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Gravitational Self-Force in Decaying Systems

Self Forces: First Second

Order Order

Waveforms: \ \

| Adiabatic I Post-1/2 Post-1

(Resonances) Adiabatic

ANOA
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Two-Timescale Yields Good Approximation at Late Times

» Near-time expansions accurate for short spans of
time - becomes inaccurate after a de-phasing time

» Two-Timescale expansion captures long-time
secular behavior

> parametrizes decaying behavior and slowly evolving
frequency

» Eanna Flanagan and Tanja Hinderer -
Two-timescale Worldline, application to Kerr

AN

» Future evolution of this work will attempt to apply
this construction to Einstein equations
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An lllustrative example

» Take the differential equation for a weakly nonlinear oscillator

> This possesses an exact solution to check against:

—et

Ji_e

» Unique valid expansion given assumptions of periodicity and
slow-scale behavior

2
y=e “sin(t) + e “sin (1 - %) t+(...)
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Assumptions Required for Two-Timescale

> y(t) = V(g(t, ), et) * |

» Smooth in both variables, 27 periodic in ¢

> ¢ obeys: !
d
d—f = w(e, et)

similarly smooth

two-variable function determined

v

Figure: € limit at
constant ¢
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Two-Timescale Demands Higher Orders

> At each order, get an equation for a driven oscillator . ..

0 (0)
[&02 " 1] I
82 1 aAo . 8BO
[aw“] =2 <65+A°> Sm“’”(aﬁ”“) e

» ...and an equation from our constraint on secular evolution

of next lower order:

0Ag

97 + Ag (1)
0B

= By=0 2
o7 + Do (2)

» This gives the evolution we expect from the lowest order

» An extra order is needed to fix secular behavior
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Approach to Self-Consistent Computation of Inspiral for
Scalar Charged Body

Gralla-Harte
-Wald Axioms

Two-Timescale
Axioms

Combined
Axioms

O

Re-derivation Derivation of
of Self-Force Waveform
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Gralla-Harte-Wald Derivation Method

» Scale parameter : ratio of body
size to lengthscale of external field

» This gives two limits

» ¢ — 0 at fixed “far zone"
coordinates, body shrinks

> Closely related to matched
asymptotic expansions (previous
work by Poisson; Detweiler; Mino
et al; Quinn)
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Gralla-Harte-Wald Derivation Method

» Scale parameter : ratio of body
size to lengthscale of external field

> This gives two limits I

» ¢ — 0 at fixed “near zone” S
coordinates, background AP
stretches, body remains constant

> Closely related to matched L NG
asymptotic expansions (previous l
work by Poisson; Detweiler; Mino
et al; Quinn)
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Precise Statement of Assumptions - Common Axioms

» 3 A one-parameter family of fields, F,, (X, z#), J*(\,z*), and
T%()\,a:“), which satisfy the charge conservation and
stress-energy conservation equations

> all Fp,, J* and T). smooth in A away from X = 0; The latter
two have compact support near the worldline

> Fuu(A) = Fist[J#(N)] smooth in X including A = 0
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Assumptions - Differing Axioms

GHW Axioms:

» 3 A function z%(\,t), smooth and timelike

» 3 functions J*(\, ¢, X?) and T4/ (A, t, X?) st

i

Tt a) = A2 ()\,t, Ty i(A’t))
T (1, 07) = A2 (A,t, oAt z}\(’\’t))

and are jointly smooth in their arguments.
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Assumptions - Differing Axioms

Our Modifications:
» 3 A function z%()\, ,¢), jointly smooth; ¢ 27 periodic

» 3 functions:

t(t) =to + Mt

1/t N
o(t) =g00+X / dt'w(\, )

to
s.t. 28\, E(t), ¢(t)) is a timelike worldline

» 3 functions JX(\, £, 0, X?) and ThY (N, ¢, X7) st

Tt at) = AR ()\, i), (0, T, w(t)))
T3 (N tat) = AT ()\, ) p(0), = Z"(A,A (), so(t)))
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Computation of Scalar Self-Force via Extension of Gralla,
Harte, and Wald

> Take near-zone expansion in body-following coordinates

» Expand conservation of stress-energy order-by-order:

v, 1%

(rsm) = p2ED7

» Results in terms of body parameters defined by by integrating
over spacelike 3-surfaces

» Gives expressions for a®, 0 M
> e.g. first order general expression:

MaWe = _prMge 4 dﬂgaﬂ + (Qq)(ewt))(1)+

1 .
aﬁ(b(ext),ﬁDa + gQQda + aﬁsaB
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Shortcomings with Mass Definition Apparent at Higher
Order

» Mass integral:
M= /E (TCD) + Tg) Vad® S

» perpetually oscillating charge
gives divergent energy

» One approach: adjust splitting into
self + external (Harte)
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Long Range Contributions to Self-Energy
> lllustrative Exact solution for Self-Energy in
constant-acceleration case (away from Rindler Horizon):

700 ‘ _Q72(1+agr2+2a-r)
(SE)It=0 = pdp (44 ar? +4a - r)?

» Gives a distinctly finite mass, when integrated: fOER dZaTaﬁfg

» This expression indicates that there are non-negligible
contributions at 7 o< O(1/ap) at a certain order (2nd)

» The effect is not a ‘true’ divergence, but a result of the
expansion

» Confounds the desired GHW separation of scale
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Computation of Scalar Self-Force via Extension of Gralla, Harte,
and Wald

Current Work: Mass Defined by Integral over Future Null Cone
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Current Work: Mass Defined by Integral over Future Null

Cone (Harte)

Null Cone
(this mass)

Spacelike Surface
(GHW mass)

Worldline

Higher-Order Self-Forces

Non-conserved mass - dependence
on hypersurface choice

For flat space, the field on null cone
depends only on worldline point

This mass definition solves
superficial problem; fits well with
GHW

Computations far simpler (Poisson
has pointed this out in the past)
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Summary

» Gralla, Harte, Wald method offers a particularly
solid framework on which to build more elaborate
approximations

» A combination of GHW axioms with two-timescale
axioms should allow rigorous self-consistent
computations of inspirals

» Derivation of higher-order self-force requires a
modification of the definition of the body
parameters, which is under exploration

» Outlook

» Near future: use of this in Two-Timescale toy model

AN

> Less Near future: application to EMRI's
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