Gauge Invariant Quantities for the Self Force

Circular Orbits in Schwarzschild Spacetime arXiv:1406.4890

Patrick Nolan, UCD CASL

In Collaboration With S. Dolan, A. Ottewill, N.Warburton and B.Wardell

Solve Einstein's Field Equations:

- Write down field equations, make suitable choice of gauge (Regge-Wheeler Gauge)
- Perform tensor harmonic decomposition to simplify equations
- Approximate boundary conditions by suitable series expansions, numerically integrate
- Include source terms to find suitable inhomogenous fields

Construct Gauge Invariant Quantities:

- Gauge invariant quantities constructed directly from perturbed metric and its derivatives
- Plot Quantities over range of r; Extract Post-Newtonian parameters for large-r data, light ring divergences from small r data

Field Equations

- Model particle's self interaction as a perturbation to Schwarzschild metric
- Describe perturbed metric via Einstein Field $\Box h_{\mu\nu}^{ret} - R_{\mu\nu}^{\ \alpha\beta} h_{\alpha\beta}^{ret} = 4\pi J_{\mu\nu}$
- decompose fields into tensor spherical harmonics, use Regge Wheeler Gauge, gives just two independent scalar fields

 $\partial_{r_{\star}} \phi^{e/o} + (\omega_m^2 - V^{e/o}(l,r))\phi^{e/o} = 4\pi S_{\mu\nu}$

• Construct all of $h_{\mu\nu} = h_{\mu\nu}(\phi^e, \phi^o)$ from these

Solving for the Fields

 We use a series expansion to approximate the fields at the boundaries:

INNER:

$$e^{-i\omega r_*} \sum_{n=0}^{n} b_n^i (r-2M)^n$$

OUTER:

$$e^{i\omega r_*}\sum_{n=0}^{n_{\infty}}\frac{a_n^i}{r^n}$$

 Using these boundary conditions, numerically integrate towards the particle's orbit

Inhomogeneous Solutions

Match solutions at the particle's orbit by imposing jump conditions, given by new source terms

$$J_{\mu\nu} = F_{\mu\nu}(\vec{x})\delta(\vec{x} - \vec{x_0}) + G_{\mu\nu}(\vec{x})\delta'(\vec{x} - \vec{x_0})$$

 In RW, source terms are proportional to derivatives of delta functions

Integrating over these produces a jump in derivatives across orbit

Constructing Fields, Gauge Invariants

- Once inhomogeneous scalars have been found, can construct perturbed metric $h_{\mu\nu}$
- Gauge invariants such as H, $\delta\psi$, and $\delta\lambda_i$ constructed from $h_{\mu\nu}$ and its derivatives
- Comparing with similar high accuracy calculations for H in Lorenz gauge, see agreement to at least one part in 10⁻²⁰

Regularisation

- Gauge Invariants constructed from $h_{\alpha\beta}^{ret}$, still need to be regularised.
- Metric derivatives increase divergence, $\Delta U, \Delta \psi, \Delta \lambda_i^{E/B}$ diverge as L^0, L^1, L^2
- Subtract analytical regularisation parameters, numerically extrapolate higher terms. Final gauge invariants are given by $\Delta G^R = \sum_{k=1}^{\infty} (\Delta G - Z_G L^2 - A_G L - B_G - \frac{D_G}{L} - \dots)$

l=0

Convergence

Plots of Gauge Invariants

Tuesday 24 June 14

arge r Data

$$\Delta \lambda_B(y \ll 1) = \frac{\mu}{M^3} \sum_{n=3}^{\infty} (a_n^B + b_n^B \ln(y)) y^{n+1/2}$$

Tuesday 24 June 14

PN results

From data, can extract parameters up to 5PN :

	a_n^1	a_n^2	a_n^3	a_n^B	b_n^1	b_n^2	b_n^3	b_n^B
n = 3	2	-1	$^{-1}$	2	0	0	0	0
n = 4	2	-3/2	-1/2	2.9999999(5)	0	0	0	$1^{+7}_{-5} imes 10^{-6}$
n = 5	-4.7499(7)	-2.8750(4)	7.6249(5)	14.7499(6)	$6^{+61}_{-87}\times 10^{-6}$	$-1^{+25}_{-26}\times10^{-5}$	$-5^{+48}_{-49}\times10^{-6}$	$-3^{+555}_{-562}\times10^{-7}$

Can extract data up to n=5, data suggests exact results:

$$a_4^B = 3, \ a_5^1 = -\frac{19}{4}, \ a_5^2 = -\frac{23}{8}, \ a_5^3 = \frac{61}{8}, \ a_5^B = \frac{59}{4}$$

 $b_4^B = 0, \ b_5^1 = 0, \ b_5^2 = 0, \ b_5^3 = 0, \ b_5^B = 0$

Hence see no log terms, which differs from the $\Delta\psi$ case

Informing EOB

- We can construct quantities of interest to EOB theory from new GIs. Electric Quadrupole moment given by : $\epsilon^{2} = \epsilon_{\alpha\beta}\epsilon^{\alpha\beta} = (\lambda_{1}^{E})^{2} + (\lambda_{2}^{E})^{2} + (\lambda_{3}^{E})^{2}$ $\rightarrow \Delta\epsilon^{2} = 2(\lambda_{1}^{E}\Delta\lambda_{1}^{E} + \lambda_{2}^{E}\Delta\lambda_{2}^{E} + \lambda_{3}^{E}\Delta\lambda_{3}^{E})$
 - Our data implies the following PN expansion for this term:

$$\Delta \epsilon^2 = -12y^6 - 30y^7 - rac{93}{2}y^8 + ...$$

Near the Light Ring

Tuesday 24 June 14

Conclusions

- Can extract PN terms for the new gauge invariants from large r data
- Confirm Bini & Damour's prediction of z^{-1} $\Delta\psi$ divergence at light ring
- See divergence of $z^{-5/2}$ for $\Delta \lambda_{1,2,B}$
- Extracted PN terms for electric quadropole from data, useful to EOB. can be repeated for more terms like this