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SF Methods via Field

✤ Impressive SF results have been obtained in recent years by using 
methods based on the direct calculation of the field:

Effective Source Method
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Mode-sum Regularization



✤ MiSaTaQuWa eq. for the SF is in terms of a tail integral of the 
retarded Green function over the past world-line  
 

!

✤ The tail integral contains information about the history dependence 
of the SF!

✤ This can be understood geometrically in terms of 
‘backscattering’ (generally, fields do not propagate only along null 
geodesics) and from trapping of null geodesics!

SF via Green Function
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Green function

✤ The retarded Green function is a solution of the wave equation with 
a    -source satisfying causality b.c.!

!

✤ But            has a    -divergence at                . So if           were calculated 
via, eg, a mode-sum, the number of modes required for a certain 
accuracy would grow as       approaches x = z(⌧)
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Method of Matched Expansions

✤ Poisson&Wiseman (Capra2-Dublin’99) suggestion:
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Method of Matched Expansions

✤ Anderson&Wiseman’05: weak field 
approx. in DP in Schwarzschild. Found 
“poor” convergence in the DP mode-
sum
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✤ Does a matching time         exist in practise?
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QL - Hadamard form

✤ Hadamard form is valid in a normal nbd (unique geod. joining               )  

Gret (x, x�) = ⇥ (�t) {U (x, x�) � (⇤) + V (x, x�) ⇥ (�⇤)}

� = 0

World-line

     Normal !
neighbourhood

Null !
geodesic

X

X′

X′

U
V

� < 0

� > 0

x & x

0

✤                : regular biscalars  

✤ It renders regularization trivial (subtraction of 
the Detweiler-Whiting singular GF):
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QL - Hadamard form

✤ Calculate V with, eg, coordinate expansion 
(Heffernan,Ottewill&Wardell’13)!

!

!

!

✤  Improve accuracy&domain of validity via knowledge of singularity 
structure at 1st light-crossing and use of Padé approximants!

!
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Tail contribution to the SF

✤ Contributions:!

1. Backscattering due to potential (ie,           )!

2. Trapping of null surfaces: !

light-crossings (‘caustic echoes’) at 

V 6= 0

photon orbit

✤ “Propagation of singularities” theorems:                        !

                 diverges if                are connected 
by a null geodesic
Gret(x, x

0)

✤ But these theorems do not inform us about the form of 
the singularity
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G(x0, x’) for r0 = 12M, 𝜗= π/2 in Kerr spacetime



DP Calculations

✤  Calculations of DP in weak-field: DeWitt&DeWitt’64, Capon PhD’98 
(Schutz), Nakano&Sasaki’01, Anderson&Wiseman’05,…!

!

✤ Calculations of DP in strong-field performed so far:!
- Numerical: solve a PDE (Barry’s part of the talk)!
- Semi-analytical: Fourier mode decomposition



DP - Fourier series

✤ Axisymmetric & stationary spacetime!

!

✤ Fourier transform in time and harmonic mode decomposition:!

!

✤ Need to calculate the spheroidal harmonics and 2 lin. indep. slns. of 
the homogenous radial ODE!



DP - Complex-   plane!

✤ Deform contour of integration into complex-     plane. !

!

✤ Apply residue th. to account for the singularities of the Fourier 
modes 

!

Gm



Nariai 
(Casals,Dolan,Ottewill&Wardell’09)

ReHwL
ImHwL

BC QNM

HF

ImHwL
ReHwL Schwarzschild 

(Casals,Dolan,Ottewill&Wardell’13)

Gret
m = GHF

m +GQNM
m +GBC

m

Gret
m = GHF

m +GQNM
mX

X

X

?

HF

QNM

ImHwL
ReHwL Kerr (In progress)

Gret
m = GHF

m +GQNM
m +GBC

m +GBC,Ang
mBC

HF
QNM

BC,Ang

HF: expected to be zero in DP



DP - Matched Expansions - Kerr

✤ Matched expansions in Kerr:
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Radial solutions

✤ Use MST method (Sasaki&Tagoshi’03)  for QNM radial coefficients: !

series of hypergeometric functions (typically, a couple hundred terms !

-> ‘renormalized ang.mom. parameter’ !

!

✤ Use Jaffé series for QNM frequencies & radial functions:!

series about the horizon

⌫



BC in Kerr

✤ It may be seen from using a Leaver’86 series:!

!

!

✤ Small-frequency BC yields late-time GF:!

!

!

✤ Not so small-frequency BC is important for SF accuracy!
✤ Schwarzschild: Casals&Ottewill’12!

Kerr: see Chris Kavanagh’s talk
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QNMs in Kerr: Frequencies

n = 0

n = 1

a/M = 0.2, 0.6, 0.8
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QNMs: Singularity structure of GF
!

✤ Divergence of GF has a 4-fold structure in Schwarzschild, Kerr & others:!

!

!

!

!
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Singularity structure of GF
!

✤ Along                         in Schwarzschild it is 2-fold:!

!

!

!

!

✤ Obtained via large-     of QNMs, large-    of sln. to (1+1)-PDE, 
geometrical optics, Penrose limit,… by Ori’09; 
Casals,Dolan,Ottewill&Wardell’09; Dolan&Ottewill’11; 
Harte&Drivas’12; Casals&Nolan’12; Zenginoglu&Galley’12; 
Yang, Zhang, Zimmerman&Chen’14!

!
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GF results in Schwarzschild
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GF results in Schwarzschild

r = 6M

✤ Partial SF
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GF results in Kerr-in Progress
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Some features of Matched Exp.

✤ Matched expansions: !

-Regularization is trivial!

- It gives physical insight (wave propagation, how much ‘memory’ 
does the SF has, may explain sign, Thornburg’s SF oscillations,…)!

- Once GF is known for all pairs, the SF can be easily calculated for 
any orbit (geodesic, accelerated, highly eccentric,…)!

!

✤ DP via QNM+BC: only requires solving ODEs; one or two QNM 
overtones might suffice!



Numerical Calculation of the 
Green Function



✤ Don’t need exact Green function to  
compute the self-force accurately  
using worldline convolutions.!

✤ It is sufficient to have a smeared,  
or mollified Green function.!

✤ One way to do so is using a finite,  
smoothed sum over QNMs  
along with a branch cut integral.!

✤ Alternative, analogous approach: (almost) fully numerical 
calculation using smeared Gaussians in place of 𝛿-functions.

Mollified Green function
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Numerical time-domain evolution

✤ Two closely related numerical schemes for computing a mollified 
Green function using Gaussian approximations to 𝛿-functions.!

✤ One options is to solve the sourced wave equation for the retarded 
Green function (Zenginoğlu & Galley, 2012):
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Numerical time-domain evolution

✤ Alternatively, reformulate as an initial value problem (Wardell, 
Galley, Zenginoğlu, Casals, Dolan & Ottewill 2013).!

✤ Given initial data on a spatial hyper-surface Σ and the full Green 
function, one can determine the solution at an arbitrary point x′ in 
the future of Σ (Kirchhoff theorem)  
 

✤ Basic idea: choose as initial data  
 
 
then in the limit ε→ 0
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FIG. 1: SD: This figure may not be particularly relevant -- we can remove it later. Knowledge of the Green func-
tion G(x, x0) 8x0 enables the calculation of SF at x on any trajectory that passes through the base point x. The left plot shows
the 2D parameter space for the bound geodesic orbits (with semi-latus rectum p and eccentricity e). Stable bound orbits lie
to the right of the separatrix [bold line] at p/M = 6 + 2e. The shaded area shows the stable bound orbits that pass through
the point r0 = 10M . The right plot shows a sample of geodesics passing through r0 = 10M , indicated by red points in the left
plot.

contribution to the retarded Green function as required
in the present context. It is also straightforward to take
partial derivatives of these expressions at either space-
time point to obtain the derivative of the Green function.

As proposed in Ref. [23], we have not used the quasi-
local expansion in the specific form of Eq. (4). Instead,
we used a Padé resummation in order to increase the
accuracy and extend the domain of validity of the quasi-
local expansion. While not essential, this proved very
useful for increasing the region of overlap between the
quasi-local and numerical Gaussian domains.

2. Late-time behavior

B. Numerical approximations to the retarded
Green function

We use two closely related prescriptions for computing
a numerical approximation to the Green function. In
both methods a delta distribution is approximated by
a Gaussian of finite width �, and we obtain the Green
function by taking the limit � ! 0.

1. Kircho↵ representation with Gaussian initial data

Given initial data on a spatial hypersurface ⌃ and the
Green function for the wave equation, Kirchho↵’s theo-
rem may be used to determine the solution at an arbi-
trary point x0 in the future of ⌃,
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In this way, we can recover the Green function with one
point fixed at x

0

by numerically evolving initial data of
the form (8) for a sequence of values of � and extrapo-
lating to � = 0.
A similar approach may be used to compute derivatives

of the Green function. In that case, choosing initial data
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contribution to the retarded Green function as required
in the present context. It is also straightforward to take
partial derivatives of these expressions at either space-
time point to obtain the derivative of the Green function.

As proposed in Ref. [23], we have not used the quasi-
local expansion in the specific form of Eq. (4). Instead,
we used a Padé resummation in order to increase the
accuracy and extend the domain of validity of the quasi-
local expansion. While not essential, this proved very
useful for increasing the region of overlap between the
quasi-local and numerical Gaussian domains.

2. Late-time behavior

B. Numerical approximations to the retarded
Green function

We use two closely related prescriptions for computing
a numerical approximation to the Green function. In
both methods a delta distribution is approximated by
a Gaussian of finite width �, and we obtain the Green
function by taking the limit � ! 0.

1. Kircho↵ representation with Gaussian initial data

Given initial data on a spatial hypersurface ⌃ and the
Green function for the wave equation, Kirchho↵’s theo-
rem may be used to determine the solution at an arbi-
trary point x0 in the future of ⌃,
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point fixed at x

0

by numerically evolving initial data of
the form (8) for a sequence of values of � and extrapo-
lating to � = 0.
A similar approach may be used to compute derivatives

of the Green function. In that case, choosing initial data
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Numerical time-domain evolution

✤ So, we evolve the homogeneous wave equation with initial data  
 
 
 
for a sequence of values of ε, then extrapolate to ε → 0 to get the 
Green function.!

✤ Similarly for derivatives of the Green function (i.e. self-force).!
✤ Somewhat surprisingly, this works very well for computing the self-

force, even for quite large ε/M ~ 0.1 - 1.0.!
✤ Narrower Gaussian improves resolution of small-scale features at 

null-geodesic crossings. Between crossings, even a large ε is 
sufficient.
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Practical issues: regularization

✤ MiSaTaQuWa equation only includes tail part of the integral of the 
retarded Green function over the past world-line, excluding 
coincidence-limit (t = 0) 𝛿-function part  

!

✤ But the numerical solution has  
smeared out this 𝛿-function to  
have Gaussian support up to t ≈ ε.!

✤ Have to supplement numerical  
solution with approximation at  
early times → quasilocal series.
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Practical issues: late times

✤ Numerical integration can only be done up to some finite time tmax.!
✤ At late times the solution is well approximated by branch cut.!
✤ Once the the solution has settled down to this regime, switch over 

to analytical branch-cut expression.!
✤ This can be very significant for  

computing the regularized 
self-field, less so for the self-force.!

✤ See talk by Chris Kavanagh later  
today.
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Practical issues: Gaussian width

!

✤ Dominant source of error comes  
from Gaussian smearing.!

✤ Fortunately, this is still a relatively  
small error, and converges quite  
rapidly as ε is decreased.!

✤ Can achieve relative errors of ~10-4  
with a Gaussian of width ε = 0.1M.



✤ Can achieve relative errors of ~10-4 with a Gaussian of width  
ε = 0.1M.!

✤ Run time on the order of 1 hour on 3 compute nodes. Could easily 
be optimized significantly.

Practical issues: accuracy

10

our test eccentric orbit case, the relative contribu-
tion is ⇠ 5⇥ 10�5.
The contribution to the history integral from late
times is more significant for the scalar field because
the Green function decays more slowly in time than
its derivative. However, even in this case the mag-
nitude of the late-time tail history integral for the
circular orbit is only ⇠ 10�5 (compared to ⇠ 10�2

for the entire history integral) and any error in our
approximation is considerably smaller. We may
therefore neglect errors from the late-time portion
of the history integral. Unfortunately, this does
not hold for generic orbits. For example, for the
eccentric orbit test case, the late-time-tail-integral
error slightly dominates over other sources of error
in the calculation; this dominance becomes more
and more pronounced for orbits whose radial posi-
tion varies more and more unpredictably with time.
For this reason, when quoting errors for the self-
field, we use the magnitude of the late-time tail
integral as an estimate under the assumption that
it always provides an upper-bound (if somewhat
over-conservative) approximation.

• Replacement of a delta distribution with a Gaus-
sian. This causes both a spurious pulse at early
times and a smoothing out of any sharp features.
The initial pulse is eliminated by replacing the
Green function at early times with its quasilocal
Taylor series expansion. With our chosen Gaussian
width of " = 0.1M , the relative error caused by the
finite-width Gaussian is ⇠ 1⇥ 10�3 (see Fig. 2).

• Cutting o↵ the infinite sum over `. Like the finite
width Gaussian, this has the e↵ect of smoothing
out of any sharp features. We estimate this error
by the di↵erence between the self-force computed
using `

cut

= 40 and the value obtained by extrap-
olating the curve in Fig. 2, which gives a relative
error ⇠ 4⇥ 10�3.

In our test cases, the dominant source of error therefore
comes from the choice of " and the cuto↵ in the sum over
`. Because the two sources of error are intimately con-
nected (a choice of " results in an e↵ective maximum `
which can be resolved) we estimate the error in our re-
sults by considering the errors in the sum over ` (for suf-
ficiently small "). This estimate is conservative because
it ignores accuracy improvements from extrapolating in
`
cut

. The true accuracy of the computed self-force is up
to an order of magnitude better (see Table I).

In Table I we compare the results of our numerical
Green-function calculation with reference values com-
puted using the frequency-domain mode-sum regulariza-
tion method. We also give internal error estimates based
on the assumption that the choice of a finite `

cut

reason-
ably reflects the dominant source of error in the self-force
and the finite integration time is the dominant source
of error in the self-field. Our goal here is not to show

Computed value Rel. Err. Est. Err.

C
ir
cu

la
r

M/q� �5.45517⇥ 10�3 6⇥ 10�5 3⇥ 10�3

M

2

/q

2

Ft 3.60779⇥ 10�4 4⇥ 10�4 2⇥ 10�3

M

2

/q

2

Fr 1.67861⇥ 10�4 8⇥ 10�4 2⇥ 10�3

M

2

/q

2

F' �5.30452⇥ 10�3 5⇥ 10�5 5⇥ 10�4

E
cc
en
tr
ic M/q� �7.70939⇥ 10�3 1⇥ 10�3 1⇥ 10�3

M

2

/q

2

Ft 6.65241⇥ 10�4 2⇥ 10�4 1⇥ 10�3

M

2

/q

2

Fr 1.3473⇥ 10�4 8⇥ 10�4 4⇥ 10�3

M

2

/q

2

F' �7.28088⇥ 10�3 4⇥ 10�5 5⇥ 10�4

TABLE I. Numerical results for circular and eccentric orbit
test cases, including estimated errors.

that the Green function method improves on the accu-
racy of existing methods. Frequency-domain based meth-
ods are the accuracy leaders for cases where they can be
used. But the Green function method provides a highly
flexible and complementary approach which gives good
results using modest computational resources. Further-
more, it would not be di�cult to significantly improve
on the accuracy of the results presented here through
either brute force methods (higher resolution, more `
modes, smaller Gaussian, higher order Taylor series and
longer integration times) or through readily available im-
provements to the numerics (better hyperboloidal coordi-
nates, spectral methods for spatial derivatives, improved
time-integration schemes and analytic asymptotics for
the large-` modes [24, 78]). We leave the implementa-
tion of such improvements for future work.

B. Accelerated circular orbits

We consider a particle in a circular orbit of radius r
0

and constant angular velocity ⌦, so that the azimuthal
angle coordinate is given by ' = ⌦ t. For such orbits, the
redshift factor is

z ⌘ 1

ut

=

r
1� 2M

r
0

� r2
0

⌦2. (33)

The three special cases ⌦2 = {0,M/r3
0

, (r
0

� 2M)/r3
0

}
correspond to a static particle, circular geodesic, and
null orbit, respectively. Because the orbit is accelerated,
there is an additional instantaneous contribution to the
self-force not present for a geodesic. This instantaneous
contribution is given by [8]

F inst

µ

=
q2

3
(g

µ

⌫ + u
µ

u⌫)
Da

⌫

d⌧
, (34)



Physical applications & results



Computing many orbits at once

✤ Using a single Green 
function we can quickly 
compute the self-force for 
many orbits.!

✤ (But need a separate 
Green function for each 
point on the orbit)
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Interesting physical cases

✤ World line integration method applies equally to any world line.!

✤ No extra difficulties in dealing with orbits which cause difficulties for 
other methods.!

✤ No problems with “junk” initial data. No issues with non-discrete 
frequency spectrum. No problems with accelerated worldlines.!

✤ Easily handle aperiodic (or nearly aperiodic) trajectories, such as 
unbound orbits, highly-eccentric or zoom-whirl orbits, and ultra-
relativistic trajectories.!

✤ Three examples: Accelerated orbits, high eccentricities, unbound.



Accelerated Circular Orbits 
(including ultra-relativistic)
✤ Circular orbits of radius r0=6M.!

✤ Orbital frequency ranging 
from a static particle, Ω = 0, to 
ultra-relativistic Ω = 2Ωg.!

✤ Self-force diverges and 
becomes purely local in the 
ultra-relativistic limit.!

✤ Tail contribution vanishes in 
both static and ultra-relativistic 
limits.



Highly eccentric orbits

✤ Highly eccentric orbits near the 
separatrix between unstable 
and stable bound orbits.!

✤ Possibly relevant to EOB?
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Unbound motion

✤ Radial plunge orbits!

✤ Potentially interesting for 
cosmic censorship 
scenarios?



Physical insight



History dependence

✤ Circular orbit, r0 = 6M, 
orbital period T ≈ 100M.!

✤ Self-force “remembers” ~1-2 
orbits.!

✤ Field has a longer memory 
~10s of orbits.!

✤ Self-force gets a kick near each 
null-geodesic intersection.



History dependence
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G(x0, x’) for r0 = 12M, 𝜗= π/2 in Kerr spacetime.!
Geodesic with for (a,p,e)=(0.9,5.5,0.6).



Other applications



✤ Need the Green function for all pairs of points x 
and x’. In Schwarzschild, this is a  
four-dimensional parameter space. In Kerr,  
six-dimensional.!

✤ Reduced order model methods have been shown to work very well 
for gravitational wave templates from binary black hole systems.!

✤ Construct a surrogate model using reduced order methods which 
have been very successful with waveform templates.!

✤ Proof of principal done for Green function, works very well. 
Generating data for the model took ~1 day running on a few nodes 
of a cluster. 

Other interesting applications: 
Surrogate models

x

x’



Other interesting applications: 
Surrogate models

Once the surrogate is constructed, each evaluation of the Green function 
for the pair of points x and x’ takes ~0.06s on a laptop and is very accurate.



✤ Second order scalar self-force (Galley 2012) can be written in terms 
of convolutions of the retarded Green function.!

!

!

!

✤ Here, DR is just the retarded Green function which has already been 
computed (and IR is constructed from DR).

Other interesting applications: 
Second order
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Other interesting applications: 
Self-consistent evolution
✤ Green function can be used to self-consistently solve the coupled 

delay-differential equation for the field and the self-forced worldline.  

✤ Original (Quinn) equation of motion including fully self-consistent 
evolved orbit.!

✤ Analytic version possible for plane-wave spacetimes (Harte). 
Numerical version possible using surrogate model for 
Schwarzschild/Kerr.!

✤ Can also use the Green function to assess difference between 
osculating geodesic and self-consistent orbits. So far find that they 
agree well, to within error bars.

fa = ra�
R a↵ = (g↵� + u↵u�)f�⇤� = ⇢



Conclusions and prospects

✤ Schwarzschild case now complete (Phys. Rev. D 89, 084021), Kerr in 
advanced stages.!

✤ Green functions are a flexible approach to self-force calculations.!
✤ Gives insight into history dependence of the self-force.!
✤ Compute Green function once, get all orbits through that base point.!
✤ Need a separate calculation for each point on the orbit - Reduced 

Order Models useful.!
✤ Interesting orbits not accessible by other means!
✤ Second and higher order!
✤ Extension to gravitational case.!
✤ Self-force as a test of alternative theories of gravity!
✤ Other applications beyond self-force.


