

CBPF Centro Brasileiro de Pesquisas Físicas

Self-force via worldline integration of the Green function

Marc Casals Centro Brasileiro de Pesquisas Físicas Barry Wardell Department of Astronomy, Cornell University

Capra 17, June 24th 2014

SF Methods via Field

 Impressive SF results have been obtained in recent years by using methods based on the direct calculation of the field:

$$f_{\alpha} = \nabla_{\alpha} \Phi^R$$

Mode-sum Regularization

Effective Source Method

$$\Box \Phi^{ret/S} = -4\pi\rho$$

$$\Phi^R = \Phi^{ret} - \Phi^S$$

$$\Box \Phi^{ret} = \Box (\Phi^R + \Phi^S)$$

$$\Box \Phi^{res} = -4\pi\rho - \Box (W\Phi^P)$$

SF via Green Function

 MiSaTaQuWa eq. for the SF is in terms of a *tail* integral of the retarded Green function over the past world-line

$$f^{\mu}(\tau) = (\text{local terms}) + q^2 \nabla^{\mu} \int_{-\infty}^{\tau} G_{ret}(z(\tau), z(\tau')) d\tau'$$

- The *tail* integral contains information about the history dependence of the SF
- This can be understood geometrically in terms of 'backscattering' (generally, fields do not propagate only along null geodesics) and from trapping of null geodesics

Green function

* The retarded Green function is a solution of the wave equation with a δ -source satisfying causality b.c.

$$\Box_x G_{ret}(x, x') = -4\pi \delta_4(x, x')$$

* But G_{ret} has a δ -divergence at x = x'. So if G_{ret} were calculated via, eg, a mode-sum, the number of modes required for a certain accuracy would grow as x' approaches $x = z(\tau)$

Method of Matched Expansions

* Poisson&Wiseman (Capra2-Dublin'99) suggestion:

$$\int_{-\infty}^{\tau} G_{ret} d\tau' =$$

$$\int_{-\infty}^{\tau_m} G_{ret} d\tau' + \int_{\tau_m}^{\tau^-} G_{ret} d\tau'$$

$$\underbrace{\int_{-\infty}^{\tau_m} G_{ret} d\tau'}_{\text{DP}} + \underbrace{\int_{\tau_m}^{\tau^-} G_{ret} d\tau'}_{\text{QL}}$$

Method of Matched Expansions

* Does a matching time τ_m exist *in practise*?

 Anderson&Wiseman'05: weak field approx. in DP in Schwarzschild. Found "poor" convergence in the DP modesum

QL - Hadamard form

* Hadamard form is valid in a normal nbd (unique geod. joining x & x') $G_{ret}(x, x') = \theta(\Delta t) \left\{ U(x, x') \,\delta(\sigma) + V(x, x') \,\theta(-\sigma) \right\}$ World-line $\sigma > 0$ * U & V: regular biscalars Null geodesic * It renders regularization trivial (subtraction of the Detweiler-Whiting singular GF): $\int_{\tau_m}^{\tau} G_{ret} d\tau' = \int_{\tau_m}^{\tau} V d\tau'$ Χ′ Normal neighbourhood

QL - Hadamard form

 Calculate V with, eg, coordinate expansion (Heffernan,Ottewill&Wardell'13)

$$V(x,x') = \sum_{i,j,k,n=0}^{\infty} v_{ijkn}(r,\theta) \ (t-t')^i (\theta-\theta')^j (\varphi-\varphi')^n (r-r')^k$$

 Improve accuracy&domain of validity via knowledge of singularity structure at 1st light-crossing and use of Padé approximants

Tail contribution to the SF

- Contributions:
 - **1**. Backscattering due to potential (ie, $V \neq 0$)
 - 2. Trapping of null surfaces:

light-crossings ('caustic echoes') at x_i

- "Propagation of singularities" theorems:
 G_{ret}(x, x') diverges if x & x' are connected by a null geodesic
- But these theorems do not inform us about the form of the singularity

photon orbit

DP Calculations

 Calculations of DP in weak-field: DeWitt&DeWitt'64, Capon PhD'98 (Schutz), Nakano&Sasaki'01, Anderson&Wiseman'05,...

- Calculations of DP in strong-field performed so far:
- Numerical: solve a PDE (Barry's part of the talk)
- Semi-analytical: Fourier mode decomposition

DP - Fourier series

Axisymmetric & stationary spacetime

Fourier transform in time and harmonic mode decomposition:

 Need to calculate the spheroidal harmonics and 2 lin. indep. slns. of the homogenous radial ODE

DP - Complex- ω plane

* Deform contour of integration into complex- ω plane.

 Apply residue th. to account for the singularities of the Fourier modes G_m

DP - Matched Expansions - Kerr

* Matched expansions in Kerr:

$$\int_{-\infty}^{\tau^{-}} G_{ret} d\tau' =$$

$$\int_{-\infty}^{\tau^{-}} V d\tau' + \int_{-\infty}^{\tau_{m}} (G_{QNM} + G_{BC}) d\tau'$$

$$\int_{\tau_{m}}^{\tau^{-}} V d\tau' + \int_{-\infty}^{\tau_{m}} (G_{QNM} + G_{BC}) d\tau'$$
Normalighbor

Radial solutions

 * Use MST method (Sasaki&Tagoshi'03) for QNM radial coefficients: series of hypergeometric functions (typically, a couple hundred terms -> 'renormalized ang.mom. parameter' ν

 Use Jaffé series for QNM frequencies & radial functions: series about the horizon

BC in Kerr

* It may be seen from using a Leaver'86 series:

 $R^{up}_{\ell m} = "\sum \log(r\omega)"$

* Small-frequency BC yields late-time GF:

 $t^{-3}, t^{-4}, t^{-5}\log t, \dots$

- Not so small-frequency BC is important for SF accuracy
- Schwarzschild: Casals&Ottewill'12
 Kerr: see Chris Kavanagh's talk

QNMs in Kerr: Frequencies

* QNMs: frequencies $\omega_{\ell mn}$ that are simple poles of the GF Fourier modes

QNMs in Kerr: Parameter ν

* Give correct value for radial coefficients but this means that MST series for $R_{\ell m}^{in}$ cannot be used -> use Jaffé series instead

QNMs: Singularity structure of GF

* Divergence of GF has a 4-fold structure in Schwarzschild, Kerr & others:

Singularity structure of GF

* Along $\Delta \varphi = 0, \pi$ in Schwarzschild it is 2-fold:

 $\pm \delta(\sigma), \ \Delta \varphi = \pi, \quad \text{or} \quad \pm 1/\sigma, \ \Delta \varphi = 0$

Obtained via large-*l* of QNMs, large-*l* of sln. to (1+1)-PDE, geometrical optics, Penrose limit,... by Ori'09; Casals, Dolan, Ottewill&Wardell'09; Dolan&Ottewill'11; Harte&Drivas'12; Casals&Nolan'12; Zenginoglu&Galley'12; Yang, Zhang, Zimmerman&Chen'14

GF results in Schwarzschild

GF results in Schwarzschild

GF results in Kerr-in Progress

Some features of Matched Exp.

- Matched expansions:
 - -Regularization is trivial
 - It gives physical insight (wave propagation, how much 'memory' does the SF has, may explain sign, Thornburg's SF oscillations,...)
 - Once GF is known for all pairs, the SF can be easily calculated for any orbit (geodesic, accelerated, highly eccentric,...)

 DP via QNM+BC: only requires solving ODEs; one or two QNM overtones might suffice

Numerical Calculation of the Green Function

Mollified Green function

- Don't need exact Green function to compute the self-force accurately using worldline convolutions.
- * It is sufficient to have a smeared, or *mollified* Green function.
- One way to do so is using a finite, smoothed sum over QNMs along with a branch cut integral.

* Alternative, analogous approach: (almost) fully numerical calculation using smeared Gaussians in place of δ -functions.

$$\delta_4^{\varepsilon}(x-x') = \frac{1}{(2\pi\varepsilon^2)^2} \exp\left[-\sum_{\alpha=0}^3 \frac{(x^{\alpha}-x'^{\alpha})^2}{2\varepsilon^2}\right]$$

Numerical time-domain evolution

- * Two closely related numerical schemes for computing a mollified Green function using Gaussian approximations to δ -functions.
- One options is to solve the sourced wave equation for the retarded Green function (Zenginoğlu & Galley, 2012):

$$\Box_x G_{\text{ret}}(x, x') = -4\pi \delta_4(x, x')$$
$$\blacksquare_x G_{\text{ret}}^{\varepsilon}(x, x') = -4\pi \frac{1}{(2\pi\varepsilon^2)^2} \exp\left[-\sum_{\alpha=0}^3 \frac{(x^{\alpha} - x'^{\alpha})^2}{2\varepsilon^2}\right]$$

Numerical time-domain evolution

- Alternatively, reformulate as an initial value problem (Wardell, Galley, Zenginoğlu, Casals, Dolan & Ottewill 2013).
- * Given initial data on a spatial hyper-surface Σ and the full Green function, one can determine the solution at an arbitrary point x' in the future of Σ (Kirchhoff theorem)

 n_{μ}

$$\Phi(x') = -\frac{1}{4\pi} \int_{\Sigma} [G(x, x') \nabla^{\alpha} \Phi(x) - \Phi(x) \nabla^{\alpha} G(x, x')] d\Sigma_{\alpha}$$

Basic idea: choose as initial data

$$\Phi(x)|_{\Sigma} = 0 \quad n_{\mu} \nabla^{\mu} \Phi(x)|_{\Sigma} = -4\pi \delta_{3}^{\epsilon} (\mathbf{x}, \mathbf{x}_{0})$$

then in the limit $\varepsilon \rightarrow 0$

$$\Phi(x') = \int_{\Sigma} G(x, x') \delta_3(x - x_0) r^2 \sin \theta dr d\theta d\phi$$
$$= G(x_0, x').$$

Numerical time-domain evolution

* So, we evolve the homogeneous wave equation with initial data

$$\Phi(x)|_{\Sigma} = 0 \quad n_{\mu} \nabla^{\mu} \Phi(x)|_{\Sigma} = -4\pi \delta_{3}^{\epsilon} (\mathbf{x}, \mathbf{x}_{0})$$

for a sequence of values of ε , then extrapolate to $\varepsilon \rightarrow 0$ to get the Green function.

- * Similarly for derivatives of the Green function (i.e. self-force).
- * Somewhat surprisingly, this works very well for computing the selfforce, even for quite large $\varepsilon/M \sim 0.1 - 1.0$.
- Narrower Gaussian improves resolution of small-scale features at null-geodesic crossings. Between crossings, even a large ε is sufficient.

Practical issues: regularization

* MiSaTaQuWa equation only includes *tail* part of the integral of the retarded Green function over the past world-line, excluding coincidence-limit (t = 0) δ -function part

$$f^a = (\text{local terms}) + \lim_{\epsilon \to 0} q^2 \int_{-\infty}^{\tau - \epsilon} \nabla^a G_{\text{ret}}(x, x') d\tau'$$

- But the numerical solution has smeared out this δ-function to have Gaussian support up to t ≈ ε.
- * Have to supplement numerical solution with approximation at early times → quasilocal series.

Practical issues: late times

- * Numerical integration can only be done up to some finite time t_{max} .
- * At late times the solution is well approximated by branch cut.
- Once the the solution has settled down to this regime, switch over to analytical branch-cut expression.
- This can be very significant for computing the regularized self-field, less so for the self-force.
- See talk by Chris Kavanaghlater today.

Practical issues: Gaussian width

- Dominant source of error comes from Gaussian smearing.
- Fortunately, this is still a relatively small error, and converges quite rapidly as ε is decreased.
- * Can achieve relative errors of ~ 10^{-4} with a Gaussian of width $\varepsilon = 0.1M$.

Practical issues: accuracy

- * Can achieve relative errors of ~10⁻⁴ with a Gaussian of width $\varepsilon = 0.1$ M.
- Run time on the order of 1 hour on 3 compute nodes. Could easily be optimized significantly.

		Computed value	Rel. Err.	Est. Err.
Circular	$M/q \Phi$	-5.45517×10^{-3}	6×10^{-5}	3×10^{-3}
	$M^2/q^2 F_t$	3.60779×10^{-4}	4×10^{-4}	2×10^{-3}
	$M^2/q^2 F_r$	1.67861×10^{-4}	8×10^{-4}	2×10^{-3}
	$M^2/q^2 F_{\varphi}$	-5.30452×10^{-3}	5×10^{-5}	5×10^{-4}
Eccentric	$M/q \Phi$	-7.70939×10^{-3}	1×10^{-3}	1×10^{-3}
	$M^2/q^2 F_t$	6.65241×10^{-4}	2×10^{-4}	1×10^{-3}
	$M^2/q^2 F_r$	1.3473×10^{-4}	8×10^{-4}	4×10^{-3}
	$M^2/q^2 F_{\varphi}$	-7.28088×10^{-3}	4×10^{-5}	5×10^{-4}

Physical applications & results

Computing many orbits at once

 Using a single Green function we can quickly compute the self-force for many orbits.

 (But need a separate Green function for each point on the orbit)

Interesting physical cases

- World line integration method applies equally to any world line.
- No extra difficulties in dealing with orbits which cause difficulties for other methods.
- No problems with "junk" initial data. No issues with non-discrete frequency spectrum. No problems with accelerated worldlines.
- Easily handle aperiodic (or nearly aperiodic) trajectories, such as unbound orbits, highly-eccentric or zoom-whirl orbits, and ultrarelativistic trajectories.
- * Three examples: Accelerated orbits, high eccentricities, unbound.

Accelerated Circular Orbits (including ultra-relativistic)

- * Circular orbits of radius r₀=6M.
- * Orbital frequency ranging from a static particle, $\Omega = 0$, to ultra-relativistic $\Omega = 2\Omega_g$.
- Self-force diverges and becomes purely local in the ultra-relativistic limit.
- Tail contribution vanishes in both static and ultra-relativistic limits.

Highly eccentric orbits

- Highly eccentric orbits near the separatrix between unstable and stable bound orbits.
- * Possibly relevant to EOB?

Unbound motion

- Radial plunge orbits
- Potentially interesting for cosmic censorship scenarios?

Physical insight

History dependence

- * Circular orbit, $r_0 = 6M$, orbital period T $\approx 100M$.
- Self-force "remembers" ~1-2 orbits.
- Field has a longer memory ~10s of orbits.
- Self-force gets a kick near each null-geodesic intersection.

History dependence

$G(x_0, x')$ for $r_0 = 12M$, $\vartheta = \pi/2$ in Kerr spacetime. Geodesic with for (a,p,e)=(0.9,5.5,0.6).

Other applications

Other interesting applications: Surrogate models

 Need the Green function for all pairs of points x and x'. In Schwarzschild, this is a four-dimensional parameter space. In Kerr, six-dimensional.

- Reduced order model methods have been shown to work very well for gravitational wave templates from binary black hole systems.
- Construct a surrogate model using reduced order methods which have been very successful with waveform templates.
- Proof of principal done for Green function, works very well.
 Generating data for the model took ~1 day running on a few nodes of a cluster.

Other interesting applications: Surrogate models

Once the surrogate is constructed, each evaluation of the Green function for the pair of points *x* and *x*' takes ~0.06s on a laptop and is very accurate.

Other interesting applications: Second order

 Second order scalar self-force (Galley 2012) can be written in terms of convolutions of the retarded Green function.

$$\begin{split} F^{\mu}(\tau) &= \left(a^{\mu} + P^{\mu\nu}\nabla_{\nu}\right) \left\{ \frac{m^{2}c_{1}^{2}}{m_{pl}^{2}} I_{R}(z^{\mu}) - \frac{m^{3}c_{1}^{2}c_{2}}{m_{pl}^{4}} \left(\frac{1}{2}I_{R}^{2}(z^{\mu}) + \int d\tau' D_{R}(z^{\mu}, z^{\mu'})I_{R}(z^{\mu'})\right) \\ &+ \frac{m^{4}c_{1}^{2}c_{2}^{2}}{m_{pl}^{6}} \left(I_{R}(z^{\mu}) \int d\tau' D_{R}(z^{\mu}, z^{\mu'})I_{R}(z^{\mu'}) + \int d\tau' d\tau'' D_{R}(z^{\mu}, z^{\mu'})D_{R}(z^{\mu'}, z^{\mu''})I_{R}(z^{\mu''})\right) \\ &+ \frac{m^{4}c_{1}^{3}c_{3}}{2m_{pl}^{6}} \left(\frac{1}{3}I_{R}^{3}(z^{\mu}) + \int d\tau' D_{R}(z^{\mu}, z^{\mu'})I_{R}^{2}(z^{\mu'})\right) + O(\varepsilon^{4})\right\}\,, \end{split}$$

 Here, D_R is just the retarded Green function which has already been computed (and I_R is constructed from D_R).

Other interesting applications: Self-consistent evolution

* Green function can be used to self-consistently solve the coupled delay-differential equation for the field and the self-forced worldline.

$$\Box \Phi = \rho \qquad f_a = \nabla_a \Phi^{\mathsf{R}} \qquad a^{\alpha} = (g^{\alpha\beta} + u^{\alpha} u^{\beta}) f_{\beta}$$

- Original (Quinn) equation of motion including fully self-consistent evolved orbit.
- Analytic version possible for plane-wave spacetimes (Harte). Numerical version possible using surrogate model for Schwarzschild/Kerr.
- Can also use the Green function to assess difference between osculating geodesic and self-consistent orbits. So far find that they agree well, to within error bars.

Conclusions and prospects

- Schwarzschild case now complete (Phys. Rev. D 89, 084021), Kerr in advanced stages.
- * Green functions are a flexible approach to self-force calculations.
- * Gives insight into history dependence of the self-force.
- * Compute Green function once, get all orbits through that base point.
- Need a separate calculation for each point on the orbit Reduced Order Models useful.
- Interesting orbits not accessible by other means
- Second and higher order
- Extension to gravitational case.
- Self-force as a test of alternative theories of gravity
- Other applications beyond self-force.