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Motivation: High-order PN expansions of quantities 
for EMRIs

• There has recently been a fair amount of work in obtaining high-order post-
Newtonian (PN) expansions of various quantities for EMRIs. 

• These calculations all use the black hole perturbation theory formalism developed 
by Mano, Suzuki, and Takasugi (based on Leaver’s work on computing BH quasinormal modes, itself based on relativity 

early work in quantum mechanics) [Prog. Theor. Phys. 95, 1079 (1996); 96, 549 (1996)] allows one to calculate to 
arbitrarily high PN order, in principle (either analytically or numerically). 

• This should be contrasted with the situation for comparable mass binaries, where 
one has to solve PDEs instead of just ODEs, and the current state-of-the-art is 
only 3.5PN [O(v7), i.e., O(G3.5), past Newtonian predictions] for many quantities, with some 
quantities known to higher orders. 

• Reaching 3.5PN in the comparable mass case involved decades of work by many 
researchers, and often new conceptual insights. The recent determination of the 
4PN Hamiltonian by Damour, Jaranowski, and Schäfer was a major tour de force!
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Motivation: High-order PN expansions of quantities 
for EMRIs
• The currently state-of-the-art for high-order EMRI computations is the 22PN calculation of the 

energy flux from a point particle in a circular orbit around a Schwarzschild black hole, by Ryuichi 
Fujita [Prog. Theor. Phys. 128, 971 (2012)]. (Going to even higher orders is limited by ever-increasing demands on computer time and memory.) 

• Fujita also has unpublished 10PN and 8PN calculations of the flux at infinity and the horizon for 
a circular equatorial orbit in Kerr, respectively, and there are other notable high-order 
calculations, both analytic and numerical: 

• The 8.5PN analytic calculations of the redshift observable and spin precession frequency by Bini 
and Damour [Phys. Rev. D. 89, 104047 (2014) and arXiv:1404.2747 [gr-qc]] 

• Numerical calculations of the redshift observable to 10.5PN by Shah, Friedman, and Whiting 
[Phys. Rev. D 89, 064042 (2014)] and the fluxes at infinity and the horizon in Kerr (for circular, equatorial orbits) 
to 20PN by Shah [arXiv:1403.2697 [gr-qc]], with some coefficients determined analytically in both cases. 

• The analytic results for eccentric orbits are not yet known to high order (4PN for Schwarzschild 
and 2.5PN for Kerr and equatorial orbits and only to quadratic order in the eccentricity), but 
there is progress in obtaining higher-order terms numerically—see the talks by Evans and 
Forseth.
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Why are these high-order expansions interesting?

4

agreement between the extreme mass ratio case (q ! 1) of
the analytical 3PN result and the numerical SF result.

B. Method

Let us consider a system of two (nonspinning) compact
objects with masses m1 and m2, and moving on slowly
inspiralling quasicircular orbits. In the PN analysis, let m1

and m2 be arbitrary; in the SF analysis, further assume that
m1 ! m2. We can then call m1 the ‘‘particle,’’ and m2 the
‘‘black hole.’’

Self-force analysis shows that the dissipative parts of the
self-force for a circular orbit are the t and ’ components.
These result in a loss of energy and angular momentum
from the small mass at the same precise rate as energy and
angular momentum are radiated away [24]. In addition,
earlier perturbative calculations of energy and angular
momentum fluxes [16–23] for this situation show them to
be equivalent to the results of the PN analysis in their
common domain of validity. Hence, by invoking an argu-
ment of energy and angular momentum balance, we know
that the PN results also agree with the dissipative parts of
the SF in their domain of common validity, and further
comparison can reveal nothing new.

For our PN-SF comparison, we shall thus neglect the
dissipative, radiation-reaction force responsible for the
inspiral, and restrict ourselves to the conservative part of
the dynamics. In PN theory this means neglecting the
dissipative radiation-reaction force at 2.5PN and 3.5PN
orders, and considering only the conservative dynamics

at the even-parity 1PN, 2PN, and 3PN orders. This clean
separation between conservative even-parity and dissipa-
tive odd-parity PN terms is correct up to 3.5PN order.2 In
SF theory there is also a clean split between the dissipative
and conservative parts of the self-force. This split is par-
ticularly transparent for a quasicircular orbit, where the r
component is the only nonvanishing component of the
conservative self-force.
Henceforth, the orbits of both masses are assumed to be

and to remain circular, because we are ignoring the dis-
sipative radiation-reaction effects. For our comparison we
require two physical quantities which are precisely defined
in the context of each of our approximation schemes. The
orbital frequency ! of the circular orbit as measured by a
distant observer is one such quantity. The second requires
further explanation.
With circular orbits and no dissipation, the geometry has

a helical Killing vector field k!. A Killing vector is only
defined up to an overall constant factor. In our case k!

extends out to a large distance where the geometry is
essentially flat. There k!@! ¼ @t þ!@’ in any natural
coordinate system which respects the helical symmetry
[27]. We let this equality define the overall constant factor,
thereby specifying the Killing vector field uniquely.
An observer moving with the particle m1, while orbiting

the black hole m2, would detect no change in the local
geometry. Thus, the four-velocity u!1 of the particle is
tangent to the Killing vector k! evaluated at the location
of the particle, which we denote by k!1 . A second physical
quantity is then defined as the constant of proportionality,
call it uT1 , between these two vectors, namely,

u!1 ¼ uT1k
!
1 : (1.1)

The four-velocity of the particle is normalized so that
ðg!"Þ1u!1 u"1 ¼ &1; ðg!"Þ1 is the regularized metric at
the particle’s location, whereas the metric itself is formally
singular at the particle m1 in both PN and SF approaches.
The gauge invariant quantity uT1 is thus given by

uT1 ¼ ð&ðg!"Þ1u!1 k"1 Þ&1 ¼ ð&ðg!"Þ1k!1 k"1 Þ&1=2: (1.2)

It is important to note that this quantity is precisely defined
in both PN and SF frameworks, and it does not depend
upon the choice of coordinates or upon the choice of
perturbative gauge; however, it very definitely depends
upon using a valid method of regularization.
Furthermore, for any coordinate system uT1 has a pleasant
physical interpretation as being the rate of change of time
at a large distance, with respect to the proper time on the
particle m1, and it could in principle be measured by a
redshift experiment as described in [24].
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FIG. 1 (color online). Different analytical approximation
schemes and numerical techniques are used to study black
hole binaries, depending on the mass ratio m1=m2 and the orbital
velocity v2 'Gm=r12, where m ¼ m1 þm2. The post-
Newtonian theory and black hole perturbation theory can be
compared in the slow motion regime (v ! c equivalent to r12 (
Gm=c2 for circular orbits) of an extreme mass ratio (m1 ! m2)
binary.

2However, this split merges at 4PN order, since at that ap-
proximation arises a contribution of the radiation-reaction force,
which originates from gravitational wave tails propagating to
infinity [26].

BLANCHET et al. PHYSICAL REVIEW D 81, 064004 (2010)

064004-2

• High-order PN results for EMRI 
fluxes can be used to obtain 
adiabatic templates comparable 
in accuracy to numerical 
adiabatic templates. 

• Perhaps more importantly, 
though, these higher-order 
perturbative results can give 
important insights even in the 
comparable mass case (cf. 
recent work on EOB; also, the 
4PN determination of Detweiler’s 
redshift observable was 
necessary to complete the 4PN 
comparable mass Hamiltonian). 

• They are also interesting for a 
study of the structure of the PN 
expansion, in general.From Blanchet, Detweiler, Le Tiec, and Whiting, 

Phys, Rev. D 81, 064004 (2010) 



Complexity of high-order PN results

• High-order perturbation theory results generally display a 
combinatorial increase in complexity, and PN results are 
no exception. 

• We will consider the GW energy flux at infinity in the 
following discussion, since it is the quantity currently 
known to the highest order.
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Only 7PN…



Simplifying the PN expansion of the energy flux

• How can we simplify this expression? 

• Perhaps we should first look at the individual modes, 
starting with the dominant quadrupolar (2,2) mode.
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Simplifying the 2,2 mode of the energy flux

• Well, unfortunately the 2,2 mode wasn’t much simpler 
than the full energy flux (and other modes share about 
the same complexity)—the primary simplification came 
about because we now only have logarithms of 2 and v. 

• We can first try a substitution, where we introduce the 
standard PN (tail-related) eulerlogm(v) function, 
 
eulerlogm(v) = γ + log(2mv)  
 
and write the remaining logarithms in terms of log(2v2).

9N.B.: This form is independent of m
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Still just showing things to 7PN…



The Damour-Nagar tail factorization (Tlm)

• Well, the substitution was effective in producing some 
simplification, but there are still many terms left, and 
considerable complexity in the transcendentals at high orders 
[e.g., ζ(13), π2ζ(3)ζ(5)eulerlog2(v), and powers of eulerlog2(v) up 
to the seventh…] 

• Let us consider the Damour-Nagar tail factorization 
η22/|T22|2, where 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modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3
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[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have
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2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp
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1
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n
(�z)n

#
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which gives
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⇥
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One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom
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, (18)

V num
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• Well, the substitution was effective in producing some 
simplification, but there are still many terms left, and 
considerable complexity in the transcendentals at high orders 
[e.g., ζ(13), π2ζ(3)ζ(5)eulerlog2(v), and powers of eulerlog2(v) up 
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The previous expressions only went to 7PN…
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The Damour-Nagar tail factorization (Tlm)
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127 terms at O(v44); 881 terms total

First odd power of v that is not removed

The previous expressions only went to 7PN…

Now 9PN

Slight simplifications of complexity…



The Slm factorization

• The Damour-Nagar factorization successfully removed 
some terms (notably all the odd powers of v up to v21 
and the largest power of π), but there is still plenty of 
complexity remaining, including lots of transcendentals 
and log v terms. 

• However, it is possible to modify the Damour-Nagar 
factorization slightly and remove many more terms. 
Specifically, we use

14

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
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⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)
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h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)
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1
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n
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⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]
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Fractional part of the 
renormalized angular momentum ν 

which is fundamental to the MST approach 
(series in v6)



The Slm factorization

• The Damour-Nagar factorization successfully removed 
some terms (notably all the odd powers of v up to v21 
and the largest power of π), but there is still plenty of 
complexity remaining, including lots of transcendentals 
and log v terms. 

• However, it is possible to modify the Damour-Nagar 
factorization slightly and remove many more terms. 
Specifically, we use

15

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3
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[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have
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|S`m|2 = 1 +

3+2`
X

k=1

h
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(S)
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k
v2k +O(v8+4`), (15)

where
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(S)
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i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
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n=2

⇣(n)

n
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�⌫̄`m(v) + 2imv3
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(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]
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70 terms at O(v44); 501 terms total 

The expression for the Tlm factorization only went to 9PN…

Now 12.5PN



The Slm factorization

• The Damour-Nagar factorization successfully removed 
some terms (notably all the odd powers of v up to v21 
and the largest power of π), but there is still plenty of 
complexity remaining, including lots of transcendentals 
and log v terms. 

• However, it is possible to modify the Damour-Nagar 
factorization slightly and remove many more terms. 
Specifically, we use

16

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3
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[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have
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2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion
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which gives
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,
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(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where
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, (18)

V num
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32768

33705

⇣(3)� 362080557826048

26777779875

eulerlog2(v) +
131072

225

eulerlog

2
2(v) +

115721109504

99324225

eulerlog2(v) log(2v
2
)

+

3218927074816

1489863375

log(2v2)� 9641984

33075

log

2
(2v2)

�
v24 � 78381056

99225

⇡v25 + · · ·

+

⇢
R111,100 + · · ·+

⇥
R89,79 + · · ·+R15,7⇣(3) eulerlog2(v) + · · ·+R16,8⇣(3) log(2v

2
) + · · ·

⇤
⇡2

+ · · ·+R11,7⇡
8

+ · · ·+R12,4⇣(3)⇣(5) + · · ·+R10,3⇣(9) + · · ·+
⇥
R61,50 + · · ·+R24,14⇣(3) log

2
(2v2) + · · ·

⇤
eulerlog2(v) + · · ·

+R17,12 eulerlog
5
2(v) + [R52,43 + · · ·+R12,5⇣(7) + · · · ] log(2v2) + · · ·+R17,12 log

5
(2v2)

�
v44 +O

�
v45

�

Substantial decreases in complexity…
70 terms at O(v44); 501 terms total 

Now 12.5PN

The expression for the Tlm factorization only went to 9PN…



The Vlm and Vʹlm  factorizations

• While the Slm factorization produces the maximum 
simplification one can likely hope (a simple integer PN 
series with rational coefficients), it only does so up to a 
certain order, due to the structure of the expansion. 
[However, as we shall see, the order to which the Slm factorization produces this 
complete simplification increases as l increases.] 

• Can we simplify further? 

• Yes, though here the simplification is not nearly as 
dramatic, and the factorization is rather more involved.
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The Vlm and Vʹlm  factorizations (cont.)

18

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)
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TABLE I: The values of � [⌫`]1 [⌫2(`) in Bini and Damour [11]], q̄`, �(q̄` [⌫`]1)
�1, s`, and �(s` [⌫`]1)

�1 for `  6. For ` 2 {5, 6}
we do not give values for the last two quantities, since they cannot be determined from the 22PN energy flux expressions. We
give the prime factorizations of � [⌫`]1, �(q̄` [⌫`]1)

�1, and �(s` [⌫`]1)
�1 in order to illustrate their structure.

` � [⌫`]1 q̄` �(q̄` [⌫`]1)
�1 s` �(s` [⌫`]1)

�1

2 107
210 = 1071

21315171
7

214 223151 7
17120 263152

3 13
42 = 131

213171
1

520 24315171 1
10483200 210335272

4 1571
6930 = 15711

21325171111
11

87976 24325172 11
595928309760 214355274

5 773
4290 = 7731

213151111131
13

1558368 26335171111 – –

6 901
6006 = 171531

213171111131
1

1783980 23335171112131 – –

V denom

`m := 1 + is`(4mv3)1+2`+2⌫̄`m(v)e�i⇡⌫̄`m(v) ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3

⇢

�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

�

2

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

3

= 1 + is`(4mv3)1+2` ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3
exp

n

2⌫̄`m(v)[eulerlogm(v) + log(2v2)]� i⇡mv3 + SV denom

`m
(v)

o

,

(19b)

SV •
`m

(v) :=
1
X

n=2

⇣(n)

n

⇣

A• {[2⌫̄`m(v)]n � [�2⌫̄`m(v)]n}+B•
�⇥

�⌫̄`m(v) + 2imv3
⇤n �

⇥

⌫̄`m(v) + 2imv3
⇤n 

⌘

,

[A
num

= 1, B
num

= 2; A
denom

= 2, B
denom

= 3],

(19c)

with q`m, s` 2 Q constants that are determined by re-
quiring that the factorization removes certain terms. The
values for these constants that it is possible to determine
from the 22PN expansion of the total energy flux are
given in Table I, where we write q`m = �`mq̄`, with

�`m =

(

1 if `+m is even,

� `+1

` if `+m is odd.
(20)

We have also given alternative forms of V num, denom

`m that
display their structure somewhat di↵erently (and that we
actually use for computing their expansions).

Specifically, we obtain q`m and s` by demanding that
factoring out |V`m|2 from ⌘̄`m removes the log(2v2)v8+4`

and the v9+6` term, respectively. We thus are unable to
determine q`m for ` � 7 and s` for ` � 5 from the 22PN
energy flux expressions: For q

77

we would need to know,
e.g., the v36 term in ⌘̄

77

, but only know this through v34.
Similarly, for s

5

, we would need to know, e.g., the v39

term of ⌘̄
55

but only know this through v38. Thus, while
it appears that q`m and s` are simply related to 1/ [⌫`]

1

,
as illustrated in Table I, we do not know enough of the
coe�cients to be able to deduce the specific relation with
any confidence.

The additional simplification from factoring out |V`m|2
from ⌘̄`m/|S`m|2 is not nearly as dramatic as that from
factoring out |S`m|2 from ⌘̄`m. Nevertheless, it is possible
that a slightly di↵erent combination of gamma functions
in V`m could remove further terms, since there is still a
fair amount of structure in the remaining transcenden-
tals, as is illustrated in Sec. V.

C. The V 0
`m factorization

Moreover, one can remove the remaining odd powers
of v by making the substitution

s` ! s`

"

1 +
1
X

k=1

[s̄`]k (2mv3)2k
#

, (21)

in V`m, where one fixes [s̄`]k by demanding that the fac-
torization remove the v9+6(`+k) term from ⌘̄`m. We will
use V 0

`m to denote V`m with the substitution in Eq. (21).
Here one can only fix the lowest few of these coe�cients
using the 22PN energy flux expressions, obtaining

[s̄
2

]
1

=
416607433

56624400
+

1

3
⇡2, (22a)

[s̄
2

]
2

=
46804742792313761

1469564559540000
+

155203051

56624400
⇡2 � 1

45
⇡4,

(22b)

[s̄
2

]
3

=
19229488138491297298603997

180295291464636348000000

+
59240111985731

4535693085000
⇡2 � 3297719

849366000
⇡4 +

2

945
⇡6

� 28

1605
[eulerlogm(v) + log(2v2)], (22c)

[s̄
3

]
1

=
72823147

10810800
+

1

3
⇡2, (23a)

[s̄
3

]
2

=
2314965899122031

95446607256000
+

177976343

75675600
⇡2 � 1

45
⇡4,

(23b)

Fixed by requiring that the factorization remove certain terms

5

TABLE I: The values of � [⌫`]1 [⌫2(`) in Bini and Damour [11]], q̄`, �(q̄` [⌫`]1)
�1, s`, and �(s` [⌫`]1)

�1 for `  6. For ` 2 {5, 6}
we do not give values for the last two quantities, since they cannot be determined from the 22PN energy flux expressions. We
give the prime factorizations of � [⌫`]1, �(q̄` [⌫`]1)

�1, and �(s` [⌫`]1)
�1 in order to illustrate their structure.

` � [⌫`]1 q̄` �(q̄` [⌫`]1)
�1 s` �(s` [⌫`]1)

�1

2 107
210 = 1071

21315171
7

214 223151 7
17120 263152

3 13
42 = 131

213171
1

520 24315171 1
10483200 210335272

4 1571
6930 = 15711

21325171111
11

87976 24325172 11
595928309760 214355274

5 773
4290 = 7731

213151111131
13

1558368 26335171111 – –

6 901
6006 = 171531

213171111131
1

1783980 23335171112131 – –

V denom

`m := 1 + is`(4mv3)1+2`+2⌫̄`m(v)e�i⇡⌫̄`m(v) ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3

⇢

�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

�

2

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

3

= 1 + is`(4mv3)1+2` ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3
exp

n

2⌫̄`m(v)[eulerlogm(v) + log(2v2)]� i⇡mv3 + SV denom

`m
(v)

o

,

(19b)

SV •
`m

(v) :=
1
X

n=2

⇣(n)

n

⇣

A• {[2⌫̄`m(v)]n � [�2⌫̄`m(v)]n}+B•
�⇥

�⌫̄`m(v) + 2imv3
⇤n �

⇥

⌫̄`m(v) + 2imv3
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⌘

,

[A
num

= 1, B
num

= 2; A
denom

= 2, B
denom

= 3],

(19c)

with q`m, s` 2 Q constants that are determined by re-
quiring that the factorization removes certain terms. The
values for these constants that it is possible to determine
from the 22PN expansion of the total energy flux are
given in Table I, where we write q`m = �`mq̄`, with

�`m =

(

1 if `+m is even,

� `+1

` if `+m is odd.
(20)

We have also given alternative forms of V num, denom

`m that
display their structure somewhat di↵erently (and that we
actually use for computing their expansions).

Specifically, we obtain q`m and s` by demanding that
factoring out |V`m|2 from ⌘̄`m removes the log(2v2)v8+4`

and the v9+6` term, respectively. We thus are unable to
determine q`m for ` � 7 and s` for ` � 5 from the 22PN
energy flux expressions: For q

77

we would need to know,
e.g., the v36 term in ⌘̄

77

, but only know this through v34.
Similarly, for s

5

, we would need to know, e.g., the v39

term of ⌘̄
55

but only know this through v38. Thus, while
it appears that q`m and s` are simply related to 1/ [⌫`]

1

,
as illustrated in Table I, we do not know enough of the
coe�cients to be able to deduce the specific relation with
any confidence.

The additional simplification from factoring out |V`m|2
from ⌘̄`m/|S`m|2 is not nearly as dramatic as that from
factoring out |S`m|2 from ⌘̄`m. Nevertheless, it is possible
that a slightly di↵erent combination of gamma functions
in V`m could remove further terms, since there is still a
fair amount of structure in the remaining transcenden-
tals, as is illustrated in Sec. V.

C. The V 0
`m factorization

Moreover, one can remove the remaining odd powers
of v by making the substitution

s` ! s`

"

1 +
1
X

k=1

[s̄`]k (2mv3)2k
#

, (21)

in V`m, where one fixes [s̄`]k by demanding that the fac-
torization remove the v9+6(`+k) term from ⌘̄`m. We will
use V 0

`m to denote V`m with the substitution in Eq. (21).
Here one can only fix the lowest few of these coe�cients
using the 22PN energy flux expressions, obtaining

[s̄
2

]
1

=
416607433

56624400
+

1

3
⇡2, (22a)

[s̄
2

]
2

=
46804742792313761

1469564559540000
+

155203051

56624400
⇡2 � 1

45
⇡4,

(22b)

[s̄
2

]
3

=
19229488138491297298603997

180295291464636348000000

+
59240111985731

4535693085000
⇡2 � 3297719

849366000
⇡4 +

2

945
⇡6

� 28

1605
[eulerlogm(v) + log(2v2)], (22c)

[s̄
3

]
1

=
72823147

10810800
+

1

3
⇡2, (23a)

[s̄
3

]
2

=
2314965899122031

95446607256000
+

177976343

75675600
⇡2 � 1

45
⇡4,

(23b)

This substitution can be used to remove all the odd powers of v, and gives Vʹlm 
One can also remove terms with a similar series for qlm (in v2), but this 

is not quite as effective, so we do not consider it further.
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TABLE I: The values of − [νℓ]1 [ν2(ℓ) in Bini and Damour [11]], q̄ℓ, −(q̄ℓ [νℓ]1)
−1, sℓ, and −(sℓ [νℓ]1)

−1 for ℓ ≤ 6. For ℓ ∈ {5, 6}
we do not give values for the last two quantities, since they cannot be determined from the 22PN energy flux expressions. We
give the prime factorizations of − [νℓ]1, −(q̄ℓ [νℓ]1)

−1, and −(sℓ [νℓ]1)
−1 in order to illustrate their structure.

ℓ − [νℓ]1 q̄ℓ −(q̄ℓ [νℓ]1)
−1 sℓ −(sℓ [νℓ]1)

−1

2 107

210
= 107

1

21315171
7

214
223151 7

17120
263152

3 13

42
= 13

1

213171
1

520
24315171 1

10483200
210335272

4 1571

6930
= 1571

1

21325171111
11

87976
24325172 11

595928309760
214355274

5 773

4290
= 773

1

213151111131
13

1558368
26335171111 – –

6 901

6006
= 17

1
53

1

213171111131
1

1783980
23335171112131 – –

V denom
ℓm := 1 + isℓ(4mv3)1+2ℓ+2ν̄ℓm(v)e−iπν̄ℓm(v) ν̄ℓm(v) + 2imv3

ν̄ℓm(v)− 2imv3

{

Γ[1− 2ν̄ℓm(v)]

Γ[1 + 2ν̄ℓm(v)]

}2 {Γ[1 + ν̄ℓm(v) − 2imv3]

Γ[1− ν̄ℓm(v) − 2imv3]

}3

= 1 + isℓ(4mv3)1+2ℓ ν̄ℓm(v) + 2imv3

ν̄ℓm(v) − 2imv3
exp

{

ν̄ℓm(v)[2 eulerlogm(v) + 2 log(2v2)− iπ] + σV denom
ℓm

(v)
}

,

(19b)

σV •

ℓm
(v) :=

∞
∑

n=2

ζ(n)

n

(

A• {[2ν̄ℓm(v)]n − [−2ν̄ℓm(v)]n}+B•

{[

−ν̄ℓm(v) + 2imv3
]n

−
[

ν̄ℓm(v) + 2imv3
]n}

)

,

[Anum = 1, Bnum = 2; Adenom = 2, Bdenom = 3],

(19c)

with qℓm, sℓ ∈ Q constants that are determined by re-
quiring that the factorization removes certain terms. The
values for these constants that it is possible to determine
from the 22PN energy flux expressions for the modes are
given in Table I, where we write qℓm = βℓmq̄ℓ, with

βℓm :=

{

1 if ℓ+m is even,

− ℓ+1
ℓ if ℓ+m is odd.

(20)

We have also given alternative forms of V num, denom
ℓm in

terms of eulerlogm(v) and log(2v2) that display their
structure somewhat differently (and that we actually use
for computing their expansions).
We obtain the constants qℓm and sℓ by demanding that

factoring out |Vℓm|2 from η̄ℓm removes the log(2v2)v8+4ℓ

and the v9+6ℓ term, respectively. We thus are unable
to determine qℓm for ℓ ≥ 7 and sℓ for ℓ ≥ 5 from the
22PN energy flux expressions: For q77, we would need to
know the v36 term in η̄77, but only know this through
v34. Similarly, for s5, we would need to know, e.g., the
v39 term of η̄55 but only know this through v38. Thus,
while it appears that qℓm and sℓ are simply related to
1/ [νℓ]1, as illustrated in Table I, we do not know them
for sufficiently many values of ℓ to be able to deduce the
specific relation with any confidence.
The additional simplification from factoring out |Vℓm|2

from η̄ℓm/|Sℓm|2 is not nearly as dramatic as that from
factoring out |Sℓm|2 from η̄ℓm. Nevertheless, it is possible
that a slightly different combination of gamma functions
in Vℓm could remove further terms, since there is still a
fair amount of structure in the remaining transcenden-
tals, as is illustrated in Sec. V.

C. The V ′

ℓm factorization

Moreover, one can remove the remaining odd powers
of v by making the substitution

sℓ → sℓ

[

1 +
∞
∑

k=1

[s̄ℓ]k (2mv3)2k
]

, (21)

in Vℓm, where one fixes [s̄ℓ]k by demanding that the fac-
torization remove the v9+6(ℓ+k) term from η̄ℓm. We will
use V ′

ℓm to denote Vℓm with the substitution in Eq. (21).
Here one can only fix the lowest few of these coefficients
using the 22PN energy flux expressions, obtaining

[s̄2]1 =
416607433

56624400
+

1

3
π2, (22a)

[s̄2]2 =
46804742792313761

1469564559540000
+

155203051

56624400
π2 −

1

45
π4,

(22b)

[s̄2]3 =
19229488138491297298603997

180295291464636348000000

+
59240111985731

4535693085000
π2 −

3297719

849366000
π4 +

2

945
π6

−
28

1605
[eulerlogm(v) + log(2v2)], (22c)

[s̄3]1 =
72823147

10810800
+

1

3
π2, (23a)

[s̄3]2 =
2314965899122031

95446607256000
+

177976343

75675600
π2 −

1

45
π4,

(23b)

The qlm and sl coefficients are simply 
related to the lowest-order PN correction to ν.
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4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

5

TABLE I: The values of � [⌫`]1 [⌫2(`) in Bini and Damour [11]], q̄`, �(q̄` [⌫`]1)
�1, s`, and �(s` [⌫`]1)

�1 for `  6. For ` 2 {5, 6}
we do not give values for the last two quantities, since they cannot be determined from the 22PN energy flux expressions. We
give the prime factorizations of � [⌫`]1, �(q̄` [⌫`]1)

�1, and �(s` [⌫`]1)
�1 in order to illustrate their structure.

` � [⌫`]1 q̄` �(q̄` [⌫`]1)
�1 s` �(s` [⌫`]1)

�1

2 107
210 = 1071

21315171
7

214 223151 7
17120 263152

3 13
42 = 131

213171
1

520 24315171 1
10483200 210335272

4 1571
6930 = 15711

21325171111
11

87976 24325172 11
595928309760 214355274

5 773
4290 = 7731

213151111131
13

1558368 26335171111 – –

6 901
6006 = 171531

213171111131
1

1783980 23335171112131 – –

V denom

`m := 1 + is`(4mv3)1+2`+2⌫̄`m(v)e�i⇡⌫̄`m(v) ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3

⇢

�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

�

2

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

3

= 1 + is`(4mv3)1+2` ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3
exp

n

2⌫̄`m(v)[eulerlogm(v) + log(2v2)]� i⇡mv3 + SV denom

`m
(v)

o

,

(19b)

SV •
`m

(v) :=
1
X

n=2

⇣(n)

n

⇣

A• {[2⌫̄`m(v)]n � [�2⌫̄`m(v)]n}+B•
�⇥

�⌫̄`m(v) + 2imv3
⇤n �

⇥

⌫̄`m(v) + 2imv3
⇤n 

⌘

,

[A
num

= 1, B
num

= 2; A
denom

= 2, B
denom

= 3],

(19c)

with q`m, s` 2 Q constants that are determined by re-
quiring that the factorization removes certain terms. The
values for these constants that it is possible to determine
from the 22PN expansion of the total energy flux are
given in Table I, where we write q`m = �`mq̄`, with

�`m =

(

1 if `+m is even,

� `+1

` if `+m is odd.
(20)

We have also given alternative forms of V num, denom

`m that
display their structure somewhat di↵erently (and that we
actually use for computing their expansions).

Specifically, we obtain q`m and s` by demanding that
factoring out |V`m|2 from ⌘̄`m removes the log(2v2)v8+4`

and the v9+6` term, respectively. We thus are unable to
determine q`m for ` � 7 and s` for ` � 5 from the 22PN
energy flux expressions: For q

77

we would need to know,
e.g., the v36 term in ⌘̄

77

, but only know this through v34.
Similarly, for s

5

, we would need to know, e.g., the v39

term of ⌘̄
55

but only know this through v38. Thus, while
it appears that q`m and s` are simply related to 1/ [⌫`]

1

,
as illustrated in Table I, we do not know enough of the
coe�cients to be able to deduce the specific relation with
any confidence.

The additional simplification from factoring out |V`m|2
from ⌘̄`m/|S`m|2 is not nearly as dramatic as that from
factoring out |S`m|2 from ⌘̄`m. Nevertheless, it is possible
that a slightly di↵erent combination of gamma functions
in V`m could remove further terms, since there is still a
fair amount of structure in the remaining transcenden-
tals, as is illustrated in Sec. V.

C. The V 0
`m factorization

Moreover, one can remove the remaining odd powers
of v by making the substitution

s` ! s`

"

1 +
1
X

k=1

[s̄`]k (2mv3)2k
#

, (21)

in V`m, where one fixes [s̄`]k by demanding that the fac-
torization remove the v9+6(`+k) term from ⌘̄`m. We will
use V 0

`m to denote V`m with the substitution in Eq. (21).
Here one can only fix the lowest few of these coe�cients
using the 22PN energy flux expressions, obtaining

[s̄
2

]
1

=
416607433

56624400
+

1

3
⇡2, (22a)

[s̄
2

]
2

=
46804742792313761

1469564559540000
+

155203051

56624400
⇡2 � 1

45
⇡4,

(22b)

[s̄
2

]
3

=
19229488138491297298603997

180295291464636348000000

+
59240111985731

4535693085000
⇡2 � 3297719

849366000
⇡4 +

2

945
⇡6

� 28

1605
[eulerlogm(v) + log(2v2)], (22c)

[s̄
3

]
1

=
72823147

10810800
+

1

3
⇡2, (23a)

[s̄
3

]
2

=
2314965899122031

95446607256000
+

177976343

75675600
⇡2 � 1

45
⇡4,

(23b)

Fixed by requiring that the factorization remove certain terms
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TABLE I: The values of � [⌫`]1 [⌫2(`) in Bini and Damour [11]], q̄`, �(q̄` [⌫`]1)
�1, s`, and �(s` [⌫`]1)

�1 for `  6. For ` 2 {5, 6}
we do not give values for the last two quantities, since they cannot be determined from the 22PN energy flux expressions. We
give the prime factorizations of � [⌫`]1, �(q̄` [⌫`]1)

�1, and �(s` [⌫`]1)
�1 in order to illustrate their structure.

` � [⌫`]1 q̄` �(q̄` [⌫`]1)
�1 s` �(s` [⌫`]1)

�1

2 107
210 = 1071

21315171
7

214 223151 7
17120 263152

3 13
42 = 131

213171
1

520 24315171 1
10483200 210335272

4 1571
6930 = 15711

21325171111
11

87976 24325172 11
595928309760 214355274

5 773
4290 = 7731

213151111131
13

1558368 26335171111 – –

6 901
6006 = 171531

213171111131
1

1783980 23335171112131 – –

V denom

`m := 1 + is`(4mv3)1+2`+2⌫̄`m(v)e�i⇡⌫̄`m(v) ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3

⇢

�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

�

2

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

3

= 1 + is`(4mv3)1+2` ⌫̄`m(v) + 2imv3

⌫̄`m(v)� 2imv3
exp

n

2⌫̄`m(v)[eulerlogm(v) + log(2v2)]� i⇡mv3 + SV denom

`m
(v)

o

,

(19b)

SV •
`m

(v) :=
1
X

n=2

⇣(n)

n

⇣

A• {[2⌫̄`m(v)]n � [�2⌫̄`m(v)]n}+B•
�⇥

�⌫̄`m(v) + 2imv3
⇤n �

⇥

⌫̄`m(v) + 2imv3
⇤n 

⌘

,

[A
num

= 1, B
num

= 2; A
denom

= 2, B
denom

= 3],

(19c)

with q`m, s` 2 Q constants that are determined by re-
quiring that the factorization removes certain terms. The
values for these constants that it is possible to determine
from the 22PN expansion of the total energy flux are
given in Table I, where we write q`m = �`mq̄`, with

�`m =

(

1 if `+m is even,

� `+1

` if `+m is odd.
(20)

We have also given alternative forms of V num, denom

`m that
display their structure somewhat di↵erently (and that we
actually use for computing their expansions).

Specifically, we obtain q`m and s` by demanding that
factoring out |V`m|2 from ⌘̄`m removes the log(2v2)v8+4`

and the v9+6` term, respectively. We thus are unable to
determine q`m for ` � 7 and s` for ` � 5 from the 22PN
energy flux expressions: For q

77

we would need to know,
e.g., the v36 term in ⌘̄

77

, but only know this through v34.
Similarly, for s

5

, we would need to know, e.g., the v39

term of ⌘̄
55

but only know this through v38. Thus, while
it appears that q`m and s` are simply related to 1/ [⌫`]

1

,
as illustrated in Table I, we do not know enough of the
coe�cients to be able to deduce the specific relation with
any confidence.

The additional simplification from factoring out |V`m|2
from ⌘̄`m/|S`m|2 is not nearly as dramatic as that from
factoring out |S`m|2 from ⌘̄`m. Nevertheless, it is possible
that a slightly di↵erent combination of gamma functions
in V`m could remove further terms, since there is still a
fair amount of structure in the remaining transcenden-
tals, as is illustrated in Sec. V.

C. The V 0
`m factorization

Moreover, one can remove the remaining odd powers
of v by making the substitution

s` ! s`

"

1 +
1
X

k=1

[s̄`]k (2mv3)2k
#

, (21)

in V`m, where one fixes [s̄`]k by demanding that the fac-
torization remove the v9+6(`+k) term from ⌘̄`m. We will
use V 0

`m to denote V`m with the substitution in Eq. (21).
Here one can only fix the lowest few of these coe�cients
using the 22PN energy flux expressions, obtaining

[s̄
2

]
1

=
416607433

56624400
+

1

3
⇡2, (22a)

[s̄
2

]
2

=
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1469564559540000
+
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56624400
⇡2 � 1

45
⇡4,

(22b)

[s̄
2

]
3

=
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180295291464636348000000

+
59240111985731

4535693085000
⇡2 � 3297719

849366000
⇡4 +

2

945
⇡6

� 28

1605
[eulerlogm(v) + log(2v2)], (22c)

[s̄
3

]
1

=
72823147

10810800
+

1

3
⇡2, (23a)

[s̄
3

]
2

=
2314965899122031

95446607256000
+

177976343

75675600
⇡2 � 1

45
⇡4,

(23b)

This substitution can be used to remove all the odd powers of v, and gives Vʹlm
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70 terms at O(v44) 
[same as Slm factorization] 

but only 360 terms 
total 

Same complexity of v44 term 
as with Slm factorization, 

though other terms are simpler…

Integer PN series 
to all orders known!

Purely rational 
coefficients to one 
order higher than 

with Slm

Still to 12.5PN 
(12.5PN term zero)



Taking the logarithm

• The final method of simplification we consider consists of consistently 
expanding the logarithm of a given PN order. 

• This is part of the exponential resummation introduced by Isoyama et al. [Phys 

Rev. D 87, 024010 (2013)] as a way to improve the convergence of the full energy flux 
[and ensure its positivity near the horizon in the Kerr case]. 

• This does not produce the drastic simplification of the lowest orders and 
complete removal of the odd powers of v provided by the Slm Vʹlm 
factorization, but still manages to remove terms that this factorization does 
not. 

• Of course, it is possible to take expand the logarithm of the Slm Vʹlm 
factorization and obtain the most significant simplification we have found. 
(This gives the maximum simplification of both cases, with a total of only 263 
terms for the 2,2 mode.)
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confined to powers of v divisible by 6

Only odd powers of v of the form v9 + 6(l + n) at higher orders



Comparing the simplifications of the (2,2) mode
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Comparing the simplifications of the modes with l ≤ 7
9
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FIG. 2: The series compression ratio for various PN orders (i.e., the number of terms in the simplified series up to a given
order divided by the number of terms in the original series up to that order) for the various simplifications and for a simple
integer PN series, with the same notation and comments as for Fig. 1

Additionally, we do not show the S`mV 0
`m factorization

for ` � 5 and the S`mV`m factorization for ` = 7, since
the coe�cients entering them cannot be fixed using the
22PN energy flux expressions for those modes. (In par-
ticular, there are no transcendentals in the expansion of
V
7m to 17PN, the highest order present in the 22PN en-

ergy flux expression for ⌘̄
77

.) Note that both the S`m and
S`mV`m factorizations have the same number of terms as

the purely integer-order PN series up to a certain PN
order, which is higher than the 22PN order known from
Fujita’s calculation [3] for ` � 7. Also, the jumps in the
number of terms every 3PN (particularly noticeable in
the logarithm) are due to the fact that the PN expansion
of ⌫ is a power series in v6, so that the complexity of the
series increases significantly every 3PN.

We now compare the results of the di↵erent simplifica-
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Same as simple integer PN series

FIG. 1: The total number of terms up to a given PN order for the ` = m modes of the energy flux, up to ` = 7, using the Fujita
22PN energy flux expressions. (Note that we have not included the lowest-order Newtonian term, for simplicity.) Here we show
the number of terms in the expressions given by Fujita online [4] (“Original”), and then the number of terms after various
simplifications or factorizations: Here “eulerlog substitution” denotes the result of the eulerlogm(v) and log(2v2) substitutions,
which are also used for all the other versions shown. The other simplifications are the results of the Damour-Nagar T`m

factorization, the result of taking the logarithm (and PN expanding to the appropriate order), and the various factorizations
discussed in the text, viz., S`m, S`mV`m, and S`mV 0

`m, as well as the results of taking a logarithm and PN expanding after
performing the S`mV 0

`m factorization. We also show the length of a purely integer-order PN series with one term per coe�cient,
for comparison.

Number of terms through a given PN order Ratio of number of terms through a given PN order 
in a simplification to the number of terms in the original



Why do these simplifications simplify?

• One can understand where these simplifications come from [and why they do not 
simplify completely] via a study of the structure of the MST formalism.  
[Indeed, the Vlm factorization was obtained in this manner, by analogy with the Slm factorization, which was itself obtained by a study of 
the prime factorization of the coefficients of the PN expansion of the modes and analogy with the Damour-Nagar Tlm factorization.] 

• All we will note here is that the MST formalism gives the flux as a product 
of pieces that are themselves sums of terms depending on ν and -ν - 1, 
where the -ν - 1 pieces only enter at higher orders, and generate the 
complexity that is not removed by the Slm factorization (and is only 
incompletely removed by the Slm Vʹlm factorization). 

• Also, the transcendentality structure of Slm can be understood by noting 
that 
 
so 

24

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational. However, they are strongly con-
jectured to be transcendental, so we shall refer to them
all as such.) This means that for ` � 7, this factoriza-
tion turns the 22PN total energy flux results for ⌘`m into
such purely rational integer order PN series. Moreover,
even higher-order terms that still contain transcenden-
tals and log v terms are significantly simplified by this
factorization, as illustrated in Sec. V. One obtains the
same simplification upon factoring out |S`m| from |h`m|
(i.e., the amplitude of the gravitational wave modes), as
one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

There is a similar expression for Vlm, involving log(2v2) in addition to eulerlogm(v)

4

have modified their definition slightly since we are using
a di↵erent expansion parameter; cf. Fujita and Iyer [13],
who refer to this as eulerlog(m, v). We also find that the
logarithms remaining after the eulerlogm(v) substitution
can all be written in terms of log(2v2). Specifically, one
performs the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log 2 ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

↵kv
2k +O(v8+4`), (15)

where ↵k 2 Q. Thus, through O(v7+4`), factoring out
|S`m|2 removes all the transcendentals, as well as the
odd powers and logarithms of v, and leaves a pure in-
teger order PN series with rational coe�cients. (N.B.:
These expressions contain the Euler-Mascheroni gamma
constant � and the Riemann zeta function evaluated at
odd integers. These numbers are not known to be tran-
scendental, or in many cases even irrational. However,
they are all strongly conjectured to be transcendental,
so we shall refer to them all as such.) This means that
for ` � 7, this factorization turns the 22PN total energy
flux results for ⌘`m into such purely rational integer order
PN series. Moreover, even higher-order terms that still
contain transcendentals and log v terms are significantly
simplified by this factorization, as illustrated in Sec. V.
One obtains the same simplification upon factoring out
|S`m| from |h`m| (i.e., the amplitude of the gravitational
wave modes), as one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

⌫̄`m(v) eulerlogm(v) + ⇡mv3 + �S`m(v)
⇤

,

�S`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n
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(17a)

B. The V`m factorization

One can remove some more transcendentals and log-
arithms from ⌘̄`m/|S`m|2 by additionally factoring out
|V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

4

have modified their definition slightly since we are using
a di↵erent expansion parameter; cf. Fujita and Iyer [13],
who refer to this as eulerlog(m, v). We also find that the
logarithms remaining after the eulerlogm(v) substitution
can all be written in terms of log(2v2). Specifically, one
performs the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log 2 ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1
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(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

↵kv
2k +O(v8+4`), (15)

where ↵k 2 Q. Thus, through O(v7+4`), factoring out
|S`m|2 removes all the transcendentals, as well as the
odd powers and logarithms of v, and leaves a pure in-
teger order PN series with rational coe�cients. (N.B.:
These expressions contain the Euler-Mascheroni gamma
constant � and the Riemann zeta function evaluated at
odd integers. These numbers are not known to be tran-
scendental, or in many cases even irrational. However,
they are all strongly conjectured to be transcendental,
so we shall refer to them all as such.) This means that
for ` � 7, this factorization turns the 22PN total energy
flux results for ⌘`m into such purely rational integer order
PN series. Moreover, even higher-order terms that still
contain transcendentals and log v terms are significantly
simplified by this factorization, as illustrated in Sec. V.
One obtains the same simplification upon factoring out
|S`m| from |h`m| (i.e., the amplitude of the gravitational
wave modes), as one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

⌫̄`m(v) eulerlogm(v) + ⇡mv3 + �S`m(v)
⇤

,

�S`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n
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(17a)

B. The V`m factorization

One can remove some more transcendentals and log-
arithms from ⌘̄`m/|S`m|2 by additionally factoring out
|V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)



Why do these simplifications simplify?

• One can understand where these simplifications come from [and why they do not 
simplify completely] via a study of the structure of the MST formalism.  
[Indeed, the Vlm factorization was obtained in this manner, by analogy with the Slm factorization, which was itself obtained by a study of 
the prime factorization of the coefficients of the PN expansion of the modes and analogy with the Damour-Nagar Tlm factorization.] 

• All we will note here is that the MST formalism gives the flux as a product 
of pieces that are themselves sums of terms depending on ν and -ν - 1, 
where the -ν - 1 pieces only enter at higher orders, and generate the 
complexity that is not removed by the Slm factorization (and is only 
incompletely removed by the Slm Vʹlm factorization). 

• Also, the transcendentality structure of Slm can be understood by noting 
that 
 
so 

25

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"
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✓

2mv3

k
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2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational. However, they are strongly con-
jectured to be transcendental, so we shall refer to them
all as such.) This means that for ` � 7, this factoriza-
tion turns the 22PN total energy flux results for ⌘`m into
such purely rational integer order PN series. Moreover,
even higher-order terms that still contain transcenden-
tals and log v terms are significantly simplified by this
factorization, as illustrated in Sec. V. One obtains the
same simplification upon factoring out |S`m| from |h`m|
(i.e., the amplitude of the gravitational wave modes), as
one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n
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(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]
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�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

There is a similar expression for Vlm, involving log(2v2) in addition to eulerlogm(v)

4

have modified their definition slightly since we are using
a di↵erent expansion parameter; cf. Fujita and Iyer [13],
who refer to this as eulerlog(m, v). We also find that the
logarithms remaining after the eulerlogm(v) substitution
can all be written in terms of log(2v2). Specifically, one
performs the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log 2 ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3
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"
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(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

↵kv
2k +O(v8+4`), (15)

where ↵k 2 Q. Thus, through O(v7+4`), factoring out
|S`m|2 removes all the transcendentals, as well as the
odd powers and logarithms of v, and leaves a pure in-
teger order PN series with rational coe�cients. (N.B.:
These expressions contain the Euler-Mascheroni gamma
constant � and the Riemann zeta function evaluated at
odd integers. These numbers are not known to be tran-
scendental, or in many cases even irrational. However,
they are all strongly conjectured to be transcendental,
so we shall refer to them all as such.) This means that
for ` � 7, this factorization turns the 22PN total energy
flux results for ⌘`m into such purely rational integer order
PN series. Moreover, even higher-order terms that still
contain transcendentals and log v terms are significantly
simplified by this factorization, as illustrated in Sec. V.
One obtains the same simplification upon factoring out
|S`m| from |h`m| (i.e., the amplitude of the gravitational
wave modes), as one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
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⌫̄`m(v) eulerlogm(v) + ⇡mv3 + �S`m(v)
⇤

,

�S`m(v) :=
1
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n
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(17a)

B. The V`m factorization

One can remove some more transcendentals and log-
arithms from ⌘̄`m/|S`m|2 by additionally factoring out
|V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

4

have modified their definition slightly since we are using
a di↵erent expansion parameter; cf. Fujita and Iyer [13],
who refer to this as eulerlog(m, v). We also find that the
logarithms remaining after the eulerlogm(v) substitution
can all be written in terms of log(2v2). Specifically, one
performs the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log 2 ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3
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(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

↵kv
2k +O(v8+4`), (15)

where ↵k 2 Q. Thus, through O(v7+4`), factoring out
|S`m|2 removes all the transcendentals, as well as the
odd powers and logarithms of v, and leaves a pure in-
teger order PN series with rational coe�cients. (N.B.:
These expressions contain the Euler-Mascheroni gamma
constant � and the Riemann zeta function evaluated at
odd integers. These numbers are not known to be tran-
scendental, or in many cases even irrational. However,
they are all strongly conjectured to be transcendental,
so we shall refer to them all as such.) This means that
for ` � 7, this factorization turns the 22PN total energy
flux results for ⌘`m into such purely rational integer order
PN series. Moreover, even higher-order terms that still
contain transcendentals and log v terms are significantly
simplified by this factorization, as illustrated in Sec. V.
One obtains the same simplification upon factoring out
|S`m| from |h`m| (i.e., the amplitude of the gravitational
wave modes), as one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

⌫̄`m(v) eulerlogm(v) + ⇡mv3 + �S`m(v)
⇤

,

�S`m(v) :=
1
X
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⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
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(17a)

B. The V`m factorization

One can remove some more transcendentals and log-
arithms from ⌘̄`m/|S`m|2 by additionally factoring out
|V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

This expression also helps explain why expanding the logarithm  
produces such a significant simplification.

Additionally, we can compare the expressions for Tlm and Slm to 
see why the latter removes so many more transcendentals

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ
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[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].
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The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]
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⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion
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modified their definition slightly since we are using a dif-
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panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write
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transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
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upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
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log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write
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[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].
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The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have
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out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion
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which gives
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rithms by additionally factoring out |V`m|2, where
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(not an integer)
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FIG. 3: Convergence of di↵erent factorizations and resummations for ⌘22 and ⌘21, computed for orbital radii of r0 = 6M (the
ISCO) for both modes and also for r0 = 10M for ⌘22 (the convergence of the various versions for ⌘21 for this radius are the
same as at the ISCO, except more rapid). We compare to the fluxes computed numerically by Fujita and Tagoshi [22]. The
notation for the di↵erent factorizations is that introduced in the text. The legend in the upper left-hand figure also applies to
the bottom two figures; the legend in the upper right-hand figure just applies to that figure, which shows the e↵ects of adding
in the V 0

`m factorization. Note also that the horizontal scales of the plots are all the same, but the vertical scales di↵er.

For ˜̃S`m, we just substitute ⌫̄`m(v) ! ⌫ = ` + ⌫̄`m(v)
inside the gamma functions in S`m and make the same
sort of overall scaling. (These overall scalings do not af-
fect the numerical convergence, though they make the
coe�cients in the expansion coe�cients simpler and thus
slightly speed up calculations of the factorization.)

We illustrate the convergence of the series with the
various factorizations and resummations in Figs. 3 and 4.
For the various factorizations, we compute the value of
the flux by multiplying the value of the full factoriza-
tion with no expansion with the value of the expansion
of the factorized flux to the given order. Of course, we
must also calculate the value of ⌫ used in the factoriza-
tions we introduce, but here we merely use the ✏18 [i.e.,
O(v54)] expansions provided to us by Abhay G. Shah:
The convergence of the PN expansion of ⌫ is rapid and
monotonic, so the fractional error in the value for ⌫ we
obtain from it is (measured from self-convergence) always
at least two orders of magnitude below the minimum er-
ror we find for a given mode of the flux. Additionally,

we can compare with the values of ⌫ given to 14 digits
in Table II of Fujita and Tagoshi [24] for ` = 2. Here we
find that the O(✏18) expansion reproduces all 14 digits
(up to the final digit, where the discrepancy may be due
to rounding) for M! = 0.1 (corresponding to a circular
orbit at a radius of r

0

' 7.4M for m = 2; recall that
! = m⌦). The O(✏18) expansion does not reproduce all
14 digits for the other values of M! in that table, but all
of these correspond to orbits inside the ISCO.
We find that in all cases we consider that the expo-

nential resummation produces the cleanest and fastest
convergence, in some cases improving the convergence
by more than four orders of magnitude (for modes with
large m), compared with the original series. The S̃`m

and ˜̃S`m factorizations also improve the convergence, in
some cases almost as much as the exponential resum-
mation, though they do so far less cleanly. While the
specifics of the convergence of these two factorizations
di↵er substantially, neither is clearly preferable. Adding
in the V 0

`m factorization modifies the specifics of the con-
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FIG. 3: Convergence of di↵erent factorizations and resummations for ⌘22 and ⌘21, computed for orbital radii of r0 = 6M (the
ISCO) for both modes and also for r0 = 10M for ⌘22 (the convergence of the various versions for ⌘21 for this radius are the
same as at the ISCO, except more rapid). We compare to the fluxes computed numerically by Fujita and Tagoshi [22]. The
notation for the di↵erent factorizations is that introduced in the text. The legend in the upper left-hand figure also applies to
the bottom two figures; the legend in the upper right-hand figure just applies to that figure, which shows the e↵ects of adding
in the V 0

`m factorization. Note also that the horizontal scales of the plots are all the same, but the vertical scales di↵er.

For ˜̃S`m, we just substitute ⌫̄`m(v) ! ⌫ = ` + ⌫̄`m(v)
inside the gamma functions in S`m and make the same
sort of overall scaling. (These overall scalings do not af-
fect the numerical convergence, though they make the
coe�cients in the expansion coe�cients simpler and thus
slightly speed up calculations of the factorization.)

We illustrate the convergence of the series with the
various factorizations and resummations in Figs. 3 and 4.
For the various factorizations, we compute the value of
the flux by multiplying the value of the full factoriza-
tion with no expansion with the value of the expansion
of the factorized flux to the given order. Of course, we
must also calculate the value of ⌫ used in the factoriza-
tions we introduce, but here we merely use the ✏18 [i.e.,
O(v54)] expansions provided to us by Abhay G. Shah:
The convergence of the PN expansion of ⌫ is rapid and
monotonic, so the fractional error in the value for ⌫ we
obtain from it is (measured from self-convergence) always
at least two orders of magnitude below the minimum er-
ror we find for a given mode of the flux. Additionally,

we can compare with the values of ⌫ given to 14 digits
in Table II of Fujita and Tagoshi [24] for ` = 2. Here we
find that the O(✏18) expansion reproduces all 14 digits
(up to the final digit, where the discrepancy may be due
to rounding) for M! = 0.1 (corresponding to a circular
orbit at a radius of r

0

' 7.4M for m = 2; recall that
! = m⌦). The O(✏18) expansion does not reproduce all
14 digits for the other values of M! in that table, but all
of these correspond to orbits inside the ISCO.
We find that in all cases we consider that the expo-

nential resummation produces the cleanest and fastest
convergence, in some cases improving the convergence
by more than four orders of magnitude (for modes with
large m), compared with the original series. The S̃`m

and ˜̃S`m factorizations also improve the convergence, in
some cases almost as much as the exponential resum-
mation, though they do so far less cleanly. While the
specifics of the convergence of these two factorizations
di↵er substantially, neither is clearly preferable. Adding
in the V 0

`m factorization modifies the specifics of the con-

Because the original Slm factorization actually 
worsens the rate of convergence in most cases, we 
introduced the following additional versions, with l 

contributions one could reasonably expect from the MST 
formalism
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FIG. 3: Convergence of di↵erent factorizations and resummations for ⌘22 and ⌘21, computed for orbital radii of r0 = 6M (the
ISCO) for both modes and also for r0 = 10M for ⌘22 (the convergence of the various versions for ⌘21 for this radius are the
same as at the ISCO, except more rapid). We compare to the fluxes computed by Fujita and Tagoshi [22] for r0 = 6M but
compare to the highest-order value of the exponential resummation for r0 = 10M , since it is of higher accuracy than the Fujita
and Tagoshi computation for such somewhat larger radii. We thus do not plot the 22PN point for the exponential resummation
for r0 = 10M . The notation for the di↵erent factorizations is that introduced in the text. The legend in the upper left-hand
figure also applies to the bottom two figures; the legend in the upper right-hand figure just applies to that figure, which shows
the e↵ects of adding in the V 0

`m factorization. Note also that the horizontal scales of the plots are all the same, but the vertical
scales di↵er.

S̃`m := (2mv)⌫̄`m(v)e⇡mv3 (2`+ 1)!

(`� 2)!

�[�1 + `+ ⌫̄`m(v)� 2imv3]

�[2 + 2`+ 2⌫̄`m(v)]
, (33a)

˜̃S`m := (2mv)⌫̄`m(v)e⇡mv3 (2`)!

`!

�[1 + `+ ⌫̄`m(v)� 2imv3]

�[1 + 2`+ 2⌫̄`m(v)]
. (33b)

Specifically, S̃`m contains the constants and ` terms in the
arguments of the gamma functions that come from con-
sidering the gamma functions present in |R⌫

C

/A⌫
+

|, which
is the portion of the MST formalism that leads to S`m, as
discussed in Sec. IV. We also add an overall scaling (the
factorials) to make the first term in the series unity. For
˜̃S`m just substitute ⌫̄`m(v) ! ⌫ = ` + ⌫̄`m(v) inside the
gamma functions in S`m and make the same sort of over-

all scaling. (These overall scalings do not a↵ect the nu-
merical convergence, though they make the coe�cients in
the expansion coe�cients simpler and thus slightly speed
up calculations of the factorization.)

We illustrate the convergence of the series with the
various factorizations and resummations in Figs. 3 and 4.
For the various factorizations, we compute the value of
the flux by multiplying the value of the full factorization

13

eulerlogm(v) contributions in coe�cients of powers that
are not divisible by 6 in the expansion of the logarithm
continues at higher orders and for other modes, as well.
Additionally, the expansion of the logarithm also only has
odd powers of v of the form v9+6(`+n), n 2 N

0

. Also note
(somewhere) that the eulerlogm(v) contributions that are
not removed by the S`m factorization (or even by V 0

`m)
first arise at one PN order higher for each increase in ` by
1. In particular, this means that the only non simple in-
teger PN series with rational coe�cients complexity left
in the 22PN energy flux expression for ⌘̄

6m/|S
6mV

6m|2
are one or two (depending on whether m is odd or even,
respectively) log(2v2) terms in the final one or two PN
orders, which could be removed with the q`m substitu-
tion [CHECK EXPLICITLY]; note that this also a↵ects
the purely rational term... (Mention the last bit in the
conclusions?)

While the S`mV 0
`m factorization successfully removes

all the odd powers of v, the removal of the eulerlogm(v)
terms by the logarithm in powers of v that are not di-
visible by 6 is likely another indicator of further struc-
ture in the expansion that is not being captured by
S`mV 0

`m: For instance, the coe�cients of eulerlog2
2

(v)v24

and eulerlog
2

(v) log(2v2)v24 in ⌘
22

/|S
22

V
22

|2 are 8/5 and
16/5 times the coe�cient of eulerlog

2

(v)v20, respectively,
and this coe�cient itself has the simple form 214/3251.
Moreover, the ⇡v21 and ⇣(3)v22 terms in ⌘

22

/|S
22

|2,
which are removed by the V`m factorization, also have
coe�cients that are very closely related to the coe�cient
of eulerlog

2

(v)v20, viz., 3/5 and 3 times it, respectively.

Finally, let us consider the overall simplification of the
highest-order terms in the 22PN expansion of ⌘

22

pro-
duced by the S`mV 0

`m factorization, expanding the log-
arithm, and combining the two: The original version of
⌘
22

has 171 terms each in the coe�cients of v42 and v44

and 93 terms in the coe�cient of v43, even after the
eulerlogm(v) and log(2v2) substitutions. The S`mV 0

`m
factorization and logarithm both remove the v43 coef-
ficient completely (though recall that the S`mV 0

`m fac-
torization removes all the odd powers of v, while the
logarithm only removes those that are not of the form
v9+6(`+n), n 2 N

0

, so, e.g., the v39 term remains). How-
ever, they simplify the v42 and v44 coe�cients slightly
di↵erently: The S`mV 0

`m factorization gives 70 terms in
both coe�cients, while the logarithm gives 75 terms in
the coe�cient of v42 and only 33 in the coe�cient of
v44. Combining the two simplifications gives (as might
be expected) the minimum number of terms in both co-
e�cients, viz., 70 in v42 and 33 in v44.

Since 42 is divisible by 6, the logarithm does not re-
duce the complexity of zeta values present in the coe�-
cient of v42 in ⌘

22

: ⇣(n) is present through n = 14 in the
logarithm, as it is in the original, while the maximum
n for which ⇣(n) is present with the S`mV 0

`m factoriza-
tion is 9. However, with both the S`mV 0

`m factorization
and the logarithm, the maximum power of eulerlog

2

(v)
in the coe�cient of v42 decreases from 7 to 5, as does
the maximum order of the products present, though nei-

ther of these simplifications reduce the maximum power
of log(2v2) present from 5. For the v44 coe�cient of ⌘

22

,
the S`mV 0

`m factorization gives the same simplification
as for v42, while the logarithm gives a much greater sim-
plification, removing all the powers of eulerlog

2

(v), in
addition to giving the same simplification of the values
of ⇣(n) present as the S`mV 0

`m factorization. Of course,
for modes with higher `, for which the �⌫ � 1 terms in
the MST formalism make less of a contribution, the sim-
plification of the highest terms produced by the S`mV 0

`m
factorization is much more considerable, as is illustrated
in Figs. 1 and 2.

VI. CONVERGENCE OF THE SIMPLIFIED
MODES OF THE ENERGY FLUX

We now wish see how these various factorizations and
resummations a↵ect the convergence of the series, so we
consider a few illustrative cases, saving a more detailed
investigation and comparison with other resummation
methods (e.g., Padé and Chebyschev [9, 21]) to future
work. Specifically, we compare the convergence of ⌘

22

,
⌘
21

, ⌘
33

, and ⌘
55

for orbits at two relatively small radii,
viz., r

0

= 6M , the Schwarzschild innermost stable cir-
cular orbit (ISCO), and 10M , providing a rather strin-
gent test of the convergence. For the ISCO, we can com-
pare with the fluxes calculated to 11 digits by Fujita and
Tagoshi [22] through ` = 6. They also calculated these
fluxes to the same accuracy for r

0

= 10M , but there the
convergence of the series is rapid enough that its value
is accurate to more than 11 digits at higher orders, so
we merely consider its self-convergence, comparing with
the highest-order value of the exponential resummation
known from the 22PN energy flux results, since we find
that the exponential resummation gives the clearest im-
provement of the convergence of all the di↵erent factor-
izations and resummations we consider. (Note that we
find the same qualitative behavior for the convergence at
the ISCO when we consider this sort of self-convergence
there instead of comparing with the results from Fujita
and Tagoshi.)
Since we find that the S`m factorization does not im-

prove convergence (and indeed makes it less rapid than
that of the original series in many cases), while the T`m

factorization does improve convergence (though not as
much as the exponential resummation), we also consider
two alternatives to S`m that include the ` terms accom-
panying ⌫ in the gamma functions (since similar factors
are present in T`m), viz.,

S̃`m := (2mv)⌫̄`m(v)e⇡mv3 (2`+ 1)!

(`� 2)!

⇥ �[�1 + `+ ⌫̄`m(v)� 2imv3]

�[2 + 2`+ 2⌫̄`m(v)]
, (33a)

˜̃S`m := (2mv)⌫̄`m(v)e⇡mv3 (2`)!

`!

�[1 + `+ ⌫̄`m(v)� 2imv3]

�[1 + 2`+ 2⌫̄`m(v)]
.

(33b)
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FIG. 4: Convergence of di↵erent factorizations and resummations for ⌘33 and ⌘55, computed for orbital radii of r0 = 6M (the
ISCO) and r0 = 10M . The notation and other comments are the same as for Fig. 3, except that we do not show any results
for the factorizations involving V 0

`m here, for simplicity—including V 0
`m only changes the results at the highest orders, where

the di↵erence in behavior is of the same sort seen for ⌘22, r0 = 6M in Fig. 3.

vergence, but again produces no clear improvement. (We
only show this for ⌘

22

at r
0

= 6M , but the e↵ects are
similar for the other cases, though the di↵erences are
less pronounced overall.) If one combines the exponen-

tial resummation with the S̃`m or ˜̃S`m factorizations, one
obtains much the same results as the exponential resum-
mation on its own, so we do not show this. The T`m

factorization also improves the convergence, though less

than the S̃`m and ˜̃S`m factorizations. Finally, the S`m

factorization worsens the series’ convergence in all cases
we show, except for ⌘

21

.

It is not clear why the di↵erent modes exhibit the sig-
nificant di↵erences in convergence seen in Figs. 3 and 4.
In particular, the large dip in the convergence of log ⌘

22

for r
0

= 6M does not occur at the PN order where one
first gets contributions from the �⌫�1 terms in the MST
formalism, which is 8PN, at which point one might expect
something unusual might happen, but rather somewhat
later, between about 12PN and 16PN. While 12PN is
indeed the point at which log ⌘

22

starts to display large
increases in complexity [see Eq. (32)], the same is true

for log ⌘
21

, and we do not see similar behavior there. In-
deed, it is surprising that the convergence of ⌘

21

is so
monotonic, compared with ⌘

22

. Some of this may be due
to the fact that the expansion parameter for many of the
quantities in the MST formalism is ✏ = 2mv3, which be-
comes smaller as m decreases (for a given v), but this
is surely not all. However, this argument with ✏ may
help explain why the original series for the modes with
higher m converge significantly less rapidly than those
with small m; cf., e.g., ⌘

55

with the other modes shown
in Figs. 3 and 4. For comparison, though we do not show
this, the original ⌘

51

converges at very close to the same
rate as the exponential resummation of ⌘

55

at higher or-
ders (with a fractional error at the highest order known
of ⇠ 10�7 for r

0

= 6M), and exponential resummation
makes only a very small improvement in the convergence
of ⌘

51

. Nevertheless, the argument with ✏ does not seem
to explain why the exponential resummation, in partic-
ular, is so e↵ective in increasing the high-m modes’ rate
of convergence.

Finally, it is also unclear why the half-integer PN con-



Improvement of the convergence of the full energy flux (summed through 
l = 6) at the ISCO from exponential resummation of the individual modes
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Conclusions

• While the post-Newtonian expansion exhibits combinatorial complexity at higher 
orders for many quantities, it is possible to significantly simplify these results with 
an appropriate factorization, at least for the modes of the 22PN expression for the 
energy flux at infinity for a point particle in a circular orbit around a Schwarzschild 
black hole, the highest-order compact binary PN result known. 

• In the best case (for the modes with l ≥ 7), this factorization produces the 
maximum simplification one can hope for, reducing the complete 22PN results to 
a simple integer PN series with rational coefficients, reducing the size of the 
expressions by a factor of up to ~150. 

• Even for the modes with smaller l, this factorization still reduces the series to an 
integer PN series with rational coefficients for lower orders (to 8PN for the 
dominant 2,2 mode), and substantially reduces the complexity of the higher 
orders (by a total factor of ~10 for the 2,2 mode, ~20 if one uses the factorization 
combined with the logarithm).
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Conclusions (cont.)

• The exponential resummation also simplifies the modes, 
for small l almost as much, or even slightly more than, 
the factorization. It also improves the convergence of the 
series the most (both in terms of speed and 
monotonicity), giving ~4 orders of magnitude 
improvement for the full energy flux at the ISCO, due to 
the improvement in the convergence of the higher 
modes. 

• The simplified expressions for the modes of the energy 
flux I have calculated are freely available online.
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Outlook

• In addition to seeing about further simplifying the remaining terms in the 
series, (by, e.g., looking at the ν and -ν - 1 pieces separately) it should be 
possible to apply these sorts of techniques to many other quantities that 
have been calculated to high PN order using the MST formalism, such as 
the horizon flux in Schwarzschild, and both fluxes in Kerr (for circular 
orbits), in addition to the redshift observable and the spin precession 
frequency, which aren’t radiative quantities, but still get complexity from tail 
contributions: One sees very similar sorts of structures in the expansions 
of these quantities. 

• It is likely that these sorts of simplifications could aid in determining 
analytic forms for some high-order PN coefficients that have so far only 
been determined numerically (to extremely high accuracy), either by 
eliminating log v terms and transcendentals, or by indicating their 
expected form.
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Outlook (cont.)

• This sort of analysis could also lend insight into the 
physical content of the MST formalism, which has 
remained rather opaque to date. For instance, it appears 
that the renormalized angular momentum ν encodes tail 
effects. 

• Finally, these sorts of studies of the structure of high-order 
PN expansions might even be able to discover some of 
the same deep connections to other branches of 
mathematics that have been found in similar studies of 
expansions of QFT amplitudes. (Indeed, the same sorts of 
loop integrals can be used to describe both calculations.)
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Why do these simplifications simplify? 
A brief look at the workings of the MST BHPT formalism

• The fundamental insight of the formalism is that it is 
possible to write the Teukolsky equation [or the Regge-Wheeler 

equation] in a form that allows it to be expressed as a series 
in Coulomb wave functions. 

• One obtains this form by introducing a “convenient zero” 
involving a parameter ν, which is fixed by demanding that 
the series converge. [               ; one determines ν from 
the solution of a continued fraction equation, which one 
demands reduce to l for v → 0.]

35

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational. However, they are strongly con-
jectured to be transcendental, so we shall refer to them
all as such.) This means that for ` � 7, this factoriza-
tion turns the 22PN total energy flux results for ⌘`m into
such purely rational integer order PN series. Moreover,
even higher-order terms that still contain transcenden-
tals and log v terms are significantly simplified by this
factorization, as illustrated in Sec. V. One obtains the
same simplification upon factoring out |S`m| from |h`m|
(i.e., the amplitude of the gravitational wave modes), as
one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

2

m is the mode’s degree (i.e., its magnetic quantum num-
ber).

Such complicated expressions are obviously not easy to
work with, even within a computer algebra system, and
we present here a factorization that substantially reduces
this complexity. This factorization acts on the spherical
harmonic modes of the energy flux (and thus also on the
amplitude of the gravitational waveform), and was ob-
tained by a combination of a study of the prime factoriza-
tion of the coe�cients of the energy flux, the expressions
used in the black hole perturbation theory formalism of
Mano, Suzuki, and Takasugi [5, 6], and the tail resum-
mation introduced by Damour and Nagar [7] (which also
simplifies the flux modes, though not nearly as much as
the factorization we introduce). Additionally, we con-
sider the exponential resummation proposed for the full
energy flux by Isoyama et al. [8] to improve the conver-
gence of the series (and ensure positivity of the flux in
the Kerr case). Here we find that it considerably sim-
plifies the individual modes (though not quite as much
as the factorization, except for the highest orders), and
also improves agreement with numerical calculations of
the flux even more when applied to the individual modes
with high degree m than when applied to the full flux.
We also note that all these expressions are also simplified
by appropriate substitutions, including one involving the
eulerlogm(v) function introduced by Damour, Iyer, and
Nagar [9].

The paper is structured as follows: We first review
the relevant parts of the Mano, Suzuki, and Takasugi
black hole perturbation theory formalism in Sec. II, and
then state the factorizations we consider in Sec. III. We
discuss how they were obtained and their structure in
Sec. IV, and illustrate their action (and that of the other
simplifications we consider) in Sec. V. We then briefly
discuss how much the various factorizations and resum-
mations we consider a↵ect the convergence of the series in
Sec. VI, and summarize and conclude in Sec. VII. We use
geometrized units throughout, with Newton’s constant G
and the speed of light c both set to unity.

II. THE MANO, SUZUKI, AND TAKASUGI
BLACK HOLE PERTURBATION THEORY

FORMALISM IN THE SCHWARZSCHILD CASE

We start by recalling a few salient facts about the com-
putation of the energy flux and gravitational waveform
at infinity using black hole perturbation theory, specif-
ically in the formalism of Mano, Suzuki, and Takasugi
(MST) [5, 6], reviewed in [2]. The specific expressions
we use here in the Schwarzschild case (but still using the
Teukolsky equation) are given in Fujita [3]. In this for-
malism, one works in the frequency domain, with gravi-
tational wave frequency !, and also makes an expansion
in (spin-weighted) spherical harmonics, indexed by ` and
m, so ! = m⌦, where ⌦ =

p

M/r3
0

for a particle in a cir-
cular orbit at Schwarzschild coordinate radius r

0

around

a black hole of mass M . We also have v =
p

M/r
0

, so
M⌦ = v3. The basic quantities are Z`m!, which are com-
puted from a solution to the Teukolsky equation. One
then computes the energy flux at infinity by [Eq. (2.11)
in Fujita [3]]

⌧

dE

dt

�

1
=

X

`,m

|Z`m!|2

4⇡!2

(1)

and the waveform modes by [Eq. (2.12) in Fujita [3]]

h`m = �2

r

Z`m!

!2

ei!(r⇤�t), (2)

where r⇤ = r + 2M log(r/2M � 1) is the tortoise coordi-
nate.

We now discuss how one computes Z`m!. Fundamen-
tal to the MST approach is the introduction of the renor-
malized angular momentum ⌫, which allows the solution
to the Teukolsky (or Regge-Wheeler) equation to be ex-
pressed as a series of Coulomb wave functions, following
a line of ideas first introduced in general relativity by
Leaver [10] (and dating back to relatively early work in
quantum mechanics, as discussed by Leaver). One fixes
⌫ by demanding that the series converge and finds that
it is given by the solution of a continued fraction equa-
tion [Eq. (3.5) in Fujita [3]; Eq. (3.12) is used in prac-
tice]. Specifically, it is the solution to that equation that
reduces to ` when v ! 0. [Nota bene (N.B.): ⌫ de-
pends upon `, m, and v, though it is not customary in
the literature to indicate any of this dependence explic-
itly.] If one performs a post-Newtonian expansion of ⌫
for Schwarzschild, one finds that it has the form

⌫ = `+
1
X

k=1

[⌫`]k (2mv3)2k, (3)

where [⌫`]k 2 Q. Bini and Damour give [⌫`]k for k 2
{1, 2, 3} in the Appendix of [11] [where it is referred to
as ⌫

2k(`)], though we need ⌫ to considerably higher orders
than given by Bini and Damour [to O(v42) for ` 2 {2, 3}].
Expansions to O(v54) have been calculated for us by Ab-
hay G. Shah and are included in the electronic material
accompanying this article [12].

One then obtains Z`m! from

Z`m! =
L`m!R

in

`m!

Binc

`m!

, (4)

where L`m! is a linear, second-order di↵erential
operator (which di↵erentiates with respect to r

0

,
the Schwarzschild coordinate orbital radius) given in
Eq. (2.9) in Fujita [3], and [Eqs. (3.8), (3.10b), and
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m is the mode’s degree (i.e., its magnetic quantum num-
ber).

Such complicated expressions are obviously not easy to
work with, even within a computer algebra system, and
we present here a factorization that substantially reduces
this complexity. This factorization acts on the spherical
harmonic modes of the energy flux (and thus also on the
amplitude of the gravitational waveform), and was ob-
tained by a combination of a study of the prime factoriza-
tion of the coe�cients of the energy flux, the expressions
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II. THE MANO, SUZUKI, AND TAKASUGI
BLACK HOLE PERTURBATION THEORY

FORMALISM IN THE SCHWARZSCHILD CASE
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where ✏ := 2M! = 2mv3, � is the gamma function,
and a⌫n are the coe�cients in the Coulomb wave function
expansion of R⌫

C

; see Eq. (7), below. [These coe�cients
are given explicitly for �2  n  2 through O(✏2) in
Eqs. (3.15) in Fujita and Iyer [13] (note that n⌫
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= 1)].
We also have [Eq. (3.9) in Fujita [3]]
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where N 2 Z is arbitrary (K⌫ is in fact independent of N , despite appearances) and (x)n := �(x + n)/�(x) is the
Pochhammer symbol. Finally, we have [Eqs. (3.1) and (3.2) in Fujita [3], evaluated at r = r
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where �(↵,�; z) is the confluent hypergeometric function
that is regular at z = 0.

III. SIMPLIFYING THE MODES OF THE
ENERGY FLUX

Here we consider seven di↵erent ways to simplify the
(spin-weighted) spherical harmonic modes of the gravi-
tational wave energy flux from a point particle in a cir-
cular orbit about a Schwarzschild black hole: Perform-
ing a substitution, computing the PN expansion of the
logarithm of the flux, and four di↵erent factorizations, as
well as the combination of the expansion of the logarithm
with the most e↵ective factorization. In all cases, the
substitutions act on the individual (spin-weighted spher-
ical harmonic) modes of the flux ⌘`m, defined so that the
total energy flux is given by

⌧
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dt
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`,m

⌘`m, (8)

where hdE/dti
Newt

= (32/5)(µ/M)2v10, µ is the reduced
mass, and the sum is taken only over m � 1 (there are
no m = 0 contributions, and the negative m values just
would duplicate the positive ones, so they are lumped

together, for convenience). We mostly consider ⌘̄`m, de-
fined to be ⌘`m with the lowest-order piece factored out,
so the first term in the series is 1 (so ⌘̄

22

= ⌘
22

, but all
the other modes are modified). Note that the leading
power of v in ⌘`m is given by

p`m =

(

2`� 4 if `+m is even,

2`� 2 if `+m is odd,
(9)

so that ⌘`m is known to (22 � p`m/2)PN for the 22PN
total energy flux. The leading coe�cient (which is ratio-
nal) can be deduced from the expressions for the lead-
ing term in the PN expansion of the waveform modes in
Eqs. (330) in Blanchet’s Living Review [1]; explicit ex-
pressions are given in the Mathematica notebook asso-
ciated with this paper [12]. Note also that the waveform
modes are given to 2.5PN for a general ` and m by Fu-
jita and Iyer [13], though they leave their expressions in
terms of spin-weighted spherical harmonics, while the ex-
pressions obtain from Blanchet are completely explicit.
The simplifying substitution is given using the function

eulerlogm(v) := � + log(2mv), (10)

first introduced by Damour, Iyer, and Nagar [9]. Here �
denotes the Euler-Mascheroni gamma constant. We have
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3

(3.11a) in Fujita [3]]

Rin

`m! = K⌫R
⌫
C

+K�⌫�1

R�⌫�1

C

, (5a)

Binc

`m! =
1

!



K⌫ � ie�i⇡⌫ sin⇡(⌫ + i✏)

sin⇡(⌫ � i✏)
K�⌫�1

�

A⌫
+

✏�i✏,

(5b)

A⌫
+

= 2�3�i✏e�⇡✏/2ei⇡(⌫+3)/2�(⌫ + 3 + i✏)

�(⌫ � 1� i✏)

1
X

n=�1
a⌫n,

(5c)

where ✏ := 2M! = 2mv3, � is the gamma function,
and a⌫n are the coe�cients in the Coulomb wave function
expansion of R⌫

C

; see Eq. (7), below. [These coe�cients
are given explicitly for �2  n  2 through O(✏2) in
Eqs. (3.15) in Fujita and Iyer [13] (note that n⌫

0

= 1)].
We also have [Eq. (3.9) in Fujita [3]]

K⌫ =
ei✏(2✏)�2�⌫�N�(3� 2i✏)�(N + 2⌫ + 2)

�(N + ⌫ + 3 + i✏)�(N + ⌫ + 1 + i✏)�(N + ⌫ � 1 + i✏)

⇥
" 1
X

n=N

(�1)n
�(n+N + 2⌫ + 1)

(n�N)!

�(n+ ⌫ � 1 + i✏)�(n+ ⌫ + 1 + i✏)

�(n+ ⌫ � 3� i✏)�(n+ ⌫ + 1� i✏)
a⌫n

#

⇥
"

N
X

n=�1

(�1)n

(N � n)!(N + 2⌫ + 2)n

(⌫ � 1� i✏)n
(⌫ + 3 + i✏)n

a⌫n

#�1

,

(6)

where N 2 Z is arbitrary (K⌫ is in fact independent of N , despite appearances) and (x)n := �(x + n)/�(x) is the
Pochhammer symbol. Finally, we have [Eqs. (3.1) and (3.2) in Fujita [3], evaluated at r = r

0

]

R⌫
C

= (!r
0

)2
✓

1� ✏

!r
0

◆

2�i✏

e�i!r
0

1
X

n=�1
(�i)n(2!r

0

)n+⌫ (⌫ � 1� i✏)n
(⌫ + 3 + i✏)n

�(n+ ⌫ + 3 + i✏)

�(2n+ 2⌫ + 2)
a⌫n�(n+⌫+3+i✏, 2n+2⌫+2; 2i!r

0

),

(7)

where �(↵,�; z) is the confluent hypergeometric function
that is regular at z = 0.

III. SIMPLIFYING THE MODES OF THE
ENERGY FLUX

Here we consider seven di↵erent ways to simplify the
(spin-weighted) spherical harmonic modes of the gravi-
tational wave energy flux from a point particle in a cir-
cular orbit about a Schwarzschild black hole: Perform-
ing a substitution, computing the PN expansion of the
logarithm of the flux, and four di↵erent factorizations, as
well as the combination of the expansion of the logarithm
with the most e↵ective factorization. In all cases, the
substitutions act on the individual (spin-weighted spher-
ical harmonic) modes of the flux ⌘`m, defined so that the
total energy flux is given by

⌧

dE

dt

�

1
=:

⌧

dE

dt

�

Newt

X

`,m

⌘`m, (8)

where hdE/dti
Newt

= (32/5)(µ/M)2v10, µ is the reduced
mass, and the sum is taken only over m � 1 (there are
no m = 0 contributions, and the negative m values just
would duplicate the positive ones, so they are lumped

together, for convenience). We mostly consider ⌘̄`m, de-
fined to be ⌘`m with the lowest-order piece factored out,
so the first term in the series is 1 (so ⌘̄

22

= ⌘
22

, but all
the other modes are modified). Note that the leading
power of v in ⌘`m is given by

p`m =

(

2`� 4 if `+m is even,

2`� 2 if `+m is odd,
(9)

so that ⌘`m is known to (22 � p`m/2)PN for the 22PN
total energy flux. The leading coe�cient (which is ratio-
nal) can be deduced from the expressions for the lead-
ing term in the PN expansion of the waveform modes in
Eqs. (330) in Blanchet’s Living Review [1]; explicit ex-
pressions are given in the Mathematica notebook asso-
ciated with this paper [12]. Note also that the waveform
modes are given to 2.5PN for a general ` and m by Fu-
jita and Iyer [13], though they leave their expressions in
terms of spin-weighted spherical harmonics, while the ex-
pressions obtain from Blanchet are completely explicit.
The simplifying substitution is given using the function

eulerlogm(v) := � + log(2mv), (10)

first introduced by Damour, Iyer, and Nagar [9]. Here �
denotes the Euler-Mascheroni gamma constant. We have

3

(3.11a) in Fujita [3]]

Rin

`m! = K⌫R
⌫
C

+K�⌫�1

R�⌫�1

C

, (5a)

Binc

`m! =
1

!



K⌫ � ie�i⇡⌫ sin⇡(⌫ + i✏)

sin⇡(⌫ � i✏)
K�⌫�1

�

A⌫
+

✏�i✏,

(5b)

A⌫
+

= 2�3�i✏e�⇡✏/2ei⇡(⌫+3)/2�(⌫ + 3 + i✏)

�(⌫ � 1� i✏)

1
X

n=�1
a⌫n,

(5c)

where ✏ := 2M! = 2mv3, � is the gamma function,
and a⌫n are the coe�cients in the Coulomb wave function
expansion of R⌫

C

; see Eq. (7), below. [These coe�cients
are given explicitly for �2  n  2 through O(✏2) in
Eqs. (3.15) in Fujita and Iyer [13] (note that n⌫

0

= 1)].
We also have [Eq. (3.9) in Fujita [3]]

K⌫ =
ei✏(2✏)�2�⌫�N�(3� 2i✏)�(N + 2⌫ + 2)

�(N + ⌫ + 3 + i✏)�(N + ⌫ + 1 + i✏)�(N + ⌫ � 1 + i✏)

⇥
" 1
X

n=N

(�1)n
�(n+N + 2⌫ + 1)

(n�N)!

�(n+ ⌫ � 1 + i✏)�(n+ ⌫ + 1 + i✏)

�(n+ ⌫ � 3� i✏)�(n+ ⌫ + 1� i✏)
a⌫n

#

⇥
"

N
X

n=�1

(�1)n

(N � n)!(N + 2⌫ + 2)n

(⌫ � 1� i✏)n
(⌫ + 3 + i✏)n

a⌫n

#�1

,

(6)

where N 2 Z is arbitrary (K⌫ is in fact independent of N , despite appearances) and (x)n := �(x + n)/�(x) is the
Pochhammer symbol. Finally, we have [Eqs. (3.1) and (3.2) in Fujita [3], evaluated at r = r

0

]

R⌫
C

= (!r
0

)2
✓

1� ✏

!r
0

◆

2�i✏

e�i!r
0

1
X

n=�1
(�i)n(2!r

0

)n+⌫ (⌫ � 1� i✏)n
(⌫ + 3 + i✏)n

�(n+ ⌫ + 3 + i✏)

�(2n+ 2⌫ + 2)
a⌫n�(n+⌫+3+i✏, 2n+2⌫+2; 2i!r

0

),

(7)

where �(↵,�; z) is the confluent hypergeometric function
that is regular at z = 0.

III. SIMPLIFYING THE MODES OF THE
ENERGY FLUX

Here we consider seven di↵erent ways to simplify the
(spin-weighted) spherical harmonic modes of the gravi-
tational wave energy flux from a point particle in a cir-
cular orbit about a Schwarzschild black hole: Perform-
ing a substitution, computing the PN expansion of the
logarithm of the flux, and four di↵erent factorizations, as
well as the combination of the expansion of the logarithm
with the most e↵ective factorization. In all cases, the
substitutions act on the individual (spin-weighted spher-
ical harmonic) modes of the flux ⌘`m, defined so that the
total energy flux is given by

⌧

dE

dt

�

1
=:

⌧

dE

dt

�

Newt

X

`,m

⌘`m, (8)

where hdE/dti
Newt

= (32/5)(µ/M)2v10, µ is the reduced
mass, and the sum is taken only over m � 1 (there are
no m = 0 contributions, and the negative m values just
would duplicate the positive ones, so they are lumped

together, for convenience). We mostly consider ⌘̄`m, de-
fined to be ⌘`m with the lowest-order piece factored out,
so the first term in the series is 1 (so ⌘̄

22

= ⌘
22

, but all
the other modes are modified). Note that the leading
power of v in ⌘`m is given by

p`m =

(

2`� 4 if `+m is even,

2`� 2 if `+m is odd,
(9)

so that ⌘`m is known to (22 � p`m/2)PN for the 22PN
total energy flux. The leading coe�cient (which is ratio-
nal) can be deduced from the expressions for the lead-
ing term in the PN expansion of the waveform modes in
Eqs. (330) in Blanchet’s Living Review [1]; explicit ex-
pressions are given in the Mathematica notebook asso-
ciated with this paper [12]. Note also that the waveform
modes are given to 2.5PN for a general ` and m by Fu-
jita and Iyer [13], though they leave their expressions in
terms of spin-weighted spherical harmonics, while the ex-
pressions obtain from Blanchet are completely explicit.
The simplifying substitution is given using the function

eulerlogm(v) := � + log(2mv), (10)

first introduced by Damour, Iyer, and Nagar [9]. Here �
denotes the Euler-Mascheroni gamma constant. We have

3

(3.11a) in Fujita [3]]

Rin

`m! = K⌫R
⌫
C

+K�⌫�1

R�⌫�1

C

, (5a)

Binc

`m! =
1

!



K⌫ � ie�i⇡⌫ sin⇡(⌫ + i✏)

sin⇡(⌫ � i✏)
K�⌫�1

�

A⌫
+

✏�i✏,

(5b)

A⌫
+

= 2�3�i✏e�⇡✏/2ei⇡(⌫+3)/2�(⌫ + 3 + i✏)

�(⌫ � 1� i✏)

1
X

n=�1
a⌫n,

(5c)

where ✏ := 2M! = 2mv3, � is the gamma function,
and a⌫n are the coe�cients in the Coulomb wave function
expansion of R⌫

C

; see Eq. (7), below. [These coe�cients
are given explicitly for �2  n  2 through O(✏2) in
Eqs. (3.15) in Fujita and Iyer [13] (note that n⌫

0

= 1)].
We also have [Eq. (3.9) in Fujita [3]]

K⌫ =
ei✏(2✏)�2�⌫�N�(3� 2i✏)�(N + 2⌫ + 2)

�(N + ⌫ + 3 + i✏)�(N + ⌫ + 1 + i✏)�(N + ⌫ � 1 + i✏)

⇥
" 1
X

n=N

(�1)n
�(n+N + 2⌫ + 1)

(n�N)!

�(n+ ⌫ � 1 + i✏)�(n+ ⌫ + 1 + i✏)

�(n+ ⌫ � 3� i✏)�(n+ ⌫ + 1� i✏)
a⌫n

#

⇥
"

N
X

n=�1

(�1)n

(N � n)!(N + 2⌫ + 2)n

(⌫ � 1� i✏)n
(⌫ + 3 + i✏)n

a⌫n

#�1

(6)

where N 2 Z is arbitrary (K⌫ is in fact independent of N , despite appearances) and (x)n := �(x + n)/�(x) is the
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where �(↵,�; z) is the confluent hypergeometric function
that is regular at z = 0.

III. SIMPLIFYING THE MODES OF THE
ENERGY FLUX

Here we consider seven di↵erent ways to simplify the
(spin-weighted) spherical harmonic modes of the gravi-
tational wave energy flux from a point particle in a cir-
cular orbit about a Schwarzschild black hole: Perform-
ing a substitution, computing the PN expansion of the
logarithm of the flux, and four di↵erent factorizations, as
well as the combination of the expansion of the logarithm
with the most e↵ective factorization. In all cases, the
substitutions act on the individual (spin-weighted spher-
ical harmonic) modes of the flux ⌘`m, defined so that the
total energy flux is given by
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where hdE/dti
Newt

= (32/5)(µ/M)2v10, µ is the reduced
mass, and the sum is taken only over m � 1 (there are
no m = 0 contributions, and the negative m values just
would duplicate the positive ones, so they are lumped

together, for convenience). We mostly consider ⌘̄`m, de-
fined to be ⌘`m with the lowest-order piece factored out,
so the first term in the series is 1 (so ⌘̄
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total energy flux. The leading coe�cient (which is ratio-
nal) can be deduced from the expressions for the lead-
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Eqs. (330) in Blanchet’s Living Review [1]; explicit ex-
pressions are given in the Mathematica notebook asso-
ciated with this paper [12]. Note also that the waveform
modes are given to 2.5PN for a general ` and m by Fu-
jita and Iyer [13], though they leave their expressions in
terms of spin-weighted spherical harmonics, while the ex-
pressions obtain from Blanchet are completely explicit.
The simplifying substitution is given using the function

eulerlogm(v) := � + log(2mv), (10)

first introduced by Damour, Iyer, and Nagar [9]. Here �
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m is the mode’s degree (i.e., its magnetic quantum num-
ber).

Such complicated expressions are obviously not easy to
work with, even within a computer algebra system, and
we present here a factorization that substantially reduces
this complexity. This factorization acts on the spherical
harmonic modes of the energy flux (and thus also on the
amplitude of the gravitational waveform), and was ob-
tained by a combination of a study of the prime factoriza-
tion of the coe�cients of the energy flux, the expressions
used in the black hole perturbation theory formalism of
Mano, Suzuki, and Takasugi [5, 6], and the tail resum-
mation introduced by Damour and Nagar [7] (which also
simplifies the flux modes, though not nearly as much as
the factorization we introduce). Additionally, we con-
sider the exponential resummation proposed for the full
energy flux by Isoyama et al. [8] to improve the conver-
gence of the series (and ensure positivity of the flux in
the Kerr case). Here we find that it considerably sim-
plifies the individual modes (though not quite as much
as the factorization, except for the highest orders), and
also improves agreement with numerical calculations of
the flux even more when applied to the individual modes
with high degree m than when applied to the full flux.
We also note that all these expressions are also simplified
by appropriate substitutions, including one involving the
eulerlogm(v) function introduced by Damour, Iyer, and
Nagar [9].

The paper is structured as follows: We first review
the relevant parts of the Mano, Suzuki, and Takasugi
black hole perturbation theory formalism in Sec. II, and
then state the factorizations we consider in Sec. III. We
discuss how they were obtained and their structure in
Sec. IV, and illustrate their action (and that of the other
simplifications we consider) in Sec. V. We then briefly
discuss how much the various factorizations and resum-
mations we consider a↵ect the convergence of the series in
Sec. VI, and summarize and conclude in Sec. VII. We use
geometrized units throughout, with Newton’s constant G
and the speed of light c both set to unity.

II. THE MANO, SUZUKI, AND TAKASUGI
BLACK HOLE PERTURBATION THEORY

FORMALISM IN THE SCHWARZSCHILD CASE

We start by recalling a few salient facts about the com-
putation of the energy flux and gravitational waveform
at infinity using black hole perturbation theory, specif-
ically in the formalism of Mano, Suzuki, and Takasugi
(MST) [5, 6], reviewed in [2]. The specific expressions
we use here in the Schwarzschild case (but still using the
Teukolsky equation) are given in Fujita [3]. In this for-
malism, one works in the frequency domain, with gravi-
tational wave frequency !, and also makes an expansion
in (spin-weighted) spherical harmonics, indexed by ` and
m, so ! = m⌦, where ⌦ =

p

M/r3
0

for a particle in a cir-
cular orbit at Schwarzschild coordinate radius r

0

around

a black hole of mass M . We also have v =
p

M/r
0

, so
M⌦ = v3. The basic quantities are Z`m!, which are com-
puted from a solution to the Teukolsky equation. One
then computes the energy flux at infinity by [Eq. (2.11)
in Fujita [3]]

⌧

dE

dt
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1
=

X

`,m

|Z`m!|2

4⇡!2

(1)

and the waveform modes by [Eq. (2.12) in Fujita [3]]

h`m = �2

r

Z`m!

!2

ei!(r⇤�t), (2)

where r⇤ = r + 2M log(r/2M � 1) is the tortoise coordi-
nate.

We now discuss how one computes Z`m!. Fundamen-
tal to the MST approach is the introduction of the renor-
malized angular momentum ⌫, which allows the solution
to the Teukolsky (or Regge-Wheeler) equation to be ex-
pressed as a series of Coulomb wave functions, following
a line of ideas first introduced in general relativity by
Leaver [10] (and dating back to relatively early work in
quantum mechanics, as discussed by Leaver). One fixes
⌫ by demanding that the series converge and finds that
it is given by the solution of a continued fraction equa-
tion [Eq. (3.5) in Fujita [3]; Eq. (3.12) is used in prac-
tice]. Specifically, it is the solution to that equation that
reduces to ` when v ! 0. [Nota bene (N.B.): ⌫ de-
pends upon `, m, and v, though it is not customary in
the literature to indicate any of this dependence explic-
itly.] If one performs a post-Newtonian expansion of ⌫
for Schwarzschild, one finds that it has the form

⌫ = `+
1
X

k=1

[⌫`]k (2mv3)2k, (3)

where [⌫`]k 2 Q. Bini and Damour give [⌫`]k for k 2
{1, 2, 3} in the Appendix of [11] [where it is referred to
as ⌫

2k(`)], though we need ⌫ to considerably higher orders
than given by Bini and Damour [to O(v42) for ` 2 {2, 3}].
Expansions to O(v54) have been calculated for us by Ab-
hay G. Shah and are included in the electronic material
accompanying this article [12].

One then obtains Z`m! from

Z`m! =
L`m!R

in

`m!

Binc

`m!

, (4)

where L`m! is a linear, second-order di↵erential
operator (which di↵erentiates with respect to r

0

,
the Schwarzschild coordinate orbital radius) given in
Eq. (2.9) in Fujita [3], and [Eqs. (3.8), (3.10b), and
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(3.11a) in Fujita [3]]
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where ✏ := 2M! = 2mv3, � is the gamma function,
and a⌫n are the coe�cients in the Coulomb wave function
expansion of R⌫

C

; see Eq. (7), below. [These coe�cients
are given explicitly for �2  n  2 through O(✏2) in
Eqs. (3.15) in Fujita and Iyer [13] (note that n⌫

0

= 1)].
We also have [Eq. (3.9) in Fujita [3]]
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where N 2 Z is arbitrary (K⌫ is in fact independent of N , despite appearances) and (x)n := �(x + n)/�(x) is the
Pochhammer symbol. Finally, we have [Eqs. (3.1) and (3.2) in Fujita [3], evaluated at r = r

0

]

R⌫
C

= (!r
0

)2
✓

1� ✏

!r
0

◆

2�i✏

e�i!r
0

1
X

n=�1
(�i)n(2!r

0

)n+⌫ (⌫ � 1� i✏)n
(⌫ + 3 + i✏)n

�(n+ ⌫ + 3 + i✏)

�(2n+ 2⌫ + 2)
a⌫n�(n+⌫+3+i✏, 2n+2⌫+2; 2i!r

0

),

(7)

where �(↵,�; z) is the confluent hypergeometric function
that is regular at z = 0.

III. SIMPLIFYING THE MODES OF THE
ENERGY FLUX

Here we consider seven di↵erent ways to simplify the
(spin-weighted) spherical harmonic modes of the gravi-
tational wave energy flux from a point particle in a cir-
cular orbit about a Schwarzschild black hole: Perform-
ing a substitution, computing the PN expansion of the
logarithm of the flux, and four di↵erent factorizations, as
well as the combination of the expansion of the logarithm
with the most e↵ective factorization. In all cases, the
substitutions act on the individual (spin-weighted spher-
ical harmonic) modes of the flux ⌘`m, defined so that the
total energy flux is given by
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where hdE/dti
Newt

= (32/5)(µ/M)2v10, µ is the reduced
mass, and the sum is taken only over m � 1 (there are
no m = 0 contributions, and the negative m values just
would duplicate the positive ones, so they are lumped

together, for convenience). We mostly consider ⌘̄`m, de-
fined to be ⌘`m with the lowest-order piece factored out,
so the first term in the series is 1 (so ⌘̄
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= ⌘
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, but all
the other modes are modified). Note that the leading
power of v in ⌘`m is given by

p`m =
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2`� 4 if `+m is even,

2`� 2 if `+m is odd,
(9)

so that ⌘`m is known to (22 � p`m/2)PN for the 22PN
total energy flux. The leading coe�cient (which is ratio-
nal) can be deduced from the expressions for the lead-
ing term in the PN expansion of the waveform modes in
Eqs. (330) in Blanchet’s Living Review [1]; explicit ex-
pressions are given in the Mathematica notebook asso-
ciated with this paper [12]. Note also that the waveform
modes are given to 2.5PN for a general ` and m by Fu-
jita and Iyer [13], though they leave their expressions in
terms of spin-weighted spherical harmonics, while the ex-
pressions obtain from Blanchet are completely explicit.
The simplifying substitution is given using the function

eulerlogm(v) := � + log(2mv), (10)

first introduced by Damour, Iyer, and Nagar [9]. Here �
denotes the Euler-Mascheroni gamma constant. We have
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where �(↵,�; z) is the confluent hypergeometric function
that is regular at z = 0.

III. SIMPLIFYING THE MODES OF THE
ENERGY FLUX

Here we consider seven di↵erent ways to simplify the
(spin-weighted) spherical harmonic modes of the gravi-
tational wave energy flux from a point particle in a cir-
cular orbit about a Schwarzschild black hole: Perform-
ing a substitution, computing the PN expansion of the
logarithm of the flux, and four di↵erent factorizations, as
well as the combination of the expansion of the logarithm
with the most e↵ective factorization. In all cases, the
substitutions act on the individual (spin-weighted spher-
ical harmonic) modes of the flux ⌘`m, defined so that the
total energy flux is given by
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= (32/5)(µ/M)2v10, µ is the reduced
mass, and the sum is taken only over m � 1 (there are
no m = 0 contributions, and the negative m values just
would duplicate the positive ones, so they are lumped

together, for convenience). We mostly consider ⌘̄`m, de-
fined to be ⌘`m with the lowest-order piece factored out,
so the first term in the series is 1 (so ⌘̄
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total energy flux. The leading coe�cient (which is ratio-
nal) can be deduced from the expressions for the lead-
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Eqs. (330) in Blanchet’s Living Review [1]; explicit ex-
pressions are given in the Mathematica notebook asso-
ciated with this paper [12]. Note also that the waveform
modes are given to 2.5PN for a general ` and m by Fu-
jita and Iyer [13], though they leave their expressions in
terms of spin-weighted spherical harmonics, while the ex-
pressions obtain from Blanchet are completely explicit.
The simplifying substitution is given using the function
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first introduced by Damour, Iyer, and Nagar [9]. Here �
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]
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=
37602861148067

5884875196200
+

1

3
⇡2. (24)

Note that [s̄
2

]
3

depends on m, though we do not denote
this explicitly, since the dependence only arises through
eulerlogm(v). Also note that the highest power of ⇡ in
[s̄`]k seems to be given by 2(�1)k+1⇣(2k) (independent of
`), since ⇣(2) = ⇡2/6, ⇣(4) = ⇡4/90, and ⇣(6) = ⇡6/945.
Thus, one may conjecture that these come from some
sort of (poly)gamma function expansion.

We also note that the series by which one replaces
s` in V 0

`m [i.e., Eq. (21)] is also somewhat simpler
when one expands its logarithm, though here the sim-
plification is quite mild: One merely obtains nicer-
looking prime factorizations for some of the coe�-
cients at higher orders in the case with the loga-
rithm. For instance, for [s̄

2

]
2

, the coe�cient of ⇡2

changes from 1552030511/3352721071 to 1072/21345172

upon taking the logarithm of the series, with sim-
ilar simplifications for the coe�cient of ⇡2 in [s̄

3

]
2

(1779763431/24335272111131 ! 132/21345172) and the
coe�cient of ⇡4 in [s̄

2

]
3

(�2111156291/243453721071 !
�1111072/22345372) [cf. the values of [⌫`]

1

given in
Table I]. The coe�cient of ⇡2 in [s̄

2

]
3

is also some-
what simplified, though the simplification is not
so dramatic (1631332891461832176511/28365474111 !
89110718880111/23375474). Note, though, that the co-
e�cients of the highest power of ⇡ are somewhat less
simple after taking the logarithm (e.g., 21/335171 !
311/21345171 in [s̄

2

]
3

).
It is possible to do something similar for q`m, making

the substitution

q`m !
1
X

k=0

[q`m]k v
2k (25)

and fixing [q`m]k 2 Q by demanding that the factor-
ization remove the log(2v2) term in the coe�cient of
v8+4`+2k in ⌘̄`m (so [q`m]

0

is just the original q`m). How-
ever, this is not as e�cacious as the similar substitu-
tion for s`: Indeed, in general the V denom

`m factorization
removes far more terms than the V num

`m factorization.
For instance, for ⌘

22

, the V num

`m factorization removes 18

terms (in 4 coe�cients) through 22PN, while the V denom

`m
factorization removes 42 terms through that order with
just the single rational value for s

2

, and 123 terms when
one uses the series given in Eqs. (22). In both cases the
V denom

`m factorization removes terms from 11 coe�cients,
in the latter case setting them all to zero.

Here we find that fixing [q`m]k as described above only
removes terms in the coe�cients of v8+4`+2k+6n, n 2 N

0

,2

and even then does not remove all the transcendentals
and terms involving log v. In fact, for k > ` � 2, it only
removes one term at each order [the highest power of
log(2v2)], though it does slightly simplify the prime fac-
torizations of the coe�cients of some of the remaining
terms. For example, factoring V num

`m out of ⌘̄
33

and in-
cluding [q
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⇣(3 + 2n)v28+6n, and ⇣(3 + 2n) log1+n(2v2)v34+6n (n 2
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) terms, at least through v40, the highest relevant order
of the 22PN energy flux results, as well as the ⇣2(3) term
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will not consider this substitution further here, except
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same ` do not appear to have a simple relation, unlike
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log(2v2)], though it does slightly simplify the prime fac-
torizations of the coe�cients of some of the remaining
terms. For example, factoring V num

`m out of ⌘̄
33

and in-
cluding [q

33

]
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= 7/520 removes the log1+n(2v2)v22+6n,
⇣(3 + 2n)v28+6n, and ⇣(3 + 2n) log1+n(2v2)v34+6n (n 2
N

0

) terms, at least through v40, the highest relevant order
of the 22PN energy flux results, as well as the ⇣2(3) term
in the coe�cient of v40 itself. Moreover, it converts the
numerator of the coe�cient of ⇡4v34 from 21032131371

to 21132131 (leaving the denominator unchanged), and
produces a similar simplification of the numerator of the
coe�cient of ⇡6v40 (viz., 21334131711 ! 21433131). We
will not consider this substitution further here, except
to note that the [q`m]k (k � 1) for di↵erent ms and the
same ` do not appear to have a simple relation, unlike
the original q`m.

IV. DISCUSSION OF THE FACTORIZATIONS

One can see how these factorizations arise in the MST
formalism by noting that ⌘`m / |Z`m!|2 [cf. Eq. (1)],
while
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from Eqs. (4), (5a), and (5b), where the use of ⇠ indi-
cates that we have neglected contributions that will not
contribute transcendentals or log v terms, including the
action of the linear operator L`m! on Rin

`m!. Addition-
ally, we have
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where we have used the circular orbit expression !r
0

=
mv and recalled that �(n + x) = �(1 + x)

Qn�1

k=0

(k + x)
for n 2 N (from the gamma function’s recurrence rela-
tion), so we can replace any integer in the argument of a
gamma function by 1 without changing the transcenden-
tal content of the expression. In particular, this lets us
factor out the gamma functions from inside sums.
Note that the expansion of the confluent hypergeomet-

ric function in R⌫
C

does not generate any transcendentals,
even though one expands in all its arguments: Since its
final argument is proportional to v, only a finite number
of rationals contribute at a given PN order, so no tran-
scendentals are generated. Similarly, the expansion of

6

[s̄
4

]
1

=
37602861148067

5884875196200
+

1

3
⇡2. (24)

Note that [s̄
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]
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depends on m, though we do not denote
this explicitly, since the dependence only arises through
eulerlogm(v). Also note that the highest power of ⇡ in
[s̄`]k seems to be given by 2(�1)k+1⇣(2k) (independent of
`), since ⇣(2) = ⇡2/6, ⇣(4) = ⇡4/90, and ⇣(6) = ⇡6/945.
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We also note that the series by which one replaces
s` in V 0

`m [i.e., Eq. (21)] is also somewhat simpler
when one expands its logarithm, though here the sim-
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ing N for the strictly positive integers.
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