

Gravitational self-force correction to the Kerr equatorial ISCO

Soichiro Isoyama

Based on the collaboration

with L. Barack, S. Dolan, R. Fujita, A. Le Tiec, H. Nakano, N. Sago, A. Shah, T. Tanaka and N. Warburton

Why self-force effect @ ISCO?

- Study the 2-body dynamics in the strong field regime
- Extract the physical impact of self-forces on the orbital dynamics

ISCO is an unique feature in motion in Kerr spacetime

Provides a gauge invariant benchmark for other methods.

What we do and find ?

•Compute the frequency shift of ISCEO in Kerr due to the conservative GSF (gravitational self-force) effects

ISCEO := Inner most Stable Circular Equatorial Orbits $(\theta = \pi/2)$ conservative = "shut off" the dissipation

✓New ISCEO condition with the redshift variables

- Identify ISCEO as the minimum-energy circular orbit
- ✓ A new strong-field benchmark in 2-body problem.
- Using the Hamilton formulation for the circular geodesic in a locally-defined effective smooth spacetime

ISCEO of test particles (a = 0)

Barack and Sago 0908.1664

•At ISCEO = the restoring radial force **vanishes** under the radial variation onto a slightly eccentric orbit.

✓ Radial EOM:
$$\frac{d^2r}{d\sigma^2} = -\frac{1}{2}\frac{\partial V}{\partial r}$$
✓ Linear radial variation
$$r = r_0 + \delta_e r(\sigma) + O(e^2)$$
Circular radius Small eccentricity
✓ Stability condition
$$\frac{d^2\delta_e r}{dr^2} = -\Omega_r^2 \delta_e r$$
• The stability demands $\Omega_r = 0$

 $r_{\rm ISCEO} = 6M$

With conservative GSF

Barack and Sago 0908.1664, Warburton and Barack: 1103.0287

 Similar argument also holds for an accelerated orbit in Kerr spacetime subjected to the conservative GSF

✓ Radial EOM:
$$m\frac{d^2r}{d\sigma^2} = -\frac{m}{2}\frac{\partial V}{\partial r} + \frac{F_{(con)}^r}{Conservative GSF}$$
 (symmetric under time reversal)

Radial variations demands GSF for small eccentric orbits

Barack and Sago1002.2386

$$F^{\mu} = \lim_{r \to 6M} \lim_{e \to 0} F^{\mu}[e, r(\sigma)]$$

In Kerr, no GSF code for eccentrics orbit is available

Can we find a bypass to GSF corrected ISCEO in Kerr?

Motion in effective spacetime

Consider geodesics in locally-defined effective spacetime

$$g_{\alpha\beta} = g_{(0)\alpha\beta} + h_{\alpha\beta}^{R,\text{sym}}$$

Regularized time-symmetric part

Describe geodesics in 8-dim effective phase spacetime

Mino+ 9606018, Detweiler 0202086, Poud 0907.5197, Harte 1103.0543

$$H[x^{\mu}, p_{\mu}; \gamma] := \frac{1}{2\mu} g_{R, \text{sym}}^{\alpha\beta} [x^{\mu}, p_{\mu}; \gamma] p_{\alpha} p_{\beta} = \underline{H_{(0)}(x^{\mu}, p_{\mu})} + H_{\text{int}}[x^{\mu}, p_{\mu}; \gamma]$$

"Background Kerr part"

Interaction Hamiltonian takes care of GSF effects

$$H_{\rm int}[x^{\mu}, p_{\mu}; \gamma] := -\frac{1}{2\mu} h_{R, \rm sym}^{\alpha\beta}[x^{\mu}, p_{\mu}; \gamma] p_{\alpha} p_{\beta}$$

Orbits in effective spacetime

Describe circular geodesics in the effective spacetime

Momenta are linked to 4-velocities and constrained

$$u^{\mu} := \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\tau} = \left.\frac{\partial H}{\partial p_{\mu}}\right|_{\gamma} = \frac{g^{\mu\nu}p_{\nu}}{\mu} \qquad \qquad H|_{\gamma} = \left.\frac{1}{2\mu}g^{\mu\nu}p_{\mu}p_{\nu}\right|_{\gamma} = -\frac{\mu}{2}$$

Proper time of the orbit in effective space time

 $\checkmark \text{Circularity conditions} \qquad p^r = 0 \qquad \frac{\mathrm{d}p_r}{\mathrm{d}\tau} = -\frac{\partial H}{\partial r}\Big|_{\gamma} = 0$

Constants of motion" of the orbits exists due to
 the translation invariance of back ground Kerr geodesic

$$\frac{\mathrm{d}p_t}{\mathrm{d}\tau} = \left.\frac{\partial H_{\mathrm{int}}}{\partial t}\right|_{\gamma} = 0 \quad \frac{\mathrm{d}p_{\phi}}{\mathrm{d}\tau} = 0 \quad \Longrightarrow \quad p_t =: -\mu \mathcal{E} \qquad p_{\phi} =: \mu \mathcal{L}$$

Notion ! all quantities are defined in effective space time

✓3 relevant phase spacetime coordinates: $\zeta^I := \{r, \mathcal{E}, \mathcal{L}\}$

Quite similar to the circular geodesic in Kerr

ISCEO in effective spacetime

•Specifies the ISCEO by the stationary perturbation to a nearby non-geodesic circular orbit with fixed $(\mathcal{E}, \mathcal{L})$

✓ Radial variation changes "the constants of motion" at $O(e^2)$

The perturbation varies both "field" and "source" orbits.
 Interaction Hamiltonian is symmetric w.r.t. its arguments

$$H_{\rm int}[\zeta^I;\gamma(\zeta^I_{\gamma})] \approx \int_{-\infty}^{+\infty} \mathrm{d}\tau' G^{R,\operatorname{sym}\alpha\beta}{}_{\rho'\sigma'}[z(\tau),z_{(\gamma)}(\tau')] u_{\alpha}(\tau)u_{\beta}(\tau) u_{(\gamma)}^{\tau'}(\tau')u_{(\gamma)}^{\sigma'}(\tau')$$

Restoring force vanishes if

Stationary perturbation

Link to the redshift variable

 Replace the perturbation into circular non-geodesics with that within the sequence of circular geodesics

expresses every quantities as a function of $\Omega = u^{\phi}/u^{t}$

Introduce a redshift variables
 Detweiler. 0804.3529

$$(u^{t})^{-1} := z(\Omega) = z_{(0)}(\Omega) + \eta \, z_{(1)}(\Omega) + O(\eta^{2}) \qquad \eta = \mu/M \ll 1$$

✓ varying the "on-shell" Hamiltonian with fixed frequency:

$$\delta H(\zeta^{I}) = \frac{\partial H}{\partial r} \frac{\delta r + \dots = 0}{\text{Circular condition}} \qquad \frac{H_{\text{int}}}{\mu} = \eta \frac{z_{(1)}}{z_{(0)}}$$

ISCEO with a redshift variable

 Vanishing restoring force leads a simple condition in terms of the modified redshift variables at ISCEO

i) Identity operator:

ii) "On shell" conditions

iii) Circular conditions

$$\frac{\mathrm{d}}{\mathrm{d}\Omega} = r'\frac{\partial}{\partial r} + \mathcal{E}'\frac{\partial}{\partial \mathcal{E}} + \mathcal{L}'\frac{\partial}{\partial \mathcal{L}} \qquad ' := \frac{\mathrm{d}}{\mathrm{d}\Omega}$$
$$\frac{\mathrm{d}H}{\mathrm{d}\Omega} = \frac{\mathrm{d}^2 H}{\mathrm{d}\Omega^2} = 0$$
$$p^r = \frac{\mathrm{d}p_r}{\mathrm{d}\tau} = 0$$

 $\left(\frac{\partial}{\partial r} + \frac{\partial}{\partial r_{\gamma}}\right) \frac{\partial H[\zeta^{I}; \gamma(\zeta^{I}_{\gamma})]}{\partial r} \bigg|_{\text{isceo}} = 0 \quad \Longrightarrow \quad \tilde{z}''(\Omega_{\text{isceo}}) = 0$

✓ **Modified** redshift variables $\tilde{z}(\Omega) := z_{(0)}(\Omega) + \frac{1}{2} \eta z_{(1)}(\Omega) + O(\eta^2)$ GSF correction with extra ½.

The frequency shift of ISCEO

 Parameterize the frequency shift of ISCEO due to the conservative GSF:

 $(M+\mu)\,\Omega_{\rm isceo} := M\Omega_{\rm isceo}^{(0)}(q)\left\{1+\eta\,C_{\Omega}(q)+O(\eta^2)\right\}$

Background Kerr result Conservative GSF correction

Substitution to ISCEO condition gives the desired shift

$$\tilde{z}''(\Omega_{\text{isceo}}) = 0 \qquad \Longrightarrow \qquad C_{\Omega}(q) = -\frac{1}{2} \frac{z''_{(1)}(\Omega_{\text{isceo}}^{(0)})}{\Omega_{\text{isceo}}^{(0)} z''_{(0)}(\Omega_{\text{isceo}}^{(0)})}$$

✓ Agree with the ISCEO shift in Schwarzschild case

Le Tiec+ 1111.5609

✓ What is the meaning of ISCEO condition?

ISCEO from the binary 1st law

c.f. talks by Le Tiec and Takahiro

• For circular orbits, **perturbative binary 1st law** leads

$$\delta E = \Omega \, \delta L + z \, \delta \mu \qquad \{M, a\} \text{ fixed}$$

✓ Define the binding energy and the angular momentum to satisfy the perturbative 1st law

$$E := \mu u_t \left(1 - \frac{H_{\text{int}}}{2\mu} \right) \qquad \qquad L := \mu u_\phi \left(1 - \frac{H_{\text{int}}}{2\mu} \right)$$

The modified redshift function is related as

$$\mu \, \tilde{z} = E - \Omega L$$

• The ISCEO condition is exactly equal to the minimumenergy circular orbit (MECO) condition. cf. Buonanno+ 0205122.

$$\tilde{z}''(\Omega_{\text{isceo}}) = 0$$
 \longleftrightarrow $E'(\Omega_{\text{meco}}) = 0$

Numerical implementation

c.f. talks byShah and Warburton

 ISCEO shifts only needs the GSF correction to the redshift variables for circular orbits (and its derivative)

$$C_{\Omega}(q) = -\frac{1}{2} \frac{z_{(1)}^{\prime\prime}(\Omega_{\text{isceo}}^{(0)})}{\Omega_{\text{isceo}}^{(0)} z_{(0)}^{\prime\prime\prime}(\Omega_{\text{isceo}}^{(0)})}$$

i)**Metric reconstruction in frequency-domain**, radiation gauge, mode-sum regularization Barack and Ori 9912010, Shah+ 1207.5595

ii)**Direct time-domain integration** of Einstein eq., Lorenz gauge, m-mode regularization Dolan+ 1107.0012, 1211.4686, Heffernan+ 1211.6446

Frequency shift of Kerr ISCEO

All positive and "weak" dependence on the Kerr spin

Benchmark results

 Check the predictions from previous pN-approximation and effective one-body (EOB) models

✓ Errors in ISCEO shifts: $\delta C_{\Omega}^{(PN/EOB)}/C_{\Omega} := 1 - C_{\Omega}^{PN/EOB}/C_{\Omega}$

Relatively large discrepancy in co-rotating case

Summary of the talk

•We compute **the frequency shift of ISCEO** due to the conserved GSF effects with Hamiltonian formulation.

✓ studied the circular geodesic in the effective space time

✓ specified ISCEO in terms of the redshift variables

✓ISCEO is equivalent to minimum-energy circular orbit

✓ tested the accuracy of pN / EOB predictions

Our results provide very accurate strong-field benchmark for spin effects in 2-body problem.

A future prospect

Two avenues for the conserved dynamics
 beyond the circular equatorial orbits in Kerr spacetime

Eccentric equatorial orbits.

✓ Circular inclined (spherical) orbits:

Spherical orbits has non-vanishing Carter constant;
 the self-force impacts on this orbit is largely unexplored.

✓GSF corrected ISCO condition for spherical orbits (preliminary):

$$n^{i}n^{j}\left(\frac{\partial^{2}\tilde{z}(\Omega_{isco}^{k})}{\partial\Omega^{i}\partial\Omega^{j}}\right)_{J_{\mu}} = 0 \qquad i = (r,\theta)$$

"Minimizing" the binding energy ??

