Conservative effects of the second-order gravitational self-force

Adam Pound

University of Southampton

24 June 2014

Second-order self-force

- Self-force formalism starts from an expansion in powers of μ/M
- All numerical results have been at linear order
- Second-order formalism now in place, but no numerical results

What should we calculate?

- It's well known that *dissipative* second-order effects are essential for accurate inspiral
- But local-in-time conservative effects far easier to calculate

Motivation for looking at conservative effects

- Self-force originally studied to model inspirals
- But interesting conservative effects have been emphasized in recent years
 - orbital precession
 - ISCO shift
 - Detweiler's redshift factor
 - self-tides

Motivation for looking at conservative effects

- Self-force originally studied to model inspirals
- But interesting conservative effects have been emphasized in recent years
 - orbital precession
 - ISCO shift
 - Detweiler's redshift factor
 - self-tides

Going to second order

We can calculate order- $(\mu/M)^2$ contributions to all these effects

Motivation continued: interfacing between models

Conservative self-force results

- fix Effective One Body parameters
- determine high-order PN terms
- set benchmarks for NR
- show self-force has surprisingly large domain of validity [Le Tiec et al]

Motivation continued: interfacing between models

Conservative self-force results

- fix Effective One Body parameters
- determine high-order PN terms
- set benchmarks for NR
- show self-force has surprisingly large domain of validity [Le Tiec et al]

Going to second order

- fix $(\mu/M)^2$ terms in PN and EOB
- set stronger benchmarks for NR
- first step toward using SF to model IMRIs and comparable-mass binaries

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

Outline

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

3 Detweiler's redshift invariant

Asymptotically flat Lorenz gauge solutions

Matched asymptotic expansions

M

- in external universe, gravitational field of *M* dominates
- in inner region, gravitational field of μ dominates
- in buffer region, extract information about μ from "inner expansion", feed it into "outer expansion", define μ's worldline

• Split the field into singular and regular pieces

• Find that the equation of motion is

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} P^{\mu\nu} (g_{\nu}{}^{\delta} - h_{\nu}^{R\delta}) (2h_{\delta\beta;\gamma}^R - h_{\beta\gamma;\delta}^R) u^{\beta} u^{\gamma} + O[(\mu/M)^3]$$

• Split the field into singular and regular pieces

• Find that the equation of motion is

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} P^{\mu\nu} (g_{\nu}{}^{\delta} - h_{\nu}^{R\delta}) (2h_{\delta\beta;\gamma}^R - h_{\beta\gamma;\delta}^R) u^{\beta} u^{\gamma} + O[(\mu/M)^3]$$

• Split the field into singular and regular pieces

• Find that the equation of motion is

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} P^{\mu\nu} (g_{\nu}{}^{\delta} - h_{\nu}^{R\delta}) (2h_{\delta\beta;\gamma}^R - h_{\beta\gamma;\delta}^R) u^{\beta} u^{\gamma} + O[(\mu/M)^3]$$

• Split the field into singular and regular pieces

• Find that the equation of motion is

$$\frac{D^2 z^{\mu}}{d\tau^2} = -\frac{1}{2} P^{\mu\nu} (g_{\nu}{}^{\delta} - h_{\nu}^{R\delta}) (2h_{\delta\beta;\gamma}^R - h_{\beta\gamma;\delta}^R) u^{\beta} u^{\gamma} + O[(\mu/M)^3]$$

Effective-source scheme

• use a 'puncture' $h^{\mathcal{P}}_{\mu\nu} \approx h^{S}_{\mu\nu}$

- rewrite field equations for variable $h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu} h_{\mu\nu}^{\mathcal{P}} \approx h_{\mu\nu}^{R}$
- design $h_{\mu\nu}^{\mathcal{P}}$ such that on worldline, $h_{\mu\nu}^{\mathcal{R}} = h_{\mu\nu}^{R}$ and $\partial h_{\mu\nu}^{\mathcal{R}} = \partial h_{\mu\nu}^{R}$

At second order

• for
$$h_{\mu\nu}^2$$
: $\delta G_{\mu\nu}[h^2] = -\delta^2 G_{\mu\nu}[h^1] \sim (\partial h^1)^2 + h^1 \partial^2 h^1$

• for
$$h_{\mu\nu}^{2\mathcal{R}}$$
: $\delta G_{\mu\nu}[h^{2\mathcal{R}}] = -\delta^2 G_{\mu\nu}[h^1] - \delta G_{\mu\nu}[h^{2\mathcal{P}}]$

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

3 Detweiler's redshift invariant

4 Asymptotically flat Lorenz gauge solutions

Why the split is clear at first order

- can approximate the source orbit as a background geodesic —the deviation is $\delta z^{\mu} \sim \mu \Rightarrow$ it influences metric at second order
- can naturally define the conservative force as the piece of the force that's time-reversal invariant along the geodesic
- can naturally define the time-symmetric piece of the linearized retarded field as the 'half-ret. + half-adv.' perturbation sourced by the geodesic
- And the naturally defined conservative force is identical to the force constructed from the (regular piece of the) naturally defined time-symmetric field:

$$F_{1\text{cons}}^{\mu} = \frac{1}{2} (F_{1\text{ret}}^{\mu} + F_{1\text{adv}}^{\mu})$$
$$F_{1\text{diss}}^{\mu} = \frac{1}{2} (F_{1\text{ret}}^{\mu} - F_{1\text{adv}}^{\mu})$$

Why it's unclear at second order

- must account for the deviation δz^{μ} from background geodesic —which worldline do we refer to when deciding the time symmetry of the force?
- Products of form $\sim (\delta z_{\rm diss}^{\mu})^2$ yield time-symmetric terms in force —should they be included in the conservative dynamics?
- likewise for products of form $\sim \delta z^{\mu}_{\rm diss}(F^{\mu}_{\rm 1ret}-F^{\mu}_{\rm 1adv})$
- $h^2_{\mu\nu}$ sourced by $\sim (\partial h^1_{\mu\nu})^2 + h^1_{\mu\nu}\partial^2 h^1_{\mu\nu}$
 - \Rightarrow physical, retarded $h_{\mu\nu}^2$ sourced by $(\partial h_{\mu\nu}^{\rm 1ret})^2 \neq (\frac{1}{2}\partial [h_{\mu\nu}^{\rm 1ret} + h_{\mu\nu}^{\rm 1adv}])^2$

 \Rightarrow (time-symmetric piece of $h_{\mu\nu}^{\rm ret}$) \neq (half-ret-plus-half-adv. $h_{\mu\nu}$)

-the conservative force taken from the retarded field will not be equal to the force generated by the half-ret-plus-half-adv. field

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

3 Detweiler's redshift invariant

Asymptotically flat Lorenz gauge solutions

Definition 1: slowly varying orbital frequency

- Restrict to quasicircular orbits in Schwarzschild
- solve relaxed EFE
- What do I mean by 'incorporating dissipation' in this case? —incorporate effect of Ω on the perturbation

First obvious definition to consider

- slow evolution: $\dot{\Omega} \sim \mu/M$
- define conservative dynamics by freezing Ω
 —but still account for perturbation sourced by Ω

Difficulty

- gives rise to term like $\sim \dot{\Omega} h^1_{\mu\nu}$ in source for $h^2_{\mu\nu}$
 - \Rightarrow source behaves as $\sim 1/r$ at large r
 - \Rightarrow infrared divergence in $h_{\mu\nu}^2$

Definition 2: Gralla-Wald treatment of dissipation

• Expand around a zeroth-order orbit:

$$z^{\mu}\left(t,\frac{\mu}{M}\right) = z_{0}^{\mu}(t) + \frac{\mu}{M}z_{1}^{\mu}(t) + \frac{\mu^{2}}{M^{2}}z_{2}^{\mu}(t) + O\left(\frac{\mu^{3}}{M^{3}}\right)$$

- z_0^μ is a circular geodesic of background - split z_1^μ , z_2^μ into deviations driven by conservative and dissipative forces

Difficulty

- get terms growing as $\sim t^2$ in $h^2_{\mu\nu}$
- get growing but time-symmetric terms in quantities on z₀^µ —how to classify these?

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

3 Detweiler's redshift invariant

4 Asymptotically flat Lorenz gauge solutions

Definition 3: balance of in-out radiation

- $\bullet\,$ by 'neglecting dissipation' I mean setting $\dot{\Omega}=0$
- way to get this consistently: use half-ret.+half-adv. solution at both first and second order:
 - $\begin{array}{l} \textbf{I} \ \, \text{find} \ \, h^{1}_{\mu\nu} = \frac{1}{2}(h^{1\text{ret}}_{\mu\nu} + h^{1\text{adv}}_{\mu\nu}) \\ \textbf{2} \ \, \text{use this} \ \, h^{1}_{\mu\nu} \ \, \text{in source} \sim (\partial h^{1}_{\mu\nu})^{2} + h^{1}_{\mu\nu}\partial^{2}h^{1}_{\mu\nu} \ \, \text{for} \ \, h^{2}_{\mu\nu} \\ \textbf{3} \ \, \text{find} \ \, h^{2}_{\mu\nu} = \frac{1}{2}(h^{2\text{ret}}_{\mu\nu} + h^{2\text{adv}}_{\mu\nu}) \\ \end{array}$
- field satisfies EFE, motion is geodesic in its regular part

Problems

- infrared divergence
- not what's done in PN, where only retarded Green's functions are used

Definition 3: balance of in-out radiation

- $\bullet\,$ by 'neglecting dissipation' I mean setting $\dot{\Omega}=0$
- way to get this consistently: use half-ret.+half-adv. solution at both first and second order:
 - $\begin{array}{l} \textbf{I} \ \, \text{find} \ \, h^{1}_{\mu\nu} = \frac{1}{2}(h^{1\text{ret}}_{\mu\nu} + h^{1\text{adv}}_{\mu\nu}) \\ \textbf{2} \ \, \text{use this} \ \, h^{1}_{\mu\nu} \ \, \text{in source} \sim (\partial h^{1}_{\mu\nu})^{2} + h^{1}_{\mu\nu}\partial^{2}h^{1}_{\mu\nu} \ \, \text{for} \ \, h^{2}_{\mu\nu} \\ \textbf{3} \ \, \text{find} \ \, h^{2}_{\mu\nu} = \frac{1}{2}(h^{2\text{ret}}_{\mu\nu} + h^{2\text{adv}}_{\mu\nu}) \\ \end{array}$
- field satisfies EFE, motion is geodesic in its regular part

- infrared divergence
- not what's done in PN, where only retarded Green's functions are used

Definition 4: "turning off" dissipative terms in the force

- set source orbit \hat{z}^{μ} to be circular—i.e., $\dot{\Omega}=0$
- find retarded solution at both first and second order
- find the piece of the retarded force consistent with \hat{z}^{μ}

—i.e., satisfy
$${D^2 \hat{z}^\mu\over d au^2} = F^\mu_{
m cons}$$

simply set

$$\begin{split} F^{\mu}_{\rm cons} &= \delta^{\mu}_{r} F^{r} \\ F^{\mu}_{\rm diss} &= \delta^{\mu}_{t} F^{t} + \delta^{\mu}_{\phi} F^{\phi} \end{split}$$

Note

- because not all of F^{μ} is included, $h^2_{\mu\nu}$ here is not a solution to the EFE
- ^{2µ} is not a geodesic of the effective metric

Definition 5: geodesic in time-symmetrized effective metric

- set source orbit \hat{z}^{μ} to be circular (i.e., $\dot{\Omega}=0$)
- find retarded solution at both first and second order
- rather than simply setting $F^t = 0 = F^{\phi}$, find time-symmetrized effective metric $\hat{\hat{g}}_{\mu\nu} = g_{\mu\nu} + \hat{h}^R_{\mu\nu}$ in which \hat{z}^{μ} is a geodesic
- Time-symmetrization: take regular piece of retarded field,

$$h_{\mu\nu}^{Rn} = \sum_{i\ell m} h_{i\ell m}^{Rn} e^{-im\Omega t} Y_{\mu\nu}^{i\ell m}$$

and let $h_{i\ell m}^{Rn} \rightarrow \frac{1}{2}(h_{i\ell m}^{Rn} + h_{i\ell m}^{Rn*})$ • Why? Outgoing \leftrightarrow ingoing waves: $h_{ilm}^n \leftrightarrow h_{ilm}^{n*}$

Note

- $\hat{\tilde{g}}_{\mu\nu}$ is *not* a solution to the vacuum EFE
- \hat{z}^{μ} is *not* same as in Definition 4 —but metrics differ only by amount $\sim \mu^3/M^3$

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

Oetweiler's redshift invariant

4 Asymptotically flat Lorenz gauge solutions

An invariant quantity: Detweiler's redshift variable

- use any of the definitions that set $\dot{\Omega}=0$
- 'redshift factor': ratio of times $\tilde{u}^t = \frac{dt}{d\tilde{\tau}}$ in effective metric

In terms of quantities on the conservative orbit

$$\tilde{u}^{t} = \frac{1}{\sqrt{1 - \frac{3M}{r}}} \left\{ 1 + \frac{1}{2} (h_{uu}^{R} - F_{r}r) + \frac{1}{8} \left[3(h_{uu}^{R})^{2} - 2rF_{r}h_{uu}^{R} - r^{2}(F_{r})^{2} \right] \right\}$$

An invariant quantity: Detweiler's redshift variable

- use any of the definitions that set $\dot{\Omega}=0$
- 'redshift factor': ratio of times $\tilde{u}^t = \frac{dt}{d\tilde{\tau}}$ in effective metric

In terms of quantities on the zeroth-order orbit $\tilde{u}^{t} = \frac{1}{\sqrt{1 - \frac{3M}{r_{0}}}} \left\{ 1 + \frac{1}{2} \frac{\mu}{M} h_{u_{0}u_{0}}^{R1} + \left(\frac{\mu}{M}\right)^{2} \left[\frac{1}{2} h_{u_{0}u_{0}}^{R2} + \frac{3}{8} \left(h_{u_{0}u_{0}}^{R1}\right)^{2} - \frac{r_{0}^{2}(r_{0} - 3M)}{6M} (F_{1r})^{2} \right] \right\}$

Second-order formalism

2 Conservative-dissipative split

- Options that incorporate dissipation
- Options that neglect dissipation

3 Detweiler's redshift invariant

There are two well-known monopole solutions in the Lorenz gauge:

- Historically, Solution 1 has been used as the 'physically correct' solution
- Can't use it here: It would produce a source $\sim h_{\mu\nu}^1\partial^2 h_{\mu\nu}^1 \sim 1/r$ \Rightarrow badly divergent $h_{\mu\nu}^2$
- Transforming it to an asymptotically flat gauge also leads to catastrophe

Avoiding the historical problem

The two solutions differ only by an overall shift in the mass

- $\Rightarrow\,$ The shift can be absorbed into the definition of M
- ⇒ The solutions are physically indistinguishable

Consider: a binary containing a black hole of mass ${\it m}_1$ and a small object of mass ${\it m}_2$

Solution 1: 'correct' mass

corresponds to expansion around background of mass

 $M = m_1$

Solution 2: asymptotically flat

corresponds to expansion around background of mass

 $M = m_1 + \delta M$

- Both solutions describe the same binary. So we can use Solution 2
- \bullet When comparing numerical results to other calculations, simply note that $M \neq m_1$

Short-term objectives and current status

- The first things to calculate at second order are invariant conservative quantities
 - \Rightarrow compare to PN, fix PN and EOB parameters
- $\bullet\,$ Numerical implementation now in progress to calculate \tilde{u}^t on a circular orbit

But what should we mean by 'the conservative dynamics' at second order?

• e.g., for a (quasi)circular orbit, the cleanest definitions involve setting $\dot{\Omega}=0$ everywhere in the calculation

-Would a different definition be more useful as input for PN/EOB?