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Goal and motivation
°

Goal and motivation

To describe the small deformations of a compact body created by
tidal forces, and to explore their dynamical consequences.

Motivation

Tidal interactions are important in extreme mass-ratio inspirals:
torquing of the large black hole leads to a gain of orbital angular
momentum, with a significant impact on the orbital evolution
(self-force effect). [Hughes (2001); Martel (2004); Yunes et al. (2010, 2011)]

Tidal deformations of binary neutron stars could be revealed in the
gravitational waves generated during the late inspiral. [Fianagan & Hinderer

(2008); Postnikov, Prakash, Lattimer (2010); Pannarale et al (2011), Lackey el al (2012), Read et al (2013)]

The relativistic theory of tidal deformation and dynamics should be
as complete as the Newtonian theory.
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Newtonian tides
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Newtonian tides: Setting and assumptions

We consider a self-gravitating body (“the body") in a binary
system with a companion body (“the companion™).

The body has a mass M and radius R. It is spherical in isolation.
The companion is far from the body: r4, > R.
The tidal forces are weak and the deformation is small.

The orbital period is long compared with the time scale associated
with hydrodynamical processes in the body; the tides are slow.

We work in the body's moving frame, with its origin at the
centre-of-mass.

We focus attention on a neighbourhood that does not extend too
far beyond the body; it does not include the companion.

Eric Poisson Tidal deformation and dynamics of compact bodies



Newtonian tides
°

Gravitational potential

External potential

1
Uext(ta m) = Uext(ta 0) + ga(t):va - §5ab(t)l‘a{l,‘b =+ ..

ga(t) = 8iaUeXt(t’ 0) = CM acceleration
82
Ean(t) = —WUem(t, 0) = tidal tensor
Body potential
GM 3 oz’

Ubody(t, x) = — = QGQab(t) Jeoc

5

1
Qup(t) = /p(xamb — §r25ab) d®z = quadrupole moment
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Newtonian tides
.

Tidal deformation

The quadrupole moment ()., measures the body’'s deformation.

The central problem of tidal theory is to relate (), to the tidal
tensor &,.p; this requires solving the equations of hydrostatic
equilibrium for the perturbed configuration.

2
GQab = - § k2R5gab

ko = gravitational Love number

GM 1
U= T - 5 |:]. TF QkQ(R/T) b.’Eaﬁb

The Love number ko encodes the details of internal structure.

Eric Poisson Tidal deformation and dynamics of compact bodies



Newtonian tides
°

Dissipation

The preceding results don’t account for dissipation within the body.

Dissipation, such as created by viscosity, produces a short delay in
the body's response to the tidal forces.

2
GQab(t) = *§k2R5gab(t - T)

T = viscous delay

The viscous delay depends on the precise mechanism responsible
for dissipation and the details of internal structure; it is typically
much shorter than the orbital period.
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Newtonian tides
°

Lag and lead

The delay creates a misalignment between the direction of the tidal
bulge and the direction of the companion.

When Qpody < Qorbit

Orbital motion is faster than body's intrinsic rotation.
Tidal bulge lags behind the companion.

Tidal torquing increases the body's angular momentum.

| \

When Qbody > Qol'bit

Orbital motion is slower than body’s intrinsic rotation.

Tidal bulge leads in front of the companion.

Tidal torquing decreases the body’'s angular momentum.
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Newtonian tides

Tidal dynamics

Dissipation permits an exchange of angular momentum between
the body and the orbit.

Tidal torquing

dJ GM2, RS
E = 6(k27)+(90rbit - Qbody)
Torb

This eventually leads to tidal locking: Qy0qy = Qorbit-

Dissipation is accompanied by the generation of heat.

Tidal heating
d GMZ,, R
7? = 6(k27-)67 (Qorbit - Qbody)2
orb
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Relativistic tides
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Relativistic theory

A relativistic theory of tidal deformation and dynamics must
provide meaningful generalizations of the Newtonian quantities

Eup = —0pUext = tidal tensor

ko = gravitational Love number

GM 1
U= T — 5 |:1 aF 2/€2(R/T) abl’axb

A tidal tensor &, can be defined in terms of the Weyl tensor
evaluated at a distance r such that R < r < ropp.

The deformation of the gravitational field from a spherical
configuration can be described as a perturbative expansion.

The construction provides a relativistic, gauge-invariant definition

for k2. [Damour & Nagar (2009); Binnington & Poisson (2009)]
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Relativistic tides
°

Metric of a tidally deformed body

gt = —1 + 2Ueg/°
M1
Ust = — = 5 |A() + 2ka(B/7)° B(r) | Epa”a”

A(r) = simple polynomial in 2M /r

B(r) = complicated function of 2M /r

The relativistic Love number ks is calculated by solving the
equations of hydrostatic equilibrium for the body's perturbed
configuration.

The results depend on the body’s equation of state p(p) and its
compactness M/R.
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Relativistic tides
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Relativistic Love numbers

-2)

Electric Love number (L:

03 0.4 05 06 07
Compactness (2V/R)

[Damour & Nagar (2009)]

For black hOIeS, kz =0 [Binnington & Poisson (2009)]
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Relativistic tides
°

Tidal environment

Applications require the computation of the tidal tensor &.

This involves inserting the black hole in a larger spacetime that
contains additional bodies, and matching the metrics.

[Taylor & Poisson (2008); Johnson-McDaniel et al (2009)]

For a binary system in post-Newtonian circular orbit,

3Mcom SM +4Meom o N
Ep=—"—"-"7"-|1—- —— " 0 2wt
12 23 [ T E A v°+O0(v )] sin(2wt)
MM,
_ 1— com 2 4
@ Q[ QL+ Meom? O )}

The angular frequency w differs from the orbital angular velocity
Q: the transformation from the global inertial frame to the black
hole's moving frame involves time dilation and rotation.
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Dynamics
°

Dissipation

There is currently no relativistic theory of tidal interactions that
includes dissipation, except for black holes. [on my todo lisy

The event horizon of a black hole naturally provides a dissipation
mechanism: the black hole absorbs whatever crosses its boundary.

The horizon's null generators can be thought of as the streamlines
Of an efFeCt|Ve ﬂUId [Membrane paradigm]

This fluid possesses an effective viscosity.

The absorbing properties of the event horizon lead to the tidal
torquing and heating of the black hole.
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Dynamics
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Tidal dynamics of black holes (1)

Black-hole dynamics

dJ  32M2, M°

. = (Qorbit - Qhole)
dt 5 rgrb
dQ 32 M2, M° ( 2
o - Qorbit — Qhole)
dt ~ 5 T(6)rb

Newtonian dynamics

dJ GM2, R°

df = 6(k327-)67(90rbit - Qbody)
t Torb

d GM2,_ R 5

de = 6(’627’)7 (Qorbit - Qbody)
t Torb
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Dynamics
°

Tidal dynamics of black holes (2)

Comparison produces R oc GM/c? and (kaT) oc GM /3.

More precisely

(/CQT)R

. 16(GM)?
15 13

The quantity (ka7) is assigned a nonzero value in spite of the fact
that ko = 0 for a black hole!

The tidal dynamics of black holes is in near-quantitative agreement
with the tidal dynamics of viscous Newtonian bodies.

Relativistic corrections: [Taylor & Poisson (2008); Chatziioannou et al (2013)]

dJj 32 M2 A M° o
at 5 o e
1 2 1 2 (A+12x°)M7 , 3
x —(1+\/1—x2){1+3x ——[12+51x = 7}1) +O(v )}
2 4 M + Mcom

Eric Poisson Tidal deformation and dynamics of compact bodies



Conclusion
°

Conclusion

The Newtonian theory of tidal deformations and dynamics is
undergoing a generalization to relativistic gravity.

A meaningful description of the tidal deformation of a relativistic
body has been achieved; the gravitational Love numbers have been
ported to general relativity.

The tidal dynamics of black holes is well developed; it displays a
remarkable similarity with the Newtonian theory of viscous bodies.

The tidal dynamics of material bodies remains to be developed;
this requires the incorporation of viscosity.

Recent work: Surficial love numbers (Landry & Poisson (2014)]
Current work: Slowly rotating bodies.

Future work: Higher dimensions.
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Gravity

Newtonian, Post-Newtonian, Relativistic

Eric Poisson and Clifford M. Will
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