Time-domain solution of gravitational perturbations of Kerr and waveforms from largemass-ratio mergers

S. Bernuzzi TPI-FSU Jena / SFB-TR7 05.06.2014 Caltech 17th Capra

Time-domain 2+1 Teukolsky equation

- Scalar case under control [Krivan+ 1996; Scheel+ 2004; Lehner+ 2004; Dorband+ 2006; Gleiser+ 2008; Tiglio+ 2008; Zenginoglu&Kidder 2010; Zenginoglu+ 2009; Jasiulek 2012; Racz&Toth 2012; ...]
- Gravitational case (|S|=2) only [Krivan+ 1996,1997] (used in [Lopez-Aleman+ 2003, Khanna 2004, Pazos-Avalos&Lousto 2005])
- Time-domain wanted/efficient for specific problems, e.g.
 - Tails
 - Particle sources and generic orbits
 - Large-mass-ratio mergers (our BBH Lab...)
- This talk based on:

[Harms, SB, Bruegmann 2013] [Harms, SB, Nagar, Zenginoglu 2014]

Large-q BBH Lab: EOB + GWs

[Nagar+ 2007, Damour&Nagar 2008]

- Hamiltonian (geodesic) dynamics
- Linear in ν Radiation Reaction (EOB resum waveform)

[Damour+ 2008; Fujita&lyer 2010; Pan+ 2011]

Large-q BBH Lab: EOB + GWs

[Nagar+ 2007, Damour&Nagar 2008]

- Hamiltonian (geodesic) dynamics
- Linear in v Radiation Reaction (EOB resum waveform)

- GW generation algorithm (RWZ/Teukolsky)
- Point-particle sources

[Damour+ 2008; Fujita&lyer 2010; Pan+ 2011]

Nonrotating background results

Nonrotating background results

Hyperboloidal Horizon-penetrating coords

$$t = \tau - h(\rho)$$
, $r = \frac{\rho}{\Omega(\rho)}$
 $\Omega(\rho) = 1 - \frac{\rho}{S}$

$$t - (r + 4M\ln r) \stackrel{!}{=} \tau - (\rho + 4M\ln \rho) \implies h(\rho) = \dots$$

[Moncrief 2000; Zenginoglu 2008, 2010; Racz&Toth 2011; SB+ 2012, Harms+ 2014]

Kerr tails [Harms+ 2013]

• Axisym/nonaxisym tails for various spin fields (incl. s=-2) @ scri and H

ID0, s=-2, a=0.9, l'=2, at $\theta = \pi/2$

- Local power index (LPI) analysis
- Analytics [Barack 1999,2000; Hod 2000; Poisson 2002]

Kerr tails [Harms+ 2013]

- Axisym/nonaxisym tails for various spin fields (incl. s=-2) @ scri and H
- Local power index (LPI) analysis
- Analytics [Barack 1999,2000; Hod 2000; Poisson 2002]

ID0, s=-2, a=0.9, l'=2, at $\theta = \pi/2$

Extreme Kerr tails

- oscillatory slowly-damped behaviour [Yang+ 2013]
- a=l scri ~ I/T [Andersson&Glampedakis 2001, Yang+ 2013]
- a=Ihorizon instability ? [Aretakis 2012; Lucietti&Reall 2012]

EOB "insplunge" trajectories

Multipolar amplitudes

Hierarchy of multipolar amplitudes

Hierarchy of multipolar amplitudes

Newtonian analysis of noncircular effects

QNM excitation

QNM "interference" [SB&Nagar 2010; Barausse+ 2012; Taracchini+ 2014]

 $a \rightarrow -1$ QNM negative frequencies (also [Taracchini+ 2014])

Flux consistency

RR: [Damour+ 2008; Fujita&lyer 2010; Pan+ 2011]

Flux consistency

RR: [Damour+ 2008; Fujita&lyer 2010; Pan+ 2011]

High-PN information exist! [Fujita 2012; Shah 2014] Need to include in the resummed waveform

Consistent flux calculation

Consistent flux calculation

Summary

- Accurate solver 2+1 gravitational (curvature) perturbation
- Key technical point: hyperboloidal coordinates
- Kerr tails for generic spin perturbation
- Large-q BBH Lab:
 - Multipolar amplitudes and QNMs excitation
 - Performances EOB resummed fluxes
 - Horizon-absorbed fluxes (not in this talk)
 - Waveforms extrapolation (not in this talk)
 - Delta discretization (not in this talk)

Gravitational Recoil

Horizon absorption (no spin)

q	$M_A + M_B[M_\odot]$	fmerger [Hz]	\mathcal{A}_{aLIGO}	$\mathcal{A}_{\rm ET}$
10	10 + 100	89.16	0.9999	0.9998
50	10 + 500	17.92	0.9991	0.9995
71.43	1.4 + 100	89.21	0.9991	0.9983
100	1.4 + 140	63.63	0.9992	0.9970

- Dynamics: resummed horizon-absorbed fluxes [Nagar&Akcay 2012]
- Consistency analytical / RWZ absorbed flux beyond LSO
- Significant dephasing, but <u>not</u> relevant for detection
- LO (non-resum) PN flux underestimate effect (< /2)

q	ν	10	Norb	$\Delta \phi_{22}^{\rm LSO}$ [rad]	$\Delta \mathcal{N}^{\rm LSO}$	$\Delta \phi_{22}^{\mathrm{LR}}$ [rad]	$\Delta \mathcal{N}^{LR}$	$\Delta^{1PN}\phi_{22}^{LSO}$ [rad]	$\Delta^{1\mathrm{PN}}\phi^{\mathrm{LR}}_{22}$ [rad]
1	0.250000	15	15	0.003289	0.000523	0.005475	0.000871	0.002849	0.004547
4	0.160000	15	21	0.028725	0.004572	0.104712	0.016665	0.012320	0.020246
10	0.082645	15	38	0.064372	0.010245	0.220496	0.035093	0.052834	0.199428
50	0.019223	15	153	0.312210	0.049690	1.115319	0.177508	0.230220	0.765105
100	0.009803	15	296	0.620662	0.098781	2.217042	0.352853	0.458168	1.549226
1000	0.000998	7	41.2	0.129978	0.020687	1.453992	0.231410		
1002	0.000996	7	40.9	0.129023	0.020535	1.563971	0.248914		

Horizon absorption (spin)

Formalism: [Poisson 2004]

Discrete delta's

Waveform extrapolation

