Effective source turns into jumps on the world line

✤ Recover standard mode-sum matching condition

“Regularization parameters” and regularized field
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First order gravitational case
✤ Proceeds in exactly the same way apart from technical details (m ≤ 2, 

tensor harmonics, monopole, etc.)
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First order gravitational case

✤ Work-in-progress (80% complete)
✤ Done so far:

✤ All modes for “scalar” components: h(1), h(3), h(6)

✤ h(4) obtained from gauge conditions
✤ h(2) zero, h(9), h(5) already regular (sourceless) in circular orbits case
✤ Monopole with zero-width world tube

✤ To do:
✤ “vector” and “tensor”: h(7), h(8), h(10) - some factors missing
✤ Check computed self-force, h.u.u
✤ Monopole with extended world tube



Conclusions

✤ Applied effective source approach in frequency domain (and 1+1D).
✤ Obtained agreement with mode-sum calculations mode-by-mode to 

round-off (or better).
✤ Regularization of individual l,m modes including arbitrary number of 

derivatives.
✤ Complete calculation for scalar, “almost” done gravity.
✤ Tensor harmonic regularization parameters obtained by setting Δr=0.
✤ To do

✤ Extension to second order - straightforward, but technical
✤ Use in 1+1D evolution to assess “geodesic” approximation


