Wave Tails In
MinkowsKiI
and
de Sitter
space-times

Yi-Zen Chu



Preface

- Embedding: 4D Schwarzschild can be
viewed as a curved surface in 6D Minkowski.

* Question: Can the Green's function of the
graviton wave operator in a Schwarzschild

geometry be computed from its 6D flat

cousin?
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Preface

» Causal structure: In a curved spacetime,
massless particles such as photons and
gravitons do not travel solely on the light cone.
They also propagate inside the light cone of
their sources.

* Nomenclature: This inside-the-light-cone
portion of the physical signal is called the fail.




Retarded Green's Function

» Causal structure of signals produced by
physical sources is encoded in the Green's
function of the appropriate wave operator.

* Interpretation of G: Field at observer location
X, produced by space-time point source at x".
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(3+1)D Causal Structure of
Retarded G
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(Assuming X, X'
Tail propagation linked by unique
geodesic.)
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Motivation

 Extreme-Mass-Ratio-Inspirals (EMRIs): Solar
mass compact objects orbit and subsequently
plunge into super massive (M, >10° M_ ) Kerr

black holes at the center of many galaxies,
producing gravitational waves.

* Testing GR in the strong field regime: These GWs
give detailed information regarding the geometry of
Kerr BH.

 The dynamics of compact object of mass m << M_,,

In a BH geometry needs to be computed accurately
to model GWs from EMRIs. In particular, there is a

tail induced self-force problem.

See, for e.g., E. Poisson, arXiv: gr-qc/0410127



Motivation:
EMRIs Self-Force Problem

e Tail induced

()]

self-force: =

* In curved -
spacetime,

motion of body
at some instant
of time depends
on its own entire
past history.
 Tail of G needs
to be understood

Compact body sweeps

properly. out world tube in space-

time

B.S.DeWitt, R W.Brehme, Annals Phys. 9, 220 (1960).



Motivation: Tails can be non-local
(—t'

e Scalar, vector and
tensor G can be
computed in the weak
field limit of the Kerr
geometry, i.e., by
replacing the BH with
a spinning point mass.

e Up to first order in
mass and spin, the tail ;.-
portion of the graviton
G breaks up into three
distinct groups of
terms, visualized on

i r
the right. !

C.M.DeWitt, B.S.DeWitt,, Physics 1, 3 (1964).
M.J.Pfenning, E.Poisson, Phys. Rev. D 65, 084001 (2002) [gr-¢€/0012057]
Y.Z.C., G.D.Starkman, Phys. Rev. D 84, 124020 (2011), [arXiv:1108.1825 [astro-ph.CO]].




Causal structure from embedding

Two Examples

* In odd dimensional flat spacetime,
massless particles do not propagate strictly on
the light cone.

Embed d-Minkowski in (d+1)-Minkowski.
No massless tails in even d > 2.

» Study causal structure of waves in de Sitter
by embedding it in one higher dimensional
Minkowski.




G from Embedding: Minkowski

* Line “charge” in D=d+1 sources G in D=d.

« 2 different charge densities from solutions to 2"
| t DE: 2 2
order eigenvector O (Dy +m ) <y|m >

« Yet yield the same G .
—I—ood x/d — <y|m >
Gy|X — X' :/ dx’dX—Gd+1 X — X]

—+ 00
G,IX — X = / AX""Gyy [X — X]

d-components — 0 (d+1)-components

H. Soodak a d M S. Tiersten, Am. J. Phys. 61 (5), May 1993
Y.-Z.C., arXiv:1305.6933, 1310.2939



G from Embedding: Minkowski

* Line “charge” in even D sources G in odd D.

x|

X @

* Instantaneous line charge

at X° = X,

* Two possible charge
densities give the same G.

Even

H. Soodak and M. S. Tiersten, Am. J. Phys. 61 (5), May 1993
Y.-Z.C., arXiv:1305.6933, 1310.2939



Massless tails in odd D Minkowski
* No tails in even D(=4,6,8,...) Minkowski.

x4 | Odd

:

odak and M. S. Tiersten, Am. J. Phys. 61 (5), May 1993
iV:1305.6933, 1310.2939



Massless tails in odd D Minkowski
* No tails in even D(=4,6,8,...) Minkowski.

odak and M. S. Tiersten, Am. J. Phys. 61 (5), May 1993
iV:1305.6933, 1310.2939




Massless tails in odd D Minkowski
(=4,6,8,...) Minkowski.
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odak and M. S. Tiersten, Am. J. Phys. 61 (5), May 1993
:1305.6933, 1310.2939



G from Embedding: Minkowski

* Recursion relation follows from spatial
translation symmetry:
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H. Soodak and M. S. Tiersten, Am. J. Phys. 61 (5), May 1993
Y.-Z.C., arXiv:1305.6933, 1310.2939




G from Embedding: Minkowski

* G in Minkowski can be generated from d=2,3:
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G from Embedding: Minkowski

* No massless tails for d=4.6,8,...; massless tails
In all odd dimensions:

G [X - X']=0[+(X° - X’O)E 5]

Gl = 5oz (55) O

(X — X'V = Znges (X — XNV (X - X))

g =

1
2

ak and M. S. Tiersten, Am. J. Phys. 61 (5), May 1993
:1305.6933, 1310.2939



G from Embedding: de Sitter

* De Sitter (dS) spacetime in 4D cosmology is
associated with an exponentially expanding
universe, with expansion rate H.

 From embedding perspective d-dim. dS with
Hubble parameter H is defined is a hyperboloid
in (d+1)-dim. Minkowski.
1

Y.-Z.C., arXiv:1305.6933, 1310.2939



G from Embedding: de Sitter

* Foliate ambient (d+1)-Minkowski (outside |.c. of
04) with d-dimensional de Sitter. hyperboloids.

X¥p,7,0) = p (smh[ |, cosh|T|n [9])

- Massive G in dS is sourced by line charge in
(d+1)-Minkowski:

Gd[;v,x’] _ /OOO dp, (H )d23 ]Vi[[?’n/p}}] Gd+1 {X[p _ H_l,a:] B Xl[p’,:t’]}

« Two possible charge densities from 2" order
eigenvector ODE gives the same G

vy :i\/<%>2 (%)2 (Dp + (Pm)Q) <y|(m/H)2>
= (m/H)*(y|(m/H)?)

Y.-Z.C., arXiv:1305.6933, 1310.2939



G from Embedding: de Sitter

X"

* Line “charge” in
(d+1)-Minkowski
sources dS G,

e Two possible

charge densities
give same dS G,

—

X2[p, 7,0 = p (smh[f], cosh[T]ﬁ[Q])

Line “charge”

Y.-Z.C., arXiv:1305.6933, 1310.2939



Causal structure: de Sitter

 Light cone signal at X
entirely due to X'

« X' does not contribute
to the dS tail.

Y.-Z.C., arXiv:1305.6933, 1310.2939



Causal structure: de Sitter

X"

e Tail signal at X due to
rest of the line charge.

Y.-Z.C., arXiv:1305.6933, 1310.2939



Causal structure: de Sitter

 Retarded G in ambient
Minkowski yields
retarded G in de Sitter.

Y.-Z.C., arXiv:1305.6933, 1310.2939



Causal structure: de Sitter

X"

 Massive waves in dS
can be sourced by
either massless or
massive waves in
ambient MinkowskKi.

Y.-Z.C., arXiv:1305.6933, 1310.2939



G from Embedding: de Sitter

» In “closed slicing” parametrization, massive G _
In d-dimensional dS is:
G&Close(ﬂi) [ZC, LC/] _ @[::(T B T/)]gd[ll?, ZE’]

() e

geven d[xa 33/] —
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)G = (X X )

* dS light cone: Z = -1; inside light cone: Z < -1.

» Tail terms can be read off readily.

Y.-Z.C., arXiv:1305.6933, 1310.2939



4D de Sitter Universe

« Massless limit in even D de Sitter leads to a
constant G tail.
g(Ta,ll) [ ] _ W@[—Z — 1] (d — 2)'

even d d d—2 ,4_9
(27'(')2 2 2 (T)'

« TT GWs in 4D spatially flat FLRW obey massless
scalar egn. w.r.t. bg. FLRW metric.

 This may lead to a pseudo-memory effect for TT GWs
in 4D de Sitter universe. (Y-ZC. unpublished)

gudztdz” = a?[n] (nwdx“dxy + D,gT)dxidxj)




4D de Sitter Universe

* TT GWs in 4D spatially flat SR

0.15
FLRW obey massless scalar |
eqn. w.r.t. bg. FLRW metric. .
» This may lead to a pseudo-  Sowf/f
memory effect for TT GWs in E-o.osf;/ \/ v &
4D de Sitter universe. ool I | B
[ vl O=m2 ]
« Asymptotics: at late times, n, "L . R
suffers a permanent “DC” shift =~ om
proportional to spacetime ooy A Xivt oo sens e Srav: a7 osaose

volume integral of T (7.

gudztdzr” = a”[n] (nwdaﬁ“dx” — D,L(J-TT)dxidxj)



Schwarzschild G From 6D Flat G?

e Heuristics

* |s there a (probably 2D) source that the 6D
Minkowski experimentalists could set up, to fool
the observers living in 4D Schwarzschild
spacetime that they are detecting the field of a
point source at x'in their world?
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