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SE Methods via Field

* Impressive SF results have been obtained in recent years by using
methods based on the direct calculation of the field:
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SEF via Green Function

* MiSaTaQuWa eq. for the SF is in terms of a fail integral of the
retarded Green function over the past world-line

T

f#(r) = (local terms) + ¢*V* / Greiletn)s 2l dm,

0,9

* The tail integral contains information about the history dependence
of the SF

* This can be understood geometrically in terms of
‘backscattering” (generally, fields do not propagate only along null
geodesics) and from trapping of null geodesics



Green function

* The retarded Green function is a solution of the wave equation with
a o -source satistying causality b.c.
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* But Gret hasa §-divergence at g = x’.Soif Gre: were calculated
via, eg, a mode-sum, the number of modes required for a certain
accuracy would grow as ' approaches T = z(T)



Method of Matched Expansions

* Poisson&Wiseman (Capra2-Dublin’99) suggestion:
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Method of Matched Expansions

* Does a matching time 7, exist in practise?

* Anderson&Wiseman’(05: weak field Null
approx. in DP in Schwarzschild. Found
“poor” convergence in the DP mode-
sum
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)L - Hadamard form

* Hadamard form is valid in a normal nbd (unique geod. joining = & z")

Grea (') = 6 (M) {U (2, 8) 3 (0) +V ()0 (-0)} |

* U & V:regular biscalars Null ;

geodesic ? o> 0

* It renders regularization trivial (subtraction of

the Detweiler-Whiting singular GF): y
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L - Hadamard form

* Calculate V with, eg, coordinate expansion
(Heffernan,Ottewill&Wardell’13)
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F T = D v(n) G-tV -0 (o))

1,7,k,n=0

* Improve accuracy&domain of validity via knowledge of singularity
structure at 1st light-crossing and use of Padé approximants



Tail contribution to the SF

+ Contributions: World-line

1. Backscattering due to potential (ie,V # 0)
2. Trapping of null surfaces:

X4
\

light-crossings (‘caustic echoes’) at &

null geod

* “Propagation of singularities” theorems:

. 8 /
Gyet(z,2') divergesif x & ' are connected

by a null geodesic

: photon orbit
+ But these theorems do not inform us about the form of

the singularity
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DP Calculations

* Calculations of DP in weak-field: DeWitt&DeWitt'64, Capon PhD’98
(Schutz), Nakano&Sasaki’01, Anderson&Wiseman’05, ...

* Calculations of DP in strong-field performed so far:
- Numerical: solve a PDE (Barry’s part of the talk)

- Semi-analytical: Fourier mode decomposition



DP - Fourer series

* Axisymmetric & stationary spacetime

* Fourier transform in time and harmonic mode decomposition:

* Need to calculate the spheroidal harmonics and 2 lin. indep. slns. of
the homogenous radial ODE



DP - Complex-wplane

* Deform contour of integration into complex- (W plane.

* Apply residue th. to account for the singularities of the Fourier
modes G,,,



Nariai
(Casals,Dolan,Ottewill&Wardell’09)

Gret = GXF e G%NM

e o o o 1 Schwarzschild
(Casals,Dolan,Ottewill&Wardell’13)

Eagi e G Tashl s

~ Kerr (In progress)

Gt = CY + GIM L cB0 4 O

HF: expected to be zero in DP



DP - Matched Expansions - Kerr

* Matched expansions in Kerr:
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Radial solutions

* Use MST method (Sasaki&Tagoshi’03) for QNM radial coefficients:

series of hypergeometric functions (typically, a couple hundred terms

-> ‘renormalized ang.mom. parameter” v/

# Use Jatté series for QNM frequencies & radial functions:

series about the horizon



BC in Kerr

It may be seen from using a Leaver’86 series:

R Z log(rw)”

Small-frequency BC yields late-time GF:
e e i ool

Not so small-frequency BC is important for SF accuracy
Schwarzschild: Casals&Ottewill’ 12
Kerr: see Chris Kavanagh'’s talk



ONMs in Kerr: Frequencies

* QNMs: frequencies Wemn that are simple poles of the GF Fourier modes
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ONMs i Kerr: Parameter v

— —_—
Vin, =0, m==1=>11=0=>100
IIII( y ln)

* Let v run amok along 10

v+ k,Vk € Z

—10

+ Give correct value for radial coefficients but this means that MST series
for R cannot be used -> use Jaffé series instead



(ONMs: Singularity structure of GF

* Divergence of GF has a 4-fold structure in Schwarzschild, Kerr & others:
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Singularity structure of GF

<

Along Ay = 0,7 in Schwarzschild it is 2-fold:

::5(0‘), AQD:W, or =y 1/0‘, AQDZO

<

Obtained via large-¢ of QNMs, large-¢ of sIn. to (1+1)-PDE,
geometrical optics, Penrose limit,... by Ori’09;

Casals,Dolan, Ottewill&Wardell’09; Dolan&Ottewill’11;
Harte&Drivas’12; Casals&Nolan’12; Zenginoglu&Galley’'12;
Yang, Zhang, Zimmerman&Chen’14



GF results in Schwarzschild
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GF results in Schwarzschild
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+ Value settles after

3rd light-crossing

+ SF rel.err. =~ 1%



GE results in Kerr-in Progress
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Some features of Matched Exp.

* Matched expansions:
-Regularization is trivial

- It gives physical insight (wave propagation, how much ‘memory’
does the SF has, may explain sign, Thornburg’s SF oscillations,...)

- Once GF is known for all pairs, the SF can be easily calculated for
any orbit (geodesic, accelerated, highly eccentric,...)

* DP via QNM+BC: only requires solving ODESs; one or two QNM
overtones might suffice



Numerical Calculation of the
Green Function




Molhtied Green function

* Don’t need exact Green functionto = *
compute the self-force accurately
using worldline convolutions.

1.0 -

+ It is sufficient to have a smeared, |
or mollified Green function.

0

* One way to do so is using a finite, e NS |

o]

smoothed sum over QNMs
along with a branch cut integral.

* Alternative, analogous approach: (almost) fully numerical
calculation using smeared Gaussians in place of -functions.
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Numerical tme-domain evolution

* Two closely related numerical schemes for computing a mollified
Green function using Gaussian approximations to §-functions.

* One options is to solve the sourced wave equation for the retarded
Green function (Zenginoglu & Galley, 2012):
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Numerical tme-domain evolution

* Alternatively, reformulate as an initial value problem (Wardell,
Galley, Zenginoglu, Casals, Dolan & Ottewill 2013).

* Given initial data on a spatial hyper-surface X and the full Green

function, one can determine the solution at an arbitrary point x” in

the future of X (Kirchhoff theorem) ,
7
D= —ﬁ G(z, 2 ) VO (z)—P(x)V*G(z, 2")]dE,
D !
* Basic idea: choose as initial data

O(z)|ls =0 n,V*®(z)|s = —4md5(x,X0)
then in the limit e— 0
D zli— / G(z,x')03(x — x¢)r” sin Odrdfde -
5

e G($0, 33/).



Numerical tme-domain evolution

* So, we evolve the homogeneous wave equation with initial data
O(z)|ls =0 n,V*®(z)|s = —4md5(x,X0)

for a sequence of values of ¢, then extrapolate to ¢ — 0 to get the
Green function.

* Similarly for derivatives of the Green function (i.e. self-force).

* Somewhat surprisingly, this works very well for computing the self-
force, even for quite large ¢ /M ~ 0.1 - 1.0.

* Narrower Gaussian improves resolution of small-scale features at
null-geodesic crossings. Between crossings, even a large ¢ is
sufficient.



Practical 1ssues: regularization

* MiSaTaQuWa equation only includes tail part of the integral of the
retarded Green function over the past world-line, excluding
coincidence-limit (t = 0) §-function part

f% = (local terms) + lim ¢ / R et

e—0

+ But the numerical solution has B R ARaaaananns
smeared out this §-function to
have Gaussian supportup to t = «. o+

* Have to supplement numerical
solution with approximation at
early times — quasilocal series. B U S




Practical 1ssues: late imes

* Numerical integration can only

oe done up to some finite time #max.

+ At late times the solution is well

approximated by branch cut.

* Once the the solution has settled down to this regime, switch over
to analytical branch-cut expression.

* This can be very significant for
computing the regularized

self-field, less so for the self-force.
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* See talk by@hris Kavanagfalater —
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Practical 1ssues: Gaussian width

+ Dominant source of error comes
from Gaussian smearing.

* Fortunately, this is still a relatively
small error, and converges quite
rapidly as ¢ is decreased.

+ Can achieve relative errors of ~10+4
with a Gaussian of width ¢ = 0.1M.
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Practical 1ssues: accuracy

+ Can achieve relative errors of ~104 with a Gaussian of width
e =0.1M.

* Run time on the order of 1 hour on 3 compute nodes. Could easily
be optimized significantly.
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Physical applications & results




Computing many orbits at once

Eccentric orbits along the separatrix

N
N

N

* Using a single Green
function we can quickly
compute the self-force for
many orbits.

~ * (But need a separate
Green function for each
point on the orbit)
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Interesting physical cases

* World line integration method applies equally to any world line.

* No extra difficulties in dealing with orbits which cause difficulties for
other methods.

* No problems with “junk” initial data. No issues with non-discrete
frequency spectrum. No problems with accelerated worldlines.

* Easily handle aperiodic (or nearly aperiodic) trajectories, such as
unbound orbits, highly-eccentric or zoom-whirl orbits, and ultra-
relativistic trajectories.

* Three examples: Accelerated orbits, high eccentricities, unbound.



Accelerated Circular Orbits
1ncluding ultra-relativistic)

le—2
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Highly eccentric orbits

* Highly eccentric orbits near the
separatrix between unstable

and stable |

bound orbits.

* Possibly relevant to EOB?

Eccentric orbits along the separatrix
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Unbound motion

* Radial plunge orbits

+ Potentially interesting for Te—4_
cosmic censorship 0.5
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Physical insight




History dependence
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Circular orbit, ro= 6M,
orbital period T = 100M.

Self-force “remembers” ~1-2
orbits.

Field has a longer memory
~10s ot orbits.

Self-force gets a kick near each
null-geodesic intersection.



History dependence
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Other applications




Other interesting applications:
Surrogate models

* Need the Green function for all pairs of points x
and x’. In Schwarzschild, this is a
four-dimensional parameter space. In Kerr,
six-dimensional.

* Reduced order model methods have been shown to work very well
for gravitational wave templates from binary black hole systems.

* Construct a surrogate model using reduced order methods which
have been very successful with waveform templates.

* Proof of principal done for Green function, works very well.
Generating data for the model took ~1 day running on a few nodes
of a cluster.



Other interesting applications:
Surrogate models
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Once the surrogate is constructed, each evaluation of the Green function
for the pair of points x and x” takes ~0.06s on a laptop and is very accurate.



Other interesting applhications:
Second order

* Second order scalar self-force (Galley 2012) can be written in terms
of convolutions of the retarded Green function.

2 2 3 9 1 , /
B () = (aF + P*V,) { =L (511%(2“) + / dr' Dr(z*, 2 )Ip(2" ))
pl pl
422
E 4 66162 (IR(Z“) /dT’ Dl e e T /dT’dT" D (D (e il ))
m
pl
SR (e & ; e AR 4
-+ e gIR(Z )+ [ dr Dr(z¥,2* ))Igz(z* ) | + O(e™) ¢
pl

* Here, Dr is just the retarded Green function which has already been
computed (and Ir is constructed from Dg).



Other interesting applhications:
Selt-consistent evolution

* Green function can be used to self-consistently solve the coupled
delay-differential equation for the field and the self-forced worldline.

00 =p  fo=Vad® 0% = (g*° +u®uP)fs

* Qriginal (Quinn) equation of motion including fully self-consistent
evolved orbit.

* Analytic version possible for plane-wave spacetimes (Harte).

Numerical version possible using surrogate model for
Schwarzschild / Kerr.

* Can also use the Green function to assess difference between
osculating geodesic and self-consistent orbits. So far find that they
agree well, to within error bars.



Conclusions and prospects

* Schwarzschild case now complete (Phys. Rev. D 89, 084021), Kerr in
advanced stages.

* Green functions are a flexible approach to self-force calculations.
* Gives insight into history dependence of the self-force.
* Compute Green function once, get all orbits through that base point.

* Need a separate calculation for each point on the orbit - Reduced
Order Models useful.

* Interesting orbits not accessible by other means

* Second and higher order

* Extension to gravitational case.

* Self-force as a test of alternative theories of gravity

* Qther applications beyond self-force.



