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Goal and motivation

Goal

To describe the small deformations of a compact body created by
tidal forces, and to explore their dynamical consequences.

Motivation

Tidal interactions are important in extreme mass-ratio inspirals:
torquing of the large black hole leads to a gain of orbital angular
momentum, with a significant impact on the orbital evolution
(self-force e↵ect). [Hughes (2001); Martel (2004); Yunes et al. (2010, 2011)]

Tidal deformations of binary neutron stars could be revealed in the
gravitational waves generated during the late inspiral. [Flanagan & Hinderer

(2008); Postnikov, Prakash, Lattimer (2010); Pannarale et al (2011), Lackey el al (2012), Read et al (2013)]

The relativistic theory of tidal deformation and dynamics should be
as complete as the Newtonian theory.
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Newtonian tides: Setting and assumptions

We consider a self-gravitating body (“the body”) in a binary
system with a companion body (“the companion”).

The body has a mass M and radius R. It is spherical in isolation.

The companion is far from the body: r
orb

� R.

The tidal forces are weak and the deformation is small.

The orbital period is long compared with the time scale associated
with hydrodynamical processes in the body; the tides are slow.

We work in the body’s moving frame, with its origin at the
centre-of-mass.

We focus attention on a neighbourhood that does not extend too
far beyond the body; it does not include the companion.
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Gravitational potential

External potential

U
ext

(t,x) = U
ext

(t,0) + ga(t)x
a � 1

2
Eab(t)xaxb + · · ·

ga(t) =
@

@xa
U
ext

(t,0) = CM acceleration

Eab(t) = � @2

@xa@xb
U
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(t,0) = tidal tensor

Body potential

U
body

(t,x) =
GM

r
+

3

2
GQab(t)
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Qab(t) =

Z
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3
r2�ab
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d3x = quadrupole moment
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Tidal deformation

The quadrupole moment Qab measures the body’s deformation.

The central problem of tidal theory is to relate Qab to the tidal
tensor Eab; this requires solving the equations of hydrostatic
equilibrium for the perturbed configuration.

GQab = �2

3
k
2

R5Eab

k2 = gravitational Love number

U =
GM

r
� 1

2

h
1 + 2k

2

(R/r)5
i
Eabxaxb

The Love number k
2

encodes the details of internal structure.
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Dissipation

The preceding results don’t account for dissipation within the body.

Dissipation, such as created by viscosity, produces a short delay in
the body’s response to the tidal forces.

GQab(t) ' �2

3
k
2

R5Eab(t� ⌧ )

⌧ = viscous delay

The viscous delay depends on the precise mechanism responsible
for dissipation and the details of internal structure; it is typically
much shorter than the orbital period.
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Lag and lead

The delay creates a misalignment between the direction of the tidal
bulge and the direction of the companion.

When ⌦
body

< ⌦
orbit

Orbital motion is faster than body’s intrinsic rotation.

Tidal bulge lags behind the companion.

Tidal torquing increases the body’s angular momentum.

When ⌦
body

> ⌦
orbit

Orbital motion is slower than body’s intrinsic rotation.

Tidal bulge leads in front of the companion.

Tidal torquing decreases the body’s angular momentum.
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Tidal dynamics

Dissipation permits an exchange of angular momentum between
the body and the orbit.

Tidal torquing

dJ

dt
= 6(k2⌧ )

GM2

com

R5

r6
orb

�
⌦
orbit

� ⌦
body

�

This eventually leads to tidal locking: ⌦
body

= ⌦
orbit

.

Dissipation is accompanied by the generation of heat.

Tidal heating

dQ

dt
= 6(k2⌧ )

GM2

com

R5

r6
orb

�
⌦
orbit

� ⌦
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�
2
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Relativistic theory

A relativistic theory of tidal deformation and dynamics must
provide meaningful generalizations of the Newtonian quantities

Eab = �@abUext

= tidal tensor

k
2

= gravitational Love number

U =
GM

r
� 1

2

h
1 + 2k

2

(R/r)5
i
Eabxaxb

A tidal tensor Eab can be defined in terms of the Weyl tensor
evaluated at a distance r such that R ⌧ r ⌧ r

orb

.

The deformation of the gravitational field from a spherical
configuration can be described as a perturbative expansion.

The construction provides a relativistic, gauge-invariant definition
for k

2

. [Damour & Nagar (2009); Binnington & Poisson (2009)]
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Metric of a tidally deformed body

gtt = �1 + 2U
e↵

/c2

U
e↵

=
M

r
� 1

2

h
A(r) + 2k

2

(R/r)5B(r)
i
Eabxaxb

A(r) = simple polynomial in 2M/r

B(r) = complicated function of 2M/r

The relativistic Love number k
2

is calculated by solving the
equations of hydrostatic equilibrium for the body’s perturbed
configuration.

The results depend on the body’s equation of state p(⇢) and its
compactness M/R.
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Relativistic Love numbers

k
2

for polytropes: p = K⇢1+1/n

[Damour & Nagar (2009)]

For black holes, k2 = 0 [Binnington & Poisson (2009)]
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Tidal environment

Applications require the computation of the tidal tensor Eab.

This involves inserting the black hole in a larger spacetime that
contains additional bodies, and matching the metrics.
[Taylor & Poisson (2008); Johnson-McDaniel et al (2009)]

For a binary system in post-Newtonian circular orbit,

E
12

= �3M
com

2r3
orb


1� 3M + 4M

com

2(M +M
com

)
v2 +O(v4)

�
sin(2!t)

! = ⌦


1� MM

com

(M +M
com

)2
v2 +O(v4)

�

The angular frequency ! di↵ers from the orbital angular velocity
⌦: the transformation from the global inertial frame to the black
hole’s moving frame involves time dilation and rotation.
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Dissipation

There is currently no relativistic theory of tidal interactions that
includes dissipation, except for black holes. [On my todo list]

The event horizon of a black hole naturally provides a dissipation
mechanism: the black hole absorbs whatever crosses its boundary.

The horizon’s null generators can be thought of as the streamlines
of an e↵ective fluid. [Membrane paradigm]

This fluid possesses an e↵ective viscosity.

The absorbing properties of the event horizon lead to the tidal
torquing and heating of the black hole.
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Tidal dynamics of black holes (1)

Black-hole dynamics
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Newtonian dynamics
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Tidal dynamics of black holes (2)

Comparison produces R / GM/c2 and (k
2

⌧) / GM/c3.

More precisely

(k
2

⌧)R5 =
16

15

(GM)6

c13

The quantity (k
2

⌧) is assigned a nonzero value in spite of the fact
that k

2

= 0 for a black hole!

The tidal dynamics of black holes is in near-quantitative agreement
with the tidal dynamics of viscous Newtonian bodies.

Relativistic corrections: [Taylor & Poisson (2008); Chatziioannou et al (2013)]
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v
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�
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Conclusion

The Newtonian theory of tidal deformations and dynamics is
undergoing a generalization to relativistic gravity.

A meaningful description of the tidal deformation of a relativistic
body has been achieved; the gravitational Love numbers have been
ported to general relativity.

The tidal dynamics of black holes is well developed; it displays a
remarkable similarity with the Newtonian theory of viscous bodies.

The tidal dynamics of material bodies remains to be developed;
this requires the incorporation of viscosity.

Recent work: Surficial love numbers [Landry & Poisson (2014)]

Current work: Slowly rotating bodies.

Future work: Higher dimensions.
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Gravity

G
ravity

Poisson and W
ill

Exploring approximate solutions to general relativity and their consequences, this textbook offers 

a unique presentation of Einstein’s theory by developing powerful methods that can be applied 

to astrophysical systems. 

Beginning with a uniquely thorough treatment of Newtonian gravity, the book develops 

post-Newtonian and post-Minkowskian approximation methods to obtain weak-field solutions 

to the Einstein field equations. It explores the motion of self-gravitating bodies, the physics of 

gravitational waves, and the impact of radiative losses on gravitating systems. The book concludes 

with a brief overview of alternative theories of gravity.

Ideal for graduate courses on general relativity and relativistic astrophysics, the book 

examines real-life applications, such as planetary motion around the Sun, the timing of binary 

pulsars, and gravitational waves emitted by binary black holes. Text boxes explore related topics 

and provide historical context, and over 100 exercises present interesting and challenging tests of 

the material covered in the main text.

Eric Poisson is Professor of Physics at University of Guelph. He is a Fellow of the American Physical 

Society and serves on the Editorial Boards of Physical Review Letters and Classical and Quantum 

Gravity.

Clifford M. Will is Distinguished Professor of Physics at the University of Florida and J. S. 

McDonnell Professor Emeritus at Washington University in St. Louis. He is a member of the US 

National Academy of Sciences, and Editor-in-Chief of Classical and Quantum Gravity. He is well 

known for his ability to bring science to broad audiences. 

Endorsements to follow

Cover illustration: © RGB Ventures LLC dba SuperStock/Alamy.

Gravity
Newtonian, Post-Newtonian, Relativistic
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