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Motivation

Einstein’s equation is fundamentally geometric.

Perturbation theory typically ignores this:

Variables like hab = gab − ĝab are analytically simple but geometrically
awkward.

Might other choices be better?

Find a geometrically simple way to generically deform one metric
into another.
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Example I: Conformal transformations

If
gab = Ω2ĝab,

Ω has a simple geometrical interpretation:

Lengths of vectors are locally rescaled while angles and causal structure
are preserved.

The trace (only!) of the vacuum Einstein equation is linear in Ω:

R̂ = 0 ⇒ R ∝ �̂Ω = 0.

This isn’t general enough in 4D. . .
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Example II: Kerr-Schild deformations

A less obvious deformation is of Kerr-Schild type:

gab = ĝab + `a`b.

Let `a be null wrt ĝab. It is then null wrt gab as well.

This deforms light cones. Rays tangent to `a

are preserved while other null directions
change.
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Kerr-Schild is simple

Einstein’s equation is linear in these variables!

Theorem [Xanthopoulos, 1978]

If R̂ab = 0 and hab = `a`b satisfies the vacuum Einstein equation
linearized about ĝab, the metric gab = ĝab + hab satisfies the vacuum
Einstein equation exactly.

Generalizations with matter are also known:
[Xanthopoulos, 1986] and [Mastronikola and Xanthopolous 1988].
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A Kerr-Schild example

Gravitational pp-waves are Kerr-Schild solutions.

Written in KS form, Einstein’s equation on the natural waveform is(
∂2

∂x2
+

∂2

∂y2

)
H(u, x , y) = 0.

This is exact.

Trying to model the same thing using textbook gauges is vastly more
complicated.
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Why does Einstein’s equation simplify so much for KS
metrics?

1 Metric inverses are trivial. Letting `a := ĝab`b,

gab = ĝab + `a`b ⇒ gab = ĝab − `a`b.

2 Volume elements are unchanged: g/ĝ = 1.

3 hab is triply-degenerate:

hab`
b = habx

b = haby
b = 0.

Abraham Harte (AEI) Not so nonlinear Einstein June 26, 2014 7 / 20



Kerr-Schild metrics include many interesting things:

Kerr black holes, some gravitational waves,
ultrarelativistic systems, . . .

But there are only 3 degrees of freedom.

Solutions are algebraically special (at least with ĝab flat).

Something more general is needed. . .
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Kerr-Schild metrics squish null cones using one vector field.

Try two vector fields instead. If `a and na are both null wrt ĝab, let

gab = ĝab + `(anb).

Then na and `a are also null wrt to gab.

Rays tangent to `a and na are preserved
while the rest of the null cone is sheared.
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Extended Kerr-Schild as a generic perturbation

Deform causal structure using `a and na, and then deform outside of null
cones using a conformal factor Ω:

gab = Ω2(ĝab + `(anb))

Ordinary KS is recovered when Ω ≡ 1 and na ∝ `a.

This has the required (2× 3− 1) + 1 = 6 degrees of freedom!
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Deformation theorem (Llosa and Soler, 2005)

Given any analytic Lorentzian metric gab, there exist (non-unique) 2-forms
Fab = F[ab] and scalar fields φ such that

ĝab = φgab ± g cdFacFbd

is a flat metric.

Writing Fab in terms of its principal null directions recovers the xKS
deformation gab = Ω2(ĝab + `(anb)) [Llosa and Carot, 2009].

So this is a sufficiently general ansatz.
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Why do this?

Many simplifications of KS are only slightly more complicated with xKS:

Letting hab = `(anb) and h = ĝabhab = “non Kerr-Schildness,”

1 Metric inverses are simple:

gab = Ω2(ĝab + hab) ⇒ gab = Ω−2
(
ĝab − (1 + h/2)−1hab

)
.

2 Volume elements deform via the linearized expression:

√
−g√
−ĝ

= Ω4 (1 + h/2) .
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3 xKS perturbations are proportional to projection operators:

hach
c
b =

1

2
hhab.

4 hab is doubly-degenerate when h 6= 0:

∃xa, ya such that habx
b = haby

b = 0.

5 (Conformal) Killing vectors in gab are also (conformal) Killing vectors
in ĝab when this metric is flat [Llosa and Carot, 2009].

All of this simplifies Einstein’s equation dramatically.
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Einstein’s equation in tensorial form

Setting Ω ≡ 1 for simplicity,

hab := ĝab −
(√
−g√
−ĝ

)
gab = hab − 1

2
hĝab.

So trace-reversed hab satisfies a (generalized) Landau-Lifshitz equation.

But gab is simple, so nonlinearities are only polynomial in hab!
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Newman-Penrose formalism

xKS singles out null vector fields `a, na.

This is just what the Newman-Penrose formalism is built for.

NP replaces the metric by a complex null tetrad.

Derivatives of this tetrad are related to curvature components.
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If `a 6∝ na, let ka ∝ na such that

(`a, ka,ma, m̄a)

is a normalized NP tetrad for ĝab.

Perturbed NP tetrad

If gab = ĝab + 2(1− H)`(akb) for some H = 1 + h/2, the tetrad
(H−1`a, ka,ma, m̄a) is normalized and null wrt gab.

Just a simple rescaling!
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Now apply Einstein’s equation to this adapted null tetrad.

This results in equations for the background tetrad and for H.

Once these are solved, recovering the metric is trivial:

gab = 2[m(am̄b) − `(akb)] + 2(1− H)`(akb)

= 2[m(am̄b) − H`(akb)].
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Perturbed spin coefficients

First derivatives of the tetrad are traditionally denoted using α, β, . . ..

Collecting these into S, perturbations Ŝ→ S are simple:

S = H−1[L(H)Ŝ + ED̂H],

L(H) = L0 + HL1 + H2L2.

Li and E are constant, nearly diagonal matrices.

Simple H-dependent linear transformation ⊕ first derivatives of H.
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Implementing Einstein’s equation

Vacuum Einstein now looks like

0 = AIj
αβDISj + B ij

αβSiSj

Or more schematically,

0 ∼ D̂2H + D̂Ŝ + ŜD̂H + (D̂H)2 + Ŝ2.

Low-order polynomial in H and quadratic in Ŝ. Solve for these!

Or start from a known background frame Ŝ∗ and solve for the Lorentz
transformation Ŝ∗ → Ŝ.
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Conclusions

A generalization of the Kerr-Schild ansatz includes all metrics.

Nonlinearities of Einstein’s equation simplify significantly.

Common spacetimes like Kerr satisfy linear equations.

GR seems simplest in terms of Newman-Penrose variables.

Possibly useful for perturbation theory and finding new exact
solutions.
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