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Teukolsky equation

(V'V + A"+ V) = 4nT

Strongly hyperbolic PDE describing linear perturbations in Kerr
Usually solved as ODE in frequency domain

Used to compute gravitational self-force in a radiation gauge (Shah,
Friedman, Whiting; Pound, Merlin, Barack; et al.)

For highly eccentric or hyperbolic orbits, time-domain self-consistent
evolution is ideal

Time-domain Teukolsky solvers have been increasingly used
(Burko, Khanna, Pullin, Hughes, Poisson, Lousto, Zenginoglu, Harms,
Bernuzzi, Brigmann et al.)
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Method of lines

First order reduction
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Discretize U, L in space, evolve as coupled ODEs in time

L contains spatial derivative matrices, which are typically valid only for

smooth methods.
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Teukolsky equation with particle source

(V'V, + AV +V W, (=G §(r—&+F &(r—¢

Some methods of incorporating a point particle source
1. Approximate O as Gaussian pulse
2. Construct finite-difference representation of 6

3. ‘Particle without particle’ (domain decomposition + coordinate
mapping + jump conditions across particle)

, = V(&) =) = F(§)
J, =967 =€) = 31G(§) — A (OF(8)]
4. Systematic .&pproach generalize finite-difference &

pseudospectral methods to include (known) jump d/scont/nwt/e
in approximating function '




Discontinuous method

e Jumps in solution W and its derivatives across particle
known a priori from field equation

PEN =) =T, k=12,..,00
e FD & PS methods are based on Lagrange interpolation

e Construct discontinuous generalization to Lagrange
interpolation that uses {J} asinput




Lagrange interpolation

e N-th order polynomial

ZCiE
e Collocation condltlons
p(z)=1Ff, i=01...,N
e Solution: Lagrange’s interpolating polynomial

pa) =S @), () =] [

k=7




Discontinuous Lagrange interpolation

e N-th ordNer polynomials N
=Y ¢, e<& p(r)=) ca’,x>¢
j=0 j=0
e Collocation conditions p(z) = 6z — E)p, (2) + 8(6 — ). ()
p(z)=f (i=0,1...,N)
e Jump conditions
pP(E)—=pP(E) =T, (k=01,.,M)

e Solution: piecewise-polynomial interpolant
M

Sj(x;g) — [‘9(33 o 5)9(6 - CIZ) — (9(€ — 513)9(33] — g)]Z—m(ij — g)m
0= SIf + 5,6, (@




Discontinuous method

e [nterpolation
N

p(z) =D _[f +s,(z:6)r (x)

j=0
e Differentiation

N
p"(x)=> Df +s/(x:6), D =n\"(z)
j=0

e |ntegration

[ plarda = 1w +4,(6)

w = [ (@, €)= [s @& @)z




Discontinuous method

e [nterpolation

N
p(e) = D _Lf; + 5@ &) ()
j=0
* Finite differencing (equidistant nodes)
T, = CH—ib_a (i =01,...,N)

e Pseudospectral (Chebyshev-Gauss-Lobatto nodes)

X,

- a;b+abcos[27r




Static scalar particle in Schwarzschild

Equidistant nodes
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Static scalar particle in Schwarzschild

Equidistant nodes
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Static scalar particle in Schwarzschild

Chebyshev-Gauss-Lobbato nodes
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Static scalar particle in Schwarzschild

Chebyshev-Gauss-Lobbato nodes
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Static scalar particle in Schwarzschild

sup error norm (Chebyshev-Gauss-Lobbato nodes)
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Discontinuous method

Merits:
e High accuracy for pseudospectral nodes
e Particle can move freely inside domain

e No domain decomposition, coordinate mapping, etc
needed

e Very easy to implement
e Efficient
Cost:

e Must use large number of jumps (roughly half the #
of nodes)

e Must update sj(x;f) as particle moves




From Weyl curvature to the Hertz potential

e |f solution Y, (or y,) is known, one reconstructs the
Hertz potential W via

(DN DU = (l“(‘)u)‘l\lf*
e |nvert (with 4 integrations) to recover ¥
e Differentiate (twice) to recover metric perturbation hag
(see e.g. Lousto & Whiting)

e Recall, however, that W also satisfies homogenous
Teukolsky equation off the particle

e Can one skip Y, and solve directly for ¥?




From Weyl curvature to the Hertz potential

e To solve Teukolsky equation for ¥, one must impose
BCs (no incoming at infinity, no outgoing on horizon)

e One must also compute (Dirac 0, 0’) source terms due
to particle

e Equivalent to determining the jumps [W], [W'] in ¥, ¥’
across the particle location

* |n turn, these can be determined from the jumps [W],
(W'l in g, W, as follows...




From Weyl curvature to the Hertz potential

Example: static particle in Minkowski
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From Weyl curvature to the Hertz potential

16(1* +1415 1+3)(1—2)(I* +14-60
Y, = ( : >ar\1,* G| >4< )
r r
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From Weyl curvature to the Hertz potential

e Knowledge of jumps in the Hertz potential
determines source terms and allows one to write a
(Teukolsky) field equation analogous to that satisfied

by Weyl scalars:
(V'V + AV +V ) (r)=G 6(r—§+F 8 (r — &)

e Can be solved with time-domain methods such as
those described earlier

e Two (one) derivatives on W* to reconstruct hog 4




Conclusion

e Numerical methods exist to solve the Teukolsky equation efficiently
& accurately in the time domain

e Solutions can be used to reconstruct metric perturbation and self-
force in a radiation gauge

e Source to be determined by evolving geodesic equation in
perturbed spacetime, in a self-consistent approach
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