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Overview

Solve Einstein’s Field Equations:

® Write down field equations, make suitable choice of gauge (Regge-Wheeler
Gauge)

Perform tensor harmonic decomposition to simplify equations

Approximate boundary conditions by suitable series expansions, numerically
integrate

Include source terms to find suitable inhomogenous fields
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Field Equations

® Model particle’s self interaction as a
perturbation to Schwarzschild metric

® Describe perturbed metric via Einstein
Field OrSf — R,,*’hl% = 4md,,

I

® decompose fields into tensor spherical
harmonics, use Regge Wheeler Gauge, gives
just two independent scalar fields

By, ¢°/° + (w2, — V/°(1,1))¢*/° = 47 Sy

® Construct all of h,, = h,. (¢, ¢°) from these




Solving for the Fields

® We use a series expansion to
approximate the fields at the

boundaries:
ng
INNER: e—iwrsy b (r — 2M)"
n=0
Rl
OUTER e * = Tn

® Using these boundary conditions,

numerically integrate towards the
particle’s orbit
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Inhomogeneous
Solutions

® Match solutions at the particle’s orbit by
imposing jump conditions, given by new source
terms '

o =08 D GO = 0 | S () o (AP0 (4 = A7
® |n RV, source terms are

proportional to derivatives
of delta functions

® |ntegrating over these produces a jump in
derivatives across orbit




Constructing Fields,
CEI-CRINZIRE

® Once inhomogeneous scalars have been
found, can construct perturbed metric 7,

® Gauge invariants such as H, ¢, and o)\;
constructed from £, and its derivatives

® Comparing with similar high accuracy
calculations for H in Lorenz gauge, see
agreement to at least one part in 10~
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Regularisation

® Gauge Invariants constructed from h[%, still
need to be regularised.

® Metric derivatives increase divergence,
AU, Ay, AAZ.E/B diverge as L, L', L°
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Convergence
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Plots of Gauge
Invariants
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Large r Data

We compare large r data with PN expansions of the form

ANy << 1) MSZ + bl In(y
n=3,45556,6.5,...
M

AXp(y << 1) MSZ I 1 (7)) AR R Sy
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PN results

From data, can extract parameters up to 5PN :

n=3 y -1 -1 y 0
n=4 2 ~3/2 ~1/2  2.9999999(5) 0 1'7 x 107"
n =5(—4.7499(7) —2.8750(4) 7.6249(5) 14.7499(6) 6'%i x 1075 —172% 5 —ptis 6 31585 % 1077

i = (0 e =L G =0 = e =)

Hence see no log terms, which differs from the Ay case
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Informing EOB

® We can construct quantities of interest to
EOB theory from new Gils. Electric
Quadrupole moment given by :
e’ = eape” = (A7)° + (AF)* + ()’
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Conclusions

® Can extract PN terms for the new gauge
invariants from large r data

® Confirm Bini & Damour’s prediction of 2~

A divergence at light ring
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