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Motivation:

Second order
* Second order self-force will 032
require high accuracy £ 031
= Frequency domain. .
* Spherical harmonic modes at 029
first order finite on world line = 028

mode-sum regularization.

* Second order, modes diverge
logarithmically.

* At second order need .7
derivatives of first order R field. | = |

* Avoid computing retarded field of

on world line = effective source
(Adam’s talk).
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Motivation:
First order

* Assessing the “geodesic” self-
force approximation in orbital
evolution appears to require
higher accuracy than feasible
with current 3+1D codes.

(Niels” talk)

* One option: evolve 1+1D time
domain system.

* Main complication is deriving
analytic expression for effective

source in 1+1D - identical
calculation as for frequency
domain effective source.

Eccentricity

0.105

0.100

0.080
0075

00700 |-
6

0.095"
0.090

0085

Semilatus rectum (M)

10



Motivation:
First order
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Other benefits

E EqU1va1ence Of World tUbe and Even sector tensor harmonic regularization

window function approaches to P —

effective source.
0.1

+ Recover standard mode-sum
scheme in the limit of a zero-
width effective source. 107

0.001:
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* Regularizati f
egularization parameters tor f

tensor harmonic modes - avoid S

tensor/scalar re-expansion :



Effective source approach

+ Basic 1dea: use approximation to Detweiler-Whiting singular field, P>, to

derive an evolution equation for approximation to the regular field, ®%
[Barack and Golbourn (2007), Detweiler and Vega (2008)]
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+ No distributional sources and no singular fields. Motion purely determined
by o8




Effective source approach

+ Sefr 18 typically finite, but of limited
differentiability on the world line.

+ Typically solve for ®" in time domain
using 3+1D or 2+ 1D m-mode.

+ Potentially more accuracy using 1+1D

or 1D frequency domain because:

+ Extra mode decomposition smoothens out the source.
+ Lower dimensionality 1s generally more accurate to numerically solve.
+ Both 1+1D and frequency domain require /,m modes of singular field.

+ Desirable to have this mode decomposition analytically.



Worked example - scalar, circular

* Decompose Detweiler-Whiting singular field into spherical harmonic
and Fourier modes (circular orbit = Fourier decomposition trivial
since w = m {))
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* Decomposition analytic with methods from mode-sum regularization.

* In a coordinate system where the world line is on the north pole
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Worked example - scalar, circular

* Spherical harmonic modes in unrotated coordinate system (where
particle is on an equatorial orbit) obtained by rotating using Wigner-D

symbol
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* Effective source obtained by applying wave operator to singular field.

* Additional complexity relative to standard Barack-Ori mode sum

scheme:

* Need decomposition for Ar = 0.

* Need to be careful to take account of time dependence of rotation.

* Second t-derivatives in wave operator mean we need m’ < 2 modes.



Worked example - scalar, circular

* Standard mode-sum frequency domain approach:
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* Find solutions to homogeneous equation which satisfy outgoing
boundary conditions on horizon and at infinity, respectively.
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* Construct inhomogeneous solutions by matching on the world line
b _ ot Grett D
g = o, 0 ol |

where W is the Wronskian of the homogeneous solutions.




Worked example - scalar, circular

* Effective source in frequency domain:
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* Find solutions to homogeneous equation which satisfy outgoing
boundary conditions on horizon and at infinity, respectively.
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* Construct inhomogeneous solutions using variation of parameters
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where W is the Wronskian of the homogeneous solutions.



Worked example - scalar, circular
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Complete calculation done for circular orbits, all [, m modes using
both window function and world tube. Recover correct values for

regular field and self-force on world line.



Window function - world tube
equivalence

* Detweiler-Whiting singular field defined through a Hadamard form
Green function which is not defined globally.

* Need to introduce a method for restricting the singular field to a
region near the particle. Two common approaches:

Window function World tube

* Multiply the singular field bya  * World tube around the particle.

funf.ti;)n ngCh 18 tl a(;( Ehe + Inside solve for the R field,
e L L 5 OSB BO, Ul :a Wy, outside solve for retarded field.
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Window function - world tube
equivalence

* Both approaches can be shown to be equivalent in frequency domain
by choosing a Heaviside distribution as the window function
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Heaviside window function with a=8M, b=11M, r,=10M
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Window function - world tube
equivalence

+ Effective source splits into two terms, one coming from the interior of
the puncture region and the other from the boundary of the puncture

S5l = Oy (Wel,) = 81,1() + 55, |
where DL
d*®L  2(r—M)d®, 1 /(2% I(+1)

1 lm lm P
== - G5 (5 ) o
6B _ _ [5’ () +0" (—xp) | 2(r — M) (6 (va) — 5(%))] of _ 2(6(xq) — 0 (xp)) d®;,,

im (b—a)? fr2(b—a) im b—a dr

Y,




Window function - world tube
equivalence

* Integrating the 8-function terms analytically, we find that the scaling
coetficients are equivalent to world tube jumps
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Relation to mode-sum scheme

* Taking the limit of the world tube width to a point, i.e. a = 1o, b — 9,
we recover the familiar Barack-Ori mode sum regularization method.

+ Effective source turns into jumps on the world line
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* Recover standard mode-sum matching condition
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f%_co o +co J ﬁbo—co oF +cp o]




First order gravitational case

* Proceeds in exactly the same way apart from technical details (m < 2,
tensor harmonics, monopole, etc.)
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First order gravitational case
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4 UNDER
CONSTRUCTION

* Work-in-progress (80% complete)

* Done so far:
* All modes for “scalar” components: ht), h®), h®)

* h® obtained from gauge conditions

* h@ zero, h®), h® already regular (sourceless) in circular orbits case
* Monopole with zero-width world tube

+* To do:

+ “yector” and “tensor”: h7), h®®), h(9) - some factors missing
* Check computed self-force, h.u.u

* Monopole with extended world tube



Conclusions

* Applied effective source approach in frequency domain (and 1+1D).

* Obtained agreement with mode-sum calculations mode-by-mode to
round-off (or better).

* Regularization of individual /,m modes including arbitrary number of
derivatives.

* Complete calculation for scalar, “almost” done gravity.
* Tensor harmonic regularization parameters obtained by setting Ar=0.
* Todo

* Extension to second order - straightforward, but technical

* Use in 1+1D evolution to assess “geodesic” approximation



