The not-so-nonlinear nonlinearity of Einstein's equation

Abraham Harte

Max Planck Institute for Gravitational Physics Albert Einstein Institute Potsdam, Germany

June 26, 2014

17th Capra Meeting Caltech

- Einstein's equation is fundamentally geometric.
- Perturbation theory typically ignores this:

Variables like $h_{ab} = g_{ab} - \hat{g}_{ab}$ are analytically simple but geometrically awkward.

• Might other choices be better?

Find a geometrically simple way to generically deform one metric into another.

lf

$$g_{ab} = \Omega^2 \hat{g}_{ab},$$

 Ω has a simple geometrical interpretation:

Lengths of vectors are locally rescaled while angles and causal structure are preserved.

The trace (only!) of the vacuum Einstein equation is linear in Ω :

$$\hat{R}=0 \qquad \Rightarrow \qquad R\propto \hat{\Box}\Omega=0.$$

This isn't general enough in 4D...

A less obvious deformation is of Kerr-Schild type:

$$g_{ab} = \hat{g}_{ab} + \ell_a \ell_b.$$

Let ℓ_a be null wrt \hat{g}_{ab} . It is then null wrt g_{ab} as well.

This deforms light cones. Rays tangent to ℓ^a are preserved while other null directions change.

Einstein's equation is linear in these variables!

Theorem [Xanthopoulos, 1978]

If $\hat{R}_{ab} = 0$ and $h_{ab} = \ell_a \ell_b$ satisfies the vacuum Einstein equation **linearized** about \hat{g}_{ab} , the metric $g_{ab} = \hat{g}_{ab} + h_{ab}$ satisfies the vacuum Einstein equation **exactly**.

Generalizations with matter are also known: [Xanthopoulos, 1986] and [Mastronikola and Xanthopolous 1988]. Gravitational pp-waves are Kerr-Schild solutions.

Written in KS form, Einstein's equation on the natural waveform is

$$\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)H(u,x,y)=0.$$

This is exact.

Trying to model the same thing using textbook gauges is vastly more complicated.

Why does Einstein's equation simplify so much for KS metrics?

• Metric inverses are trivial. Letting $\ell^a := \hat{g}^{ab} \ell_b$,

$$g_{ab} = \hat{g}_{ab} + \ell_a \ell_b \qquad \Rightarrow \qquad g^{ab} = \hat{g}^{ab} - \ell^a \ell^b.$$

② Volume elements are unchanged: $g/\hat{g} = 1$.

3 h_{ab} is triply-degenerate:

$$h_{ab}\ell^b = h_{ab}x^b = h_{ab}y^b = 0.$$

- Kerr-Schild metrics include many interesting things: Kerr black holes, some gravitational waves, ultrarelativistic systems, ...
- But there are only 3 degrees of freedom.
- Solutions are algebraically special (at least with \hat{g}_{ab} flat).

Something more general is needed...

Kerr-Schild metrics squish null cones using **one** vector field.

Try two vector fields instead. If ℓ_a and n_a are both null wrt \hat{g}_{ab} , let

$$g_{ab} = \hat{g}_{ab} + \ell_{(a} n_{b)}.$$

Then n_a and ℓ_a are also null wrt to g_{ab} .

Rays tangent to l^a and n^a are preserved while the rest of the null cone is sheared.

Deform causal structure using ℓ_a and n_a , and then deform outside of null cones using a conformal factor Ω :

$$g_{ab}=\Omega^2(\hat{g}_{ab}+\ell_{(a}n_{b)})$$

Ordinary KS is recovered when $\Omega \equiv 1$ and $n_a \propto \ell_a$.

This has the required $(2 \times 3 - 1) + 1 = 6$ degrees of freedom!

Deformation theorem (Llosa and Soler, 2005)

Given any analytic Lorentzian metric g_{ab} , there exist (non-unique) 2-forms $F_{ab} = F_{[ab]}$ and scalar fields ϕ such that

$$\hat{g}_{ab} = \phi g_{ab} \pm g^{cd} F_{ac} F_{bd}$$

is a flat metric.

Writing F_{ab} in terms of its principal null directions recovers the xKS deformation $g_{ab} = \Omega^2(\hat{g}_{ab} + \ell_{(a}n_{b)})$ [Llosa and Carot, 2009].

So this is a sufficiently general ansatz.

Many simplifications of KS are only slightly more complicated with xKS:

Letting $h_{ab} = \ell_{(a}n_{b)}$ and $h = \hat{g}^{ab}h_{ab} =$ "non Kerr-Schildness,"

• Metric inverses are simple:

$$g_{ab}=\Omega^2(\hat{g}_{ab}+h_{ab}) \quad \Rightarrow \quad g^{ab}=\Omega^{-2}\left(\hat{g}^{ab}-(1+h/2)^{-1}h^{ab}
ight).$$

2 Volume elements deform via the linearized expression:

$$\frac{\sqrt{-g}}{\sqrt{-\hat{g}}} = \Omega^4 \left(1 + h/2\right).$$

Sector Sector

$$h_{ac}h^{c}{}_{b}=\frac{1}{2}hh_{ab}.$$

• h_{ab} is doubly-degenerate when $h \neq 0$:

$$\exists x^a, y^a$$
 such that $h_{ab}x^b = h_{ab}y^b = 0.$

• (Conformal) Killing vectors in g_{ab} are also (conformal) Killing vectors in \hat{g}_{ab} when this metric is flat [Llosa and Carot, 2009].

All of this simplifies Einstein's equation dramatically.

Setting $\Omega\equiv 1$ for simplicity,

$$\mathfrak{h}^{ab} := \hat{g}^{ab} - \left(\frac{\sqrt{-g}}{\sqrt{-\hat{g}}}\right)g^{ab} = h^{ab} - \frac{1}{2}h\hat{g}^{ab}.$$

So trace-reversed h_{ab} satisfies a (generalized) Landau-Lifshitz equation.

But g^{ab} is simple, so **nonlinearities are only polynomial in** h_{ab} !

- xKS singles out null vector fields ℓ^a , n^a .
- This is just what the Newman-Penrose formalism is built for.
- NP replaces the metric by a complex null tetrad.
- Derivatives of this tetrad are related to curvature components.

If $\ell^a \not\propto n^a$, let $k^a \propto n^a$ such that

 $(\ell^a, k^a, m^a, \bar{m}^a)$

is a normalized NP tetrad for \hat{g}_{ab} .

Perturbed NP tetrad

If $g_{ab} = \hat{g}_{ab} + 2(1-H)\ell_{(a}k_{b)}$ for some H = 1 + h/2, the tetrad $(H^{-1}\ell^a, k^a, m^a, \bar{m}^a)$ is normalized and null wrt g_{ab} .

Just a simple rescaling!

• Now apply Einstein's equation to this adapted null tetrad.

• This results in equations for the **background** tetrad and for *H*.

• Once these are solved, recovering the metric is trivial:

$$g_{ab} = 2[m_{(a}\bar{m}_{b)} - \ell_{(a}k_{b)}] + 2(1-H)\ell_{(a}k_{b)}$$

= 2[m_{(a}\bar{m}_{b)} - H\ell_{(a}k_{b)}].

First derivatives of the tetrad are traditionally denoted using $\alpha,\beta,\ldots.$

Collecting these into $\boldsymbol{S},$ perturbations $\boldsymbol{\hat{S}} \rightarrow \boldsymbol{S}$ are simple:

$$\begin{split} \mathbf{S} &= H^{-1}[\mathbf{L}(H)\hat{\mathbf{S}} + \mathbf{E}\hat{\mathcal{D}}H], \\ \mathbf{L}(H) &= \mathbf{L}_0 + H\mathbf{L}_1 + H^2\mathbf{L}_2. \end{split}$$

 L_i and E are constant, nearly diagonal matrices.

Simple *H*-dependent linear transformation \oplus first derivatives of *H*.

Vacuum Einstein now looks like

$$0 = A^{Ij}{}_{\alpha\beta}\mathcal{D}_I S_j + B^{Ij}{}_{\alpha\beta}S_i S_j$$

Or more schematically,

$$0\sim \hat{\mathcal{D}}^2H+\hat{\mathcal{D}}\hat{S}+\hat{S}\hat{\mathcal{D}}H+(\hat{\mathcal{D}}H)^2+\hat{S}^2.$$

Low-order polynomial in H and quadratic in \hat{S} . Solve for these!

Or start from a known background frame \hat{S}^* and solve for the Lorentz transformation $\hat{S}^* \to \hat{S}.$

- A generalization of the Kerr-Schild ansatz includes all metrics.
- Nonlinearities of Einstein's equation simplify significantly.
- Common spacetimes like Kerr satisfy linear equations.
- GR seems simplest in terms of Newman-Penrose variables.
- Possibly useful for perturbation theory and finding new exact solutions.