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The idea

Consider a system:

Composed of two massive, charged spherically symmetric bodies

The body with bigger mass and charge is fixed in the coordinate origin

The bodies are far enough from each other

The other body can be considered as a point charge, and is going to
radiate

Under these assumptions, the radiation reaction force is calculated by
using the weak field limit method and the post-Newtonian potentials
associated with the Reissner-Nordström metric.
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The weak field limit

To know the radiation reaction force of a charged point particle q, that
moves in a weakly curved space-time characterized by a Newtonian, time
independent potential, it is necessary:

1 Find de retarded Green function for the electromagnetic field in a
weakly curved space-time.

2 Evaluate the integral of the tail term over the past word line.

Some of the most important articles about the weak field limit are:

Weak field→


De Witt-De Witt (1964) [2]

Wiseman (2000) [3]
Pfenning and Poisson (2002) [4]


where it is obtained a force composed by a conservative part and other
that represents de radiation reaction force.
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The Weak Field Limit

There are some assumptions considered to use this method:

The force is going to be calculated to first order in the Newtonian
potential (Φ or ψ) .

The particle is gravitationally bounded to the matter distribution

Also, by using the virial theorem, it is supposed that the squared
velocity v2 is of the same order of magnitude of the potential, which
means that the motion is very slow.

Terms that involves Φ2, Φv2, and v4,... are going to be neglected.
The superposition principle is valid under these assumptions.

THIS MEANS THAT IN THE CASE OF A CURVED SPACE-TIME DUE
TO THE MASS AND THE CHARGE WE CAN USE THE
POST-NEWTONIAN POTENTIALS ASSOCIATED TO SUCH
SPACE-TIME
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The Weak Field Limit

Also the space-time must be seen as a perturbation of the flat space-time,
around some potentials that must be:

Newtonian

Time independent

The matter distribution or whatever causes the curvature must be
bounded

At long distances from the mater, the potential → −Mr
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The equations of motion

It is known that the equation of motion for a charged particle is given
by: (Quinn and Wald: [1])

muα
;βu

β = f α
ext +

2
3
e2

m

(
δα

β + u
αuβ

) ·
f β
ext (1)

+
1
3
e2
(
Rα

βu
β + uαRβγu

βuγ
)
+ f α

em ,

where the electromagnetic self-force is:

f α
em = −e2

τ−∫
−∞

(
G α

γ′;β − G α
β;γ′

)
uβuγ′dτ′. (2)

For this method it is assumed that the charged particle is in absence
of any external force, and is in a region without matter, then the
equations of motions are:

muα
;βu

β = f α
em . (3)
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The Reissner-Nordström Space-time

The metric that describes such a system is given by:

ds2 =
(
1− 2M

r
+
Q2

r2

)
dt2 −

(
1− 2M

r
+
Q2

r2

)−1
− dΩ (4)

On the other hand, the temporal component for the metric can be written
as a function of a pair of potentials:

g00 = 1− 2 (φ+ ψ) = 1− 2M
r
+
Q2

r2
= 1+ 2

(
−M
r
+
Q2

2r2

)
(5)

Therefore, the post-Newtonian potentials for the R-N metric are:

φ = −M
r
, ψ =

Q2

2r2
(6)

These potentials fulfill Poisson´s equation and the equality

∇2ψ = ∂2φ

∂t2
+ 4π

(
T 00 + T ii

)
=
Q2

r4
, ∇2φ = 4πρ (7)
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The Weak Field Limit
The space-time

Using these potentials the metric take the form:

ds2 = − (1+ 2 (Φ+ ψ)) dt2 + (1− 2 (Φ+ ψ))
(
dx2 + dy2 + dz2

)
.
(8)

The components of the metric can be written as

gαβ = ηαβ − 2 (Φ+ ψ) χαβ, (9)

where
χαβ ≡ ηαβ + 2tαtβ, (10)

with ηαβ Minkowski’s metric and tα the timelike killing vector
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The Weak Field Limit
The space-time

These are the tensors and scalars related with the metric

Determinant
√
1− 4 (Φ+ ψ)≈ 1− 2 (Φ+ ψ)

Metric tensor g αβ= ηαβ+2 (Φ+ ψ) χαβ

SDC
Γµ

αβ= −χ
µ
α (Φ+ ψ),β−χ

µ
β (Φ+ ψ),α

+χαβ (Φ+ ψ),µ+O
(
Φ2,ψ2,Φψ

)
Riemann Tensor

Rµ
αβγ= −χ

µ
γ (Φ+ ψ),αβ+χ

µ
β (Φ+ ψ),αγ

−χαβ (Φ+ ψ),µγ +χαγ (Φ+ ψ)
,µ
β

Ricci Tensor Rαγ= χαγ� (Φ+ ψ)

Ricci Scalar
R = 2� (Φ+ ψ)

(� (Φ+ ψ) = ηαβ (Φ+ ψ),αβ )

Table 1.Tensors that describe the geometry of the space-time
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The weak field limit
Superposition

By using the superposition principle, it is observed that the total
self-force can be written as

f α = f α
Φ + f

α
ψ . (11)

The part associated with Φ, is the self force found by Pfenning and
Poisson [4],

−→
f Φ = q2

M
r3
r̂ +

2
3
q2
d−→g
dt

(12)

where r̂ =
−→x
r and

−→g = −∇Φ.
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The weak field limit
The field equations

Given the potential Aα, that represents the electromagnetic field and
fulfill the Lorenz Gauge Aα

;α = 0, its field equations are:

gµνAα
;µν − Rα

µA
µ = −4πjα. (13)

In its densitized form, is written as:

E α [A] = −4π
√
−gjα (14)

where,

E α [A] = �Aα + 4ψtµtνAα
,µυ (15)

−2
(

χα
ρψ,υA

ρ,υ + χα
υψ,ρA

ρ,ν − χρυψ,αAρ,υ
)

−
(

χαυψ,ρν + 2χα
ρ�ψ− χυ

ρψ,α υ

)
Aρ.

To solve this equation the Green function is used.
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The Weak field limit
The Green function

The Green functions are obtained by using differential operators over
a pair of functions A (x , x ′) and B (x , x ′) defined as:

Aψ

(
x , x ′

)
=

1
2π

∫
Gflat

(
x , x ′′

)
ψ
(
x ′′
)
Gflat

(
x ′′, x ′

)
d4x ′′, (16)

Bψ

(
x , x ′

)
=

1
2π

∫
Gflat

(
x , x ′′

)
∇2ψ

(
x ′′
)
Gflat

(
x ′′, x ′

)
d4x ′′, (17)

where Gflat (x , x ′) is the retarded Green function for the wave
operator in a flat space-time

Gflat
(
x , x ′

)
=

δ (t − t ′ − |x− x′|)
|x− x′| , (18)

�Gflat
(
x , x ′

)
= −4πδ4

(
x − x ′

)
. (19)
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The Weak Field Limit
The Electromagnetic Green Function

The solution to the field equations (14), in terms of the Green
function are of the form:

Aα (x) =
∫
G α

β′
(
x , x ′

)
j β
′ (
x ′
)√
−g ′d4x ′ (20)

Where G α
β′
(x , x ′) is the solution to the equation

E α
β′ [G ] = −4πδα

β′δ4
(
x − x ′

)
(21)

To find the Green function to firs order in ψ it is written

G α
β′(x , x

′) = Gflat (x , x ′)δα
β′ +

·
G α

ψ β′
(x , x ′) +O

(
ψ2
)

(22)
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The Weak Field Limit
The Electromagnetic Green Function

By using the Green function perturbation in (14), it is obtained

�
·
G α

ψ β′
(x , x ′) = −4ψ∂ttGflat (x , x ′)δ

α
β (23)

+2∇2ψχα
βG

flat (x , x ′)

+2
(

χα
υψ,β + χα

βψ,υ − χβυψ,α
)
Gflat ,υ(x , x ′).

The solution for this equation is:

·
G α

β′
(
x , x ′

)
= − 1

4π

∫
Gflat

(
x , x ′′

)
�
·
G α

ψ β′
(x , x ′)d4x ′′. (24)
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The Weak Field Limit
The Electromagnetic Green Function

By using relations between the derivatives of the functions Aψ and
Bψ, it is written

·
G α

ψ β′
(x , x ′) = −2∂tt ′Aψ(x , x ′)δ

α
β +

(
∂α′

β − ∂α
β′

)
Aψ

(
x , x ′

)
(25)

+2tα
(

∂t ′β − ∂tβ′
)
Aψ

(
x , x ′

)
+2tβ

(
∂α′
t − ∂α

t ′
)
Aψ

(
x , x ′

)
+χα

β

(
4ψGflat

(
x , x ′

)
− 1
2
Bψ

(
x , x ′

))
,

where
4ψ = ψ (x)− ψ

(
x ′
)
. (26)
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The Weak Field Limit
The Electromagnetic Green Function

Or by components:

·
G tψt ′(x , x

′) = −2∂ttAψ(x , x ′) +4ψGflat
(
x , x ′

)
− 1
2
Bψ

(
x , x ′

)
,(27)

·
G tψa′(x , x

′) =
(

∂t
′
a − ∂t a′

)
Aψ

(
x , x ′

)
,

·
G aψt ′(x , x

′) =
(

∂a
′
t − ∂a t ′

)
Aψ

(
x , x ′

)
,

·
G aψb ′(x , x

′) = δa b

(
4ψGflat

(
x , x ′

)
− 2∂tt ′Aψ(x , x ′)−

1
2
B
(
x , x ′

))
+
(

∂a
′
b − ∂a b ′

)
Aψ

(
x , x ′

)
.
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The Weak Field Limit
The Radiation Reaction Force

The self force associated with a charged particle q is:

f α
ψ = −q2

τ−∫
−∞

(
G α

ψ γ′;β − G ;α
ψβγ′

)
uβuγ′

√
1− v ′2dt ′. (28)

By using eq. (22),

f α
ψ = −q2

t∫
−∞

( ·
Gψ

α

γ′,β −
·
Gψ

;α

βγ′

)
uβuγ′dt ′. (29)
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The Weak Field Limit
The Radiation Reaction Force

Or by using the components of the perturbation for the Green
function

f α
ψ = −q2

t∫
−∞

( ·
Gψat ′,t −

·
Gψtt ′,a

)
dt ′ (30)

−q2
t∫
−∞

( ·
Gψa t ′,b −

·
Gψbt ′,a

)
vbdt ′

−q2
t∫
−∞

( ·
Gψab ′,t −

·
Gψtb ′,a

)
vb
′
dt ′.

It is observed that the self-force can be divided in two parts

f α
ψ = f

α
ψA + f

α
ψB . (31)
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The Weak Field Limit
The Radiation Reaction Force

The first part is given by:

f aA = −q2
t∫
−∞

[Aψ,a′tt − Aψ,at ′t − 2Aψ,tt ′a +
(
4ψGflat

)
,a
(32)

+
(
Aψ,a′tb − Aψ,at ′b − Aψ,b ′ta + Aψ,bt ′a

)
vb

+δa b

((
4ψGflat

)
,t
− 2Aψ,tt ′t

)
vb
′

+
(
Aψ,a′bt − Aψ,ab ′t − Aψ,t ′ba + Aψ,tb ′a

)
vb
′
]dt ′.
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The Weak Field Limit
The Radiation Reaction Force

By integrating considering ellipsoidal coordinates, a Taylor series
expansion of Aψ, and the coincidence limit it is obtained

f aψA = q
2
(
−2
3

ψ,ab (x)
)
vb , (33)

or
−→
f ψA = −q2

2
3
d∇ψ

dt
= −q2Q2 1

3
d
dt
∇ 1
r2

(34)

On the other hand, the second part is given by

f aψB = −
1
2
q2

t∫
−∞

(
Bψ,a + Bψ,tv a

)
dt ′. (35)

This part changes when comparing with the contribution for f aφB ,
since in this case the contribution cannot be neglected
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The Weak Field Limit
The Radiation Reaction Force

For the potential ψ, the evaluation of the two point function Bψ gives:

Bψ

(
x , x ′

)
=

2Q2δ (u)

rr ′ (r2+r ′2)2

[
1
12
4 t3 − 5

3
e24 t

]
, (36)

with u ≡ ∆t − r − r ′, and ∆t = t − t ′.
This must be compared with the contribution from φ [4]

Bφ =
M
rr ′

δ (u)→ f aφB = q
2M
r3
r,a (37)
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The Weak Field Limit
The Radiation Reaction Force

The contribution asociated with the integral of the spatial derivative
is given by

1
2
q2

t∫
−∞

Bψ,adt ′ =
1
2
q2
[
1
12

(
r + r ′

)3 − 5
3
e2
(
r + r ′

)]
× (38)

 2Q 2r,av ′r
rr ′2(r 2+r ′2)2

+ 8Q 2r,a
r (r 2+r ′2)3

− 16Q 2r,av ′r
r (r 2+r ′2)3

+ 2Q 2r,aa′r v
′
r

rr ′(r 2+r ′2)2


−Q

2r,a (r + r ′)
2 v ′r

2rr ′ (r2+r ′2)2
+

10Q2r,ae2v ′r
3rr ′ (r2+r ′2)2

+
5Q2r,av ′r

3rr ′ (r2+r ′2)2
(
r ′ − r cos α

) (
r + r ′

)
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The Weak Field Limit
The Radiation Reaction Force

While the contribution considering the integral of the time derivative
is:

1
2
q2

t∫
−∞

Bψ,tv adt ′ =
q2Q2 (r + r ′)2 v a

2rr ′ (r2+r ′2)2
− 10q2Q2e2v a

3rr ′ (r2+r ′2)2
(39)

−q
2Q2 (r + r ′)3 v a

6r2r ′ (r2+r ′2)2
+
10q2Q2e2 (r + r ′) v a

3r2r ′ (r2+r ′2)2

−2q
2Q2 (r + r ′)3 v a

3r ′ (r2+r ′2)3
+
40q2Q2e2 (r + r ′) v a

3r ′ (r2+r ′2)3

+
5Q2 (r + r ′) v a

3r ′ (r2+r ′2)2
− 5Q

2 (r + r ′) v a

3r (r2+r ′2)2
cos α
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The Weak Field Limit
The Radiation Reaction Force

After adding both contributions, integrating, using a Taylor series
expansion over v , and that v ′ = vr +O (a),
r ′ = r (1− 2vr ) +O

(
v2r , a

)
, then the contribution to the self force is:

f aψB =
4Q2q2r,avr

3r4
− Q

2q2r,a
3r4

+
125Q2q2e2r,avr

12r6
+
5Q2q2e2r,a

3r6
(40)

+
5Q2q2r,avr
12r4

cos α− q
2Q2v a

3r4
− 25q

2Q2e2v a

6r6

+
5Q2q2v a

6r4
cos α
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The Weak Field Limit
The Radiation Reaction Force

Approximating the ellipticity as e2 = r 2
8 , and considering that the angle

between x and x′ is very small, and then cos α ∼ 1, it is obtained

f aB =
293Q2q2r,avr

96r4
− Q

2q2r,a
8r4

− q
2Q2v a

48r4
(41)

In its vectorial form, the self-force is

−→
f B =

97Q2q2vr
32r4

r̂ − Q
2q2

8r4
r̂ − q

2Q2

48r3
dr̂
dt

(42)
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The Weak Field limit
The complete electromagnetic self-force

The radiation reaction force that acts over the charged particle q will
be:

−→
f self = q2

M
r3
r̂+

2
3
q2
dg
dt
− 2
3
q2Q2

d∇ 1
r 2

dt
+
97Q2q2vr
32r4

r̂ (43)

−Q
2q2

8r4
r̂ − q

2Q2

48r3
dr̂
dt

The complete equation of motion will be, the Ford- O’Conell equation
in flat space-time given by

m−→a = −→f emext +
2
3
e2

m
d
dt
−→
f emext (44)

plus the gravitational force, and the radiation reaction force
−→
f self .
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The Weak Field limit
The complete electromagnetic self-force

Then the equation of motion is:

m−→a =
−→
f g +

−→
f E +

2
3
q2

m
d
dt
−→
f E + q

2M
r3
r̂ +

2
3
q2
d−→g
dt

(45)

−q2Q2 2
3

d∇ 1
r 2

dt
+
97Q2q2vr
32r4

r̂ − Q
2q2

8r4
r̂ − q

2Q2

48r3
dr̂
dt
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What is next?

Since now we have an expression for the self-force then we will try:

To use the classical orbit for the charge and obtain an approximated
trajectory for the radiating charge
To compare the trajectories for the case of the charged particle in the
Reissner-Nordström space time with or without radiation
To use the mode sum method and compare the results
To compare with the solutions for the Cubic Quintic Duffi ng
Oscillators, since the equations have almost the same form, if it is
considered the change of variable u = 1

r .

Note that the equation for an undamped cubic-quintic Duffi ng
oscillator is:

x ′′ + αx + βx3 + γx5 = 0
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Thank you!

Artist’s impression shows the speedy companion (right) as it races around the pulsar PSR J1311-3430 (left).

(http://www.space.com/18218-fastest-orbiting-pulsar-neutron-star.html)
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