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MST Formalism

MST Approach for Homogeneous Teukolsky Solutions

o “Mano-Suzuki-Takasugi” (1996) — semi-analytic formalism for
obtaining homogeneous solutions to the Teukolsky equation

@ Solutions Ri,, Ryp given as expansions in hypergeometric functions

o Expansion coefficients depend on numerically-determined
“renormalized angular momentum” v
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MST Formalism

MST Approach for Homogeneous Teukolsky Solutions

e Ingoing solution given in series of ordinary hypergeometric functions:
RY (a:) :eienz(_x)fsfi(e+r)/2(1 _ m)i(i*T)/Q

o0
X E aloFi(in+v+1—ir,—n—v—ir;l—s—ie—1ir;z)

n=—oo
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e Ingoing solution given in series of ordinary hypergeometric functions:
RY (a:) :eienz(_x)fsfi(e+r)/2(1 _ m)i(i*T)/Q

o0
X E aloFi(in+v+1—ir,—n—v—ir;l—s—ie—1ir;z)

n=—oo

o Upgoing solution given in series of confluent hypergeometric functions:

Rzp(z) :2Ve—7ree—i7r(u+l+8)eizzu-l-i(s-l-‘r)/?(z _ m)—s—i(e+7)/2

= (w145 —ie),
X " by (22)"
Z v (V+1—S+i€)n n( Z)

n=—oo

XUn+v+1+s—ie2n+ 2v+2;—2iz)
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MST Formalism

MST Approach for Homogeneous Teukolsky Solutions

e Ingoing solution given in series of ordinary hypergeometric functions:
RY (a:) :eienz(_x)fsfi(e+r)/2(1 _ m)i(i*T)/Q

o0
X E aloFi(in+v+1—ir,—n—v—ir;l—s—ie—1ir;z)

n=—oo

o Upgoing solution given in series of confluent hypergeometric functions:

Rzp(z) :2Ve—7ree—i7r(u+l+8)eizzu-l-i(s-l-‘r)/?(z _ m)—s—i(e+7)/2

= (w145 —ie),
X " by (22)"
Z v (V+1—S+i€)n n( Z)

n=—oo

XUn+v+1+s—ie2n+ 2v+2;—2iz)

@ See Sasaki/Tagoshi (2003/2006)
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MST Formalism

Renormalized Angular Momentum v

e {a,}’s and {b,}’s chosen to satisfy same recurrence relation
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e {a,}’s and {b,}’s chosen to satisfy same recurrence relation

o v determined by requiring that series converge, gives minimal solution
of recurrence relation
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MST Formalism

Renormalized Angular Momentum v

e {a,}’s and {b,}’s chosen to satisfy same recurrence relation

o v determined by requiring that series converge, gives minimal solution
of recurrence relation

o In practice, v found as numeric root of a continued fraction equation
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MST Formalism

Renormalized Angular Momentum v

{an}’s and {b,}’s chosen to satisfy same recurrence relation

v determined by requiring that series converge, gives minimal solution
of recurrence relation

In practice, v found as numeric root of a continued fraction equation

@ v can become complex above w ~ 0.36
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MST Formalism

Renormalized Angular Momentum v

{an}’s and {b,}’s chosen to satisfy same recurrence relation

v determined by requiring that series converge, gives minimal solution
of recurrence relation

In practice, v found as numeric root of a continued fraction equation

@ v can become complex above w ~ 0.36

Low-frequency expansion: v = £ + caw? + cqw? + cew® + O(w®) + - -
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MST Formalism

Transformations to Regge-Wheeler /Zerilli Variables

o Chandrasekhar Transformation (1975) yields odd-parity
Regge-Wheeler solution from Teukolsky variable:
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MST Formalism

Transformations to Regge-Wheeler /Zerilli Variables

o Chandrasekhar Transformation (1975) yields odd-parity
Regge-Wheeler solution from Teukolsky variable:

o Further transformation to obtain Zerilli (even-parity) solution:

|:>‘(>‘ + ) %Bfl\/f]] me + 3Mf dX[mw

[AA+1) = ZiwM]

Z
Xémw =
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MST Formalism

Advantages of Regge-Wheeler /Zerilli Formalism

o Wave equations with short-range potential:

[—@2 +07 — V| U (t,m) = Sem(t,7)
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MST Formalism

Advantages of Regge-Wheeler /Zerilli Formalism

o Wave equations with short-range potential:

[—@2 +07 — V| U (t,m) = Sem(t,7)

o For £+ m even, we use Zerilli-Moncrief (ZM) variable and source
term, and for ¢ +m odd we use Cunningham-Price-Moncrief (CPM)
variable/source
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MST Formalism

Advantages of Regge-Wheeler /Zerilli Formalism

o Wave equations with short-range potential:

[—@2 +07 — V| U (t,m) = Sem(t,7)

o For £+ m even, we use Zerilli-Moncrief (ZM) variable and source
term, and for ¢ +m odd we use Cunningham-Price-Moncrief (CPM)
variable/source

e Experience with extended homogeneous solutions (EHS) method for
eccentric orbits (Hopper & Evans 2010, due to Barack, Ori, and Sago
2008)
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MST Formalism

Advantages of Regge-Wheeler /Zerilli Formalism

o Wave equations with short-range potential:

[—@2 +07 — V| U (t,m) = Sem(t,7)

o For £+ m even, we use Zerilli-Moncrief (ZM) variable and source
term, and for ¢ +m odd we use Cunningham-Price-Moncrief (CPM)
variable/source

e Experience with extended homogeneous solutions (EHS) method for
eccentric orbits (Hopper & Evans 2010, due to Barack, Ori, and Sago
2008)

o Substantial group infrastructure available for metric perturbations in
RWZ
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MST Formalism

Fourier Harmonic Decomposition

e Frequency domain (FD) decomposition of ¥:

\:[Ifm t 7“ E len ~iwmnt
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MST Formalism

Fourier Harmonic Decomposition

e Frequency domain (FD) decomposition of ¥:

\:[Ifm t 7“ E len ~iwmnt

o FD solutions have leading wave behavior at horizon and infinity:

+
Xfmn

(re = £o00) = AE eFiwmnrs

emn©
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MST Formalism

Fourier Harmonic Decomposition

e Frequency domain (FD) decomposition of ¥:

\:[Ifm t 7“ E len ~iwmnt

o FD solutions have leading wave behavior at horizon and infinity:

X:l:

Imn

(re = £o00) = AE eFiwmnrs

emn©

e For convenience, we divide off asymptotic amplitudes A¥ to obtain
X’s, which are normalized to unity asymptotically
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Tests / Circular Orbits

Particular Solution from EHS

e Use X'’s to define

\Ilztm(t, r)= Z C’étmn)zfmn(r)e%“’m"t

where

1 Tmax 1 R
CE. = / dr——XJ . (1) Zomn (r
Imn Wémn f(T’) lmn( ) 14 ( )

Tmin
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Tests / Circular Orbits

Particular Solution from EHS

e Use X'’s to define

\Ilztm(t, r)= Z C’étmn)zfmn(r)e%“’m"t

where

1 Tmax 1 R
CE. = / dr——XJ . (1) Zomn (r
Imn Wémn f(T’) lmn( ) 14 ( )

Tmin

e Then particular solution to TD equation is abutment of ¥*s:

Yo (t,7) = \I/Zm(t, r)0(r —rp) + Uy, (¢, 7)8(rp — 1)

(method of EHS)
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cular Orbits

Circular Orbits as Test Case

e For circular orbits, only one frequency contributes

\I/ztm (t7 T) = CétmOXZimO (r)eiimQ(i)t
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Tests / Circular Orbits

Circular Orbits as Test Case

e For circular orbits, only one frequency contributes

\I/ztm (t7 T) = CétmOXZimO (r)eiimQ(i)t

o Normalization coefficients are found algebraically:

ot — % {_ (G + fj‘}éF) XF(r,) + Z@Xﬂ%)

where F' and G are “fully-evaluated” source terms:
Sem(t,7) = Gem ()6(r — rp) + Fomn (£)0' (r — 1)

evaluated at ¢t = ¢, = 0
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Tests / Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

o Radiated energy fluxes given by

ey = L EFDL 0 20k 2

Im

© 64m (0 —2)!
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Tests / Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

o Radiated energy fluxes given by

1 (£+2 O |ok |
647 (¢ —

() = o

Im

o Flux given to 5.5PN relative order in e.g. Sasaki and Tagoshi

(2003,/2006):
o 32uMP 1247 32 MT11 5 8191 5
B 1- 4 et
(E7) =52 { 336 * o2 * T o2 "
6648739519 1712 16 3424 1712, N g
69854400 105 ' ' 3 105 210

+...+(...)$11/2]

x = (MQy)*?
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Tests / Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

e Numerically compute flux to very high order for, say, r, = 10'°:
(E) = 6.399999997 - - - x 10~50

Capra 17, California Institute of Technology



Tests / Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

e Numerically compute flux to very high order for, say, r, = 10'°:
(E) = 6.399999997 - - - x 10~50

@ Subtract Newtonian term and get residual § = —2.3751577--- x 10777
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Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

e Numerically compute flux to very high order for, say, r, = 10'°:
(E) = 6.399999997 - - - x 10~50

@ Subtract Newtonian term and get residual § = —2.3751577--- x 10777

o Subtract 1PN correction: § = 8.0424456--- x 10~ 64
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Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

e Numerically compute flux to very high order for, say, r, = 10'°:
(E) = 6.399999997 - - - x 10~50

@ Subtract Newtonian term and get residual § = —2.3751577--- x 10777

o Subtract 1PN correction: § = 8.0424456--- x 10~ 64

e Subtract through 5.5PN correction: § = 2.6583024 --- x 1019
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Circular Orbits

Confirmation of Circular Orbit Energy Fluxes

Numerically compute flux to very high order for, say, r, = 10'°:
(E%°) = 6.399999997 - - - x 10750

@ Subtract Newtonian term and get residual § = —2.3751577--- x 10777

Subtract 1PN correction: § = 8.0424456 - - x 10~ %4

Subtract through 5.5PN correction: § = 2.6583024 - -- x 10710°

Agrees to all orders given by Sasaki and Tagoshi, and beyond (see
Shah, 2014)
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Tests / Circular Orbits

Circular Orbits - Conservative Test

o Example: Detweiler’s gauge-invariant redshift quantity
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Tests / Circular Orbits

Circular Orbits - Conservative Test

o Example: Detweiler’s gauge-invariant redshift quantity

@ Defined via

1
AU = -U x (QU%%QRB) =-UxH"
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Tests / Circular Orbits

Circular Orbits - Conservative Test

o Example: Detweiler’s gauge-invariant redshift quantity

@ Defined via

1
AU = -U x (QU%%QRB) =-UxH"

e In practice, directly compute H™' and then regularize to HY

Forseth Capra 17, California Institute of Technology
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Singular structure of field known to go as

D

geive) —p___~
(20 —-1)(20+3)

+03™)
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Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Singular structure of field known to go as

- D
Hsmg(@) — B— O 6_4
ety O
e B known analytically:
rp, —3M 1 M
B= P (=21
r2(ry —2M)* (2’ 2’ ’7«—2M>
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Singular structure of field known to go as

D

Heine() — g _
(2¢—-1)(2¢+3)

+03™)

e B known analytically:

rp —3M 12 M
B=2—-t—""_ R (=21 ——
r2(rp — 2M)* 1(2’2’ ’7«—2M>

e Fit out higher order regularization parameters numerically
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Shah, Friedman, and Whiting (2013) computed to very high order,
determined previously analytic and numeric PN coefficients
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

e Shah, Friedman, and Whiting (2013) computed to very high order
determined previously analytic and numeric PN coefficients

o We computed AU as a code check and compared

Forseth Capra 17, California Institute of Technology
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Analytically known PN terms:

—1 -2 -5 —3872 + 12372 —592384 — 196608y + 1015572 — 393216 log(2
Aav="ti 2R : n Y ‘ 2(2)
Tp ry o 967, 76807y
64 log(rp) —956 log(rp) —13696m ~ —51256 log(r)p) 81077m 27392 log? (1)
515 10518 525165 56717 3675175 52518
825611597  —27016log®(r,)  —117237767 log(r,) = —4027582708 log?(rp)
467775185 220519 55125195 9823275710

991865027 log(rp) 23447552 log?(rp)
1157625r40-5 165375751
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Analytically known PN terms:

—1 -2 -5 —3872 + 12372 —592384 — 196608y + 1015572 — 393216 log(2
Aav="ti 2R : n Y ‘ 2(2)
Tp ry o 967, 76807y
64 log(rp) —956 log(rp) —13696m ~ —51256 log(r)p) 81077m 27392 log? (1)
515 10518 525165 56717 3675175 52518
825611597  —27016log®(r,)  —117237767 log(r,) = —4027582708 log?(rp)
467775185 220519 55125195 9823275710

991865027 log(rp) 23447552 log?(rp)
1157625r40-5 165375751

e We compared numeric result at e.g. 7, = 10'%:
—1.0000000002000000000500000000276879 - - - x 10710
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Detweiler’s Gauge-Invariant Redshift

o Analytically known PN terms:
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Analytically known PN terms:
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

o Analytically known PN terms:

—1 -2 —5 —3872 + 12372 —592384 — 196608~y + 1015572 — 393216 log(2)
AU=—+ —+ 5+ 4 5
Tp ry 64 967, 76807y
64 log(rp) —956 log(rp) —13696m ~ —51256 log(r)p) 81077m 27392 log? (1)
515 10518 525165 56717 3675175 52518
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e We compared numeric result at e.g. 7, = 10'%:
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

e Also exist terms for which numeric coefficients had to be determined:
1 log R log? R log® R
Z Qn Rn+1 + Z ﬁn Rn+1 + Z’y” Rn+1 Z 6 Rn+1
n=>5 n=6 n="7 n=10

with
5 = —243.17681446 - - -

o = —1305.00138 - - -

etc.
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

e Also exist terms for which numeric coefficients had to be determined:
1 log R log? R log® R
Z Qn Rn+1 + Z ﬁn Rn+1 + Z’y” Rn+1 Z 6 Rn+1
n=>5 n=6 n="7 n=10

with
5 = —243.17681446 - - -

o = —1305.00138 - - -

etc.

@ Our numbers agreed with Shah results until we ran out of digits
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Tests / Circular Orbits

Detweiler’s Gauge-Invariant Redshift

e Also exist terms for which numeric coefficients had to be determined:
1 log R log? R log® R
Z Qn Rn+1 + Z ﬁn Rn+1 + Z’y” Rn+1 Z 6 Rn+1
n=>5 n=6 n="7 n=10

with
5 = —243.17681446 - - -

o = —1305.00138 - - -

etc.

@ Our numbers agreed with Shah results until we ran out of digits

o But we aren’t going to do circular orbits any better....
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Eccentric Orbits

Eccentric Orbits - Formalism

o Matching coefficients for {¢mn} FD modes is given by EHS method:

1 Tmax 1 R
Ci. = / dr—X.
tmn Wémn Tmin f(?") fmn

(T)men (T)
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Eccentric Orbits

Eccentric Orbits - Formalism

o Matching coefficients for {¢mn} FD modes is given by EHS method:

1 Tmax 1 4
Ci. = / Ar—— X7 (1) Zomn (7
imn Wémn _ f(?") Zmn( ) 12 ( )

o We found a way to compute these that is consistent with MST
approach
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Eccentric Orbits

Eccentric Orbits - Formalism

o Matching coefficients for {¢mn} FD modes is given by EHS method:

1 Tmax 1 4
Ci. = / Ar—— X7 (1) Zomn (7
imn Wémn _ f(?") Zmn( ) 12 ( )

o We found a way to compute these that is consistent with MST
approach

@ Otherwise numerical integration through source would be
computationally very expensive
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Eccentric Orbits

Eccentric Orbits - Formalism

e We've shown that
1 _ .
Ci _ § Ej: (tk)eanTtk

for
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Eccentric Orbits

Eccentric Orbits - Formalism

e We've shown that

N
1 _ )
+ + inQty
Cémn - NWimn ’; Efmn (tk?)e r

for

e N a number of time samples related to the precision goal, and
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Eccentric Orbits

Eccentric Orbits - Formalism

e We've shown that

N
1 _ )
+ + inQty
Cémn - NWimn ’; Efmn (tk?)e r

for

e N a number of time samples related to the precision goal, and

o
- Gom (t 2M Fiom (t) o Frm(t) 5 ¢
Ez:mn(t) = : ( )Xé:an(TP)—’_ 2 : 2( ) Z:an(,rp)_ : ( )87”X2:an(rp)
fp Tp P fP
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Eccentric Orbits

Sampling the Orbit

o How to determine sampling N?

o Based on ability to Fourier-represent certain orbital quantities (like
dt/dx and hence T).) given a precision goal
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Sampling the

1000
900
800
700
600
500
400
300
200
100

Time Samples N

20 30 40 50 60 70 80 90 100
Precision Goal (Digits)
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Eccentric Orbits

Check on Method with Small p Orbit

o Compared (F>), (E™) with double-precision C code at semi-latus
rectum p = 100

e For the (¢,m) = (2,2) mode and e = 0.01, we have
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Eccentric Orbits

Check on Method with Small p Orbit

o Compared (F>), (E™) with double-precision C code at semi-latus
rectum p = 100

e For the (¢,m) = (2,2) mode and e = 0.01, we have
o MST (Mathematica):

o Infinity: 6.1544215918148796455070763212--- x 10~ 10
o Horizon: 6.6146236438555007217582080571 - - - x 10~ 18
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Eccentric Orbits

Check on Method with Small p Orbit

o Compared (F>), (E™) with double-precision C code at semi-latus
rectum p = 100

e For the (¢,m) = (2,2) mode and e = 0.01, we have

o MST (Mathematica):
o Infinity: 6.1544215918148796455070763212--- x 10~ 10
o Horizon: 6.6146236438555007217582080571 - - - x 10~ 18
e Double-precision (C):
o Infinity: 6.1544215918149001 x 1010
e Horizon: 6.6146236438555875 x 10~18
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Eccentric Orbits

Check on Method with Small p Orbit

o Compared (F>), (E™) with double-precision C code at semi-latus
rectum p = 100

e For the (¢,m) = (2,2) mode and e = 0.01, we have

o MST (Mathematica):

o Infinity: 6.1544215918148796455070763212--- x 10~ 10
o Horizon: 6.6146236438555007217582080571 - - - x 10~ 18

e Double-precision (C):
o Infinity: 6.1544215918149001 x 1010
o Horizon: 6.6146236438555875 x 10718

o Agree as well as we can expect!
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Eccentric Orbits

Check on Method with Small p Orbit

o Compared (F>), (E™) with double-precision C code at semi-latus
rectum p = 100

e For the (¢,m) = (2,2) mode and e = 0.01, we have

o MST (Mathematica):

o Infinity: 6.1544215918148796455070763212 - -- x 10~10
e Horizon: 6.6146236438555007217582080571 - - - x 1018

e Double-precision (C):
o Infinity: 6.1544215918149001 x 1010
o Horizon: 6.6146236438555875 x 10718

o Agree as well as we can expect!
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Eccentric Orbits

Comparison with PN Results

e But our MST solutions are far more accurate....

o Compare with PN literature. Blanchet (2014) gives:

. 32 2 5 .
(B) =& (£) 2° (Zo + 0T + 2% Kajz +2°Ta + 07 *Ks 2 + T +2°Ks )
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Eccentric Orbits

Comparison with PN Results

e But our MST solutions are far more accurate....

o Compare with PN literature. Blanchet (2014) gives:

. 39 2
(B) = (£) 2° (2o +0T + 2% Kajz +2°Ta + 27 *Ks 2 + 2°Ta + 2°Ks )

Peters-Mathews
Enhancement
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Eccentric Orbits

Comparison with PN Results

e But our MST solutions are far more accurate....

o Compare with PN literature. Blanchet (2014) gives:

. 32 2
(E) = 5 (%) z° (Io +al; + $3/2’C3/2 + «23212 + $5/2’C5/2 + 33313 + $3’C3)

1PN
correction
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Eccentric Orbits

Comparison with PN Results

e But our MST solutions are far more accurate....

o Compare with PN literature. Blanchet (2014) gives:
. 32 2 .
(E) = 5 (%) x° (Io +axl; + IL'S/2/C3/2 + «23212 + $5/2’C5/2 + 33313 + $3’C3)
1.5PN tail

etc.
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Eccentric Orbits

Enhancement Functions

. 1 LT3, 8T
= - — —e
0T = ey 24 T 76"

1 1247 10475 , 10043 , 2179 4
L= | — = ey e, + ——e
(1—e§)9/2< 336 672 384 1792 >
Ks/o =dmp(er) = 4m (l + 2335 e? + O(e, )>
z, = 1 (_ 203471 3807197 , 268447 , 1307105 ¢ 86567 8)
(1 —e2)11/2 9072 18144 * 24192 * 16128 64512 °
1 35 6425 , 5065 4 185 4
ta—ep (7 8 T e o %)
8191
Ksj2 =— mﬂ'w(ef)

ute of Technology



@ e; is “time eccentricity”




Eccentric Orbits

@ e; is “time eccentricity”

@ We use Darwin eccentricity — needed to be able to translate




Eccentric (

@ e; is “time eccentricity”
@ We use Darwin eccentricity — needed to be able to translate

e We developed an expansion for e; in powers of our e:

[F15¢" + (15V1 —e? —19) + (34 ~ 151 =) ] o >

6?:@2<1—6$+ —€4+262—1
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Eccentric Orbits

@ e; is “time eccentricity”
@ We use Darwin eccentricity — needed to be able to translate

e We developed an expansion for e; in powers of our e:

[F15¢" + (15V1 —e? —19) + (34 ~ 151 =) ] o >

—et42e2 -1

e,%:e2 <1—6a:—|—

@ Also developed expansion for enhancement function ¢(e:) to arbitrary order
in e;:

2335 5 42955 4

pler) =14 Jg5er + =g
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¢ = 2 quadrupole flux

le+10 [ T T T T T T

le-10 | E
16—20 S_o ° . ° ° . ° _f

[ (E)y—a — To = O(1PN) ]
1le-30 F .
le-40 | E
le-50 £ ]

18-60 : 1 1 1 1 1 1
0 005 01 015 02 025 03 0.35

PN residuals

eccentricity e
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¢ < 3 quadrupole and octopole flux

le+10 [ T T T T T T

T Peters-Mathews ]

n  1le-10 b ;
= i 1
:_5 16—20 :_o ° . ° ° ° ° _:
8 [ ]
= 1e-30 F° ° ° ¢ ° ¢ ° .
Z, [ (E)e<s — Zo — Tre = O(1.5PN) 1
A le-40 | ]
le-50 E
18-60 . 1 1 1 1 1 1 ]

0 005 01 015 0.2 025 03 0.35

eccentricity e

Capra 17, California Institute of Technology



¢ < 3 quadrupole and octopole flux

le+10 [ T T T T T T
B T PetersMathews . ]
n le10 [ ;
= : 1
:_5 16—20 :_o ° . ° ° . ° _:
8 [ ]
= 1e-30 F° ° ° ¢ ¢ ¢ ° .
Z : 1
A~ le-40 e . e g y ¢ ° ]
[ <E>Z§3_IO —Ill'—’C3/2£E3/2 :O(QPN) ]
le-50 .
18-60 : 1 1 1 1 1 1 ]

0 005 01 015 0.2 025 03 0.35

eccentricity e
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Eccentric Orbits

¢ < 4 flux

le+10 . : . . . .
Peters-Mathews

le-10 £ E
1e-20 o o . . . . . E
le30 ko o+ e e e e e
le-40 [o o . . . . . E

PN residuals

le50 F* o0 o e e e o]

b (B) gy — To — T1o — Kg)p23/2 — T3a? = 0(2.5PN) ]
le-60 L 1 1 1 1 1 1 ]
0 005 01 015 02 025 03 0.35

eccentricity e
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Eccentric Orbits

What’s Next?

o Match through 3PN order, determine unknown parameters beyond
3PN

o Conservative dynamics for eccentric orbits

e Kerr?




Eccentric Orbits

Thanks!

Dr. Charles Evans (Advisor) Dr. Seth Hopper (Collaborator)
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