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Second-order self-force

Self-force formalism starts
from an expansion in
powers of µ/M
All numerical results have
been at linear order
Second-order formalism now
in place, but no numerical
results

What should we calculate?
It’s well known that dissipative second-order effects are essential for
accurate inspiral
But local-in-time conservative effects far easier to calculate



Motivation for looking at conservative effects

Self-force originally studied
to model inspirals
But interesting conservative
effects have been
emphasized in recent years
- orbital precession
- ISCO shift
- Detweiler’s redshift factor
- self-tides

Going to second order
We can calculate order-(µ/M )2 contributions to all these effects
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Motivation continued: interfacing between models

Conservative self-force results
fix Effective One Body
parameters
determine high-order PN terms
set benchmarks for NR
show self-force has surprisingly
large domain of validity [Le
Tiec et al]

Going to second order
fix (µ/M )2 terms in PN and EOB
set stronger benchmarks for NR
first step toward using SF to model IMRIs and comparable-mass
binaries
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Matched asymptotic expansions

in external universe,
gravitational field of M
dominates
in inner region, gravitational
field of µ dominates
in buffer region, extract
information about µ from
“inner expansion”, feed it
into “outer expansion”,
define µ’s worldline



Equation of motion

Split the field into singular and regular pieces

Find that the equation of motion is

D2zµ

dτ2 = −1
2Pµν(gνδ − hR

ν
δ)(2hR

δβ;γ − hR
βγ;δ)uβuγ + O[(µ/M )3]

- geodesic motion in C∞ vacuum metric g̃µν = gµν + hR
µν

- hR
µν = hR1

µν + hR2
µν
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Effective-source scheme

use a ‘puncture’ hPµν ≈ hS
µν

rewrite field equations for variable hRµν = hµν − hPµν ≈ hR
µν

design hPµν such that on worldline, hRµν = hR
µν and ∂hRµν = ∂hR

µν

At second order
for h2

µν : δGµν [h2] = −δ2Gµν [h1] ∼ (∂h1)2 + h1∂2h1

for h2R
µν : δGµν [h2R] = −δ2Gµν [h1]− δGµν [h2P ]
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Why the split is clear at first order

can approximate the source orbit as a background geodesic
—the deviation is δzµ ∼ µ ⇒ it influences metric at second order
can naturally define the conservative force as the piece of the force
that’s time-reversal invariant along the geodesic
can naturally define the time-symmetric piece of the linearized
retarded field as the ‘half-ret. + half-adv.’ perturbation sourced by
the geodesic
And the naturally defined conservative force is identical to the force
constructed from the (regular piece of the) naturally defined
time-symmetric field:

Fµ
1cons = 1

2(Fµ
1ret + Fµ

1adv)

Fµ
1diss = 1

2(Fµ
1ret − Fµ

1adv)



Why it’s unclear at second order

must account for the deviation δzµ from background geodesic
—which worldline do we refer to when deciding the time symmetry
of the force?
Products of form ∼ (δzµdiss)2 yield time-symmetric terms in force
—should they be included in the conservative dynamics?
likewise for products of form ∼ δzµdiss(F

µ
1ret − Fµ

1adv)

h2
µν sourced by ∼ (∂h1

µν)2 + h1
µν∂

2h1
µν

⇒ physical, retarded h2
µν sourced by (∂h1ret

µν )2 6= ( 1
2 ∂[h1ret

µν +h1adv
µν ])2

⇒ (time-symmetric piece of hret
µν ) 6= (half-ret-plus-half-adv. hµν)

—the conservative force taken from the retarded field will not be
equal to the force generated by the half-ret-plus-half-adv. field
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Definition 1: slowly varying orbital frequency

Restrict to quasicircular orbits in Schwarzschild
solve relaxed EFE
What do I mean by ‘incorporating dissipation’ in this case?
—incorporate effect of Ω̇ on the perturbation

First obvious definition to
consider

slow evolution: Ω̇ ∼ µ/M
define conservative
dynamics by freezing Ω
—but still account for
perturbation sourced by Ω̇

Difficulty
gives rise to term like ∼ Ω̇ h1

µν in source for h2
µν

⇒ source behaves as ∼ 1/r at large r
⇒ infrared divergence in h2

µν



Definition 2: Gralla-Wald treatment of dissipation

Expand around a zeroth-order orbit:

zµ
(

t, µM

)
= zµ0 (t) + µ

M zµ1 (t) + µ2

M 2 zµ2 (t) + O
(
µ3

M 3

)
- zµ0 is a circular geodesic of background
- split zµ1 , zµ2 into deviations driven by conservative and dissipative
forces

Difficulty
get terms growing as
∼ t2 in h2

µν

get growing but
time-symmetric terms in
quantities on zµ0
—how to classify these?
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Definition 3: balance of in-out radiation

by ‘neglecting dissipation’ I mean setting Ω̇ = 0
way to get this consistently: use half-ret.+half-adv. solution at both
first and second order:

1 find h1
µν = 1

2 (h1ret
µν + h1adv

µν )
2 use this h1

µν in source ∼ (∂h1
µν)2 + h1

µν∂2h1
µν for h2

µν

3 find h2
µν = 1

2 (h2ret
µν + h2adv

µν )
field satisfies EFE, motion is geodesic in its regular part

Problems
infrared divergence
not what’s done in PN,
where only retarded
Green’s functions are used
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Definition 4: “turning off” dissipative terms in the force

set source orbit ẑµ to be circular—i.e., Ω̇ = 0
find retarded solution at both first and second order
find the piece of the retarded force consistent with ẑµ

—i.e., satisfy D2ẑµ

dτ2 = Fµ
cons

simply set

Fµ
cons = δµr F r

Fµ
diss = δµt F t + δµφFφ

Note
because not all of Fµ is
included, h2

µν here is not a
solution to the EFE
ẑµ is not a geodesic of the
effective metric



Definition 5: geodesic in time-symmetrized effective metric

set source orbit ẑµ to be circular (i.e., Ω̇ = 0)
find retarded solution at both first and second order
rather than simply setting F t = 0 = Fφ, find time-symmetrized
effective metric ˆ̃gµν = gµν + ĥR

µν in which ẑµ is a geodesic
Time-symmetrization: take regular piece of retarded field,

hRn
µν =

∑
i`m

hRn
i`me−imΩtY i`m

µν

and let hRn
i`m → 1

2 (hRn
i`m + hRn∗

i`m )
Why? Outgoing ↔ ingoing waves: hn

ilm ↔ hn∗
ilm

Note
ˆ̃gµν is not a solution to the vacuum EFE
ẑµ is not same as in Definition 4
—but metrics differ only by amount ∼ µ3/M 3
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An invariant quantity: Detweiler’s redshift variable

use any of the definitions that set Ω̇ = 0
‘redshift factor’: ratio of times ũt = dt

dτ̃ in effective metric

In terms of quantities on the conservative orbit

ũt = 1√
1− 3M

r

{
1 + 1

2 (hR
uu − Frr) + 1

8
[
3(hR

uu)2 − 2rFrhR
uu − r2(Fr)2]}



An invariant quantity: Detweiler’s redshift variable

use any of the definitions that set Ω̇ = 0
‘redshift factor’: ratio of times ũt = dt

dτ̃ in effective metric

In terms of quantities on the zeroth-order orbit

ũt = 1√
1− 3M

r0

{
1+ 1

2
µ
M hR1

u0u0
+
(
µ
M
)2[ 1

2hR2
u0u0

+ 3
8
(
hR1

u0u0

)2− r2
0 (r0−3M)

6M (F1r)2
]}
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The historical problem

There are two well-known monopole solutions in the Lorenz gauge:

Solution 1: ‘correct’ mass
‘physically correct’ total
mass-energy M + µE
but lim

r→∞
hµν = const. 6= 0

Solution 2: asymptotically flat
lim

r→∞
hµν = 0

but the total mass-energy is
M + µE − δM 6= M + µE

Historically, Solution 1 has been used as the ‘physically correct’
solution
Can’t use it here: It would produce a source ∼ h1

µν∂
2h1
µν ∼ 1/r

⇒ badly divergent h2
µν

Transforming it to an asymptotically flat gauge also leads to
catastrophe



Avoiding the historical problem

The two solutions differ only by an overall shift in the mass
⇒ The shift can be absorbed into the definition of M
⇒ The solutions are physically indistinguishable

Consider: a binary containing a black hole of mass m1 and a small object
of mass m2

Solution 1: ‘correct’ mass
corresponds to expansion
around background of mass

M = m1

Solution 2: asymptotically flat
corresponds to expansion around
background of mass

M = m1 + δM

Both solutions describe the same binary. So we can use Solution 2
When comparing numerical results to other calculations, simply note
that M 6= m1



Summary and conclusions

Short-term objectives and current status
The first things to calculate at second order are invariant
conservative quantities
⇒ compare to PN, fix PN and EOB parameters
Numerical implementation now in progress to calculate ũt on a
circular orbit

But what should we mean by ‘the conservative dynamics’ at second
order?

e.g., for a (quasi)circular orbit, the cleanest definitions involve
setting Ω̇ = 0 everywhere in the calculation

—Would a different definition be more useful as input for PN/EOB?
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