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Second-order self-force

@ Self-force formalism starts
from an expansion in
powers of p/M

@ All numerical results have

been at linear order :
@ Second-order formalism now

in place, but no numerical

results

What should we calculate?

@ It's well known that dissipative second-order effects are essential for
accurate inspiral

@ But local-in-time conservative effects far easier to calculate



Motivation for looking at conservative effects

@ Self-force originally studied
to model inspirals

@ But interesting conservative
effects have been
emphasized in recent years
- orbital precession
- ISCO shift
- Detweiler’s redshift factor
- self-tides

dissipating orbit

conservative orbit
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Going to second order

We can calculate order-(y/M)? contributions to all these effects




Motivation continued: interfacing between models

separation

Post-

Newtonian

theory

—

Conservative self-force results

o fix Effective One Body
parameters

@ determine high-order PN terms

@ set benchmarks for NR

Numerical
Relativity

Self-force

@ show self-force has surprisingly
large domain of validity [Le
Tiec et al]

mass ratio M/
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Motivation continued: interfacing between models

A Conservative self-force results
Post. o fix Effective One Body
< Newtonian parameters
= || theory @ determine high-order PN terms
:8;_ - o set benchmarks for NR
@ Numerical Self-force @ show self-force has surprisingly
Relativity K large domain of validity [Le
> Tiec et al|

mass ratio M/

Going to second order

o fix (u/M)? terms in PN and EOB
@ set stronger benchmarks for NR

o first step toward using SF to model IMRIs and comparable-mass
binaries




@ Second-order formalism

© Conservative-dissipative split
@ Options that incorporate dissipation
@ Options that neglect dissipation

© Detweiler’s redshift invariant

@ Asymptotically flat Lorenz gauge solutions



@ Second-order formalism



Matched asymptotic expansions

.
@ in external universe,
gravitational field of M
dominates ) N_
- . — Inner region
@ in inner region, gravitational (r ~ p)
field of 1 dominates -
i i urrer
° in bufFer_reglon, extract region
information about p from .
“inner expansion”, feed it external universe (r ~ M)

into “outer expansion”,
define p's worldline



Equation of motion

@ Split the field into singular and regular pieces

ray 4

full metric g, "self field" h,fw effective metric g, + h%

pv
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Equation of motion

@ Split the field into singular and regular pieces

G § T

effective metric g, + h%

pv

full metric gy, singular field 13

g
e Find that the equation of motion is
D%+ 1.
2 = —§Pu (9/5 - hfé)(%ﬁm - hﬁma)uﬁu” + O[(M/M)g]

- geodesic motion in C'°° vacuum metric §,, = guv + hfy
R _ pR1 R2
- hw/ - hw + huv



Effective-source scheme

x VP 1S
@ use a ‘puncture’ h, ~ h;,

o rewrite field equations for variable A%, = hy,, — hl>, ~ hlt,

o design A, such that on worldline, A%, = hlt and Oh%, = Oh T,

out here, solve
for physical variable h,,,

in here, solve_><’

for effective variable h/T,

At second order
o for h2 : (5G,W[h2] = —§2 Gm,[hl] ~ (0h1)2 + nto%h!

v

o for h2R: Gy [h2R] = =32 G [h1] — Gl [12P)]



© Conservative-dissipative split
@ Options that incorporate dissipation
@ Options that neglect dissipation



Why the split is clear at first order

@ can approximate the source orbit as a background geodesic
—the deviation is §2* ~ pu = it influences metric at second order

@ can naturally define the conservative force as the piece of the force
that's time-reversal invariant along the geodesic

@ can naturally define the time-symmetric piece of the linearized
retarded field as the ‘half-ret. + half-adv." perturbation sourced by
the geodesic

@ And the naturally defined conservative force is identical to the force
constructed from the (regular piece of the) naturally defined
time-symmetric field:

lcons

1
FH = i(F{Lret—i_F{Ladv)

1
F{Ldiss = i(Flﬂret - F{Ladv)



Why it's unclear at second order

@ must account for the deviation §z* from background geodesic
—which worldline do we refer to when deciding the time symmetry
of the force?

o Products of form ~ (0z};..)? vield time-symmetric terms in force
—should they be included in the conservative dynamics?

o likewise for products of form ~ dzi\ (Fliee — Fioge)
e h?, sourced by ~ (dh},)* + h).,0°h,
= physical, retarded hﬁ,, sourced by (8hi'{,€t)2 #* (%a[hiff“—khiid"}f

= (time-symmetric piece of k') # (half-ret-plus-half-adv. hy..)

—the conservative force taken from the retarded field will not be
equal to the force generated by the half-ret-plus-half-adv. field



© Conservative-dissipative split
@ Options that incorporate dissipation



Definition 1: slowly varying orbital frequency

@ Restrict to quasicircular orbits in Schwarzschild
@ solve relaxed EFE

@ What do | mean by ‘incorporating dissipation’ in this case?
—incorporate effect of 2 on the perturbation

inspiraling
orbit z#

First obvious definition to
consider

e slow evolution: ) ~ w/ M

@ define conservative
dynamics by freezing {2
—but still account for _
perturbation sourced by Q2

conservative
orbit 2#

Difficulty
o gives rise to term like ~ © Al in source for h2,

= source behaves as ~ 1/r at large r
= infrared divergence in hfw



Definition 2: Gralla-Wald treatment of dissipation

@ Expand around a zeroth-order orbit

u 1
2 (t, M) =2 (t) + sz
po
0

w2, 13
(t)+M— ()+O<M3>
- 2z} is a circular geodesic of background

- split zI', 2}’ into deviations driven by conservative and dissipative
forces

Difficulty

j\ inspiraling
A orbit z#
@ get terms growing as /
2 2
~ 1% in hy,

@ get growing but

time-symmetric terms in
quantities on 2

zeroth-order

e~ orbit 2
]

—how to classify these?




© Conservative-dissipative split

@ Options that neglect dissipation



Definition 3: balance of in-out radiation

@ by ‘neglecting dissipation’ | mean setting = 0
@ way to get this consistently: use half-ret.+half-adv. solution at both
first and second order:
find h, = L(h2 + BLAY)
use this h,lw in source ~ (c‘?’hﬁlw)2 + hil,82hiu for hﬁu
find A, = 5(h2" + hio™)
o field satisfies EFE, motion is geodesic in its regular part

inspiraling
orbit z#

Problems
@ infrared divergence

@ not what's done in PN,
where only retarded
Green's functions are used

conservative
orbit 2#
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Definition 4: “turning off"” dissipative terms in the force

e set source orbit 2 to be circular—i.e., Q =0
@ find retarded solution at both first and second order

@ find the piece of the retarded force consistent with z*

_ . D?zm
—i.e., satisfy 5= Flons
@ simply set
e inspiraling
Fi = §HFT \ e
no oot 73 nlo}
Fdiss - 615 P 6¢F

Note

@ because not all of F* is
included, hfw here is not a
solution to the EFE

@ zM is not a geodesic of the
effective metric

conservative
orbit Z#




Definition 5: geodesic in time-symmetrized effective metric

set source orbit 3 to be circular (i.e., Q = 0)
find retarded solution at both first and second order

rather than 5|mply setting F'* = 0 = F?, find time-symmetrized
effective metric g, = guv + h in which z* is a geodesic

Time-symmetrization: take regular piece of retarded field,

h’ffn Z hRn —imQt Ylfm

ilm
R R R
and let hfjr — $(hfm + hine)

Why? Outgoing <> ingoing waves: h[ <> hl*

ilm

Note

f]w is not a solution to the vacuum EFE

z" is not same as in Definition 4
—but metrics differ only by amount ~ /M3



© Detweiler’s redshift invariant



An invariant quantity: Detweiler's redshift variable

@ use any of the definitions that set Q = 0

dt

@ 'redshift factor’: ratio of times 4! = <7 in effective metric

inspiraling
orbit z*

conservative
orbit z#

In terms of quantities on the conservative orbit

1—
T

= —/1& {1 + %(hfu - Fr"”) + % [3(hfu)2 = QTFThfu _ TZ(Fr)2:|}




@ use any of the definitions that set Q = 0
di

@ 'redshift factor’: ratio of times @

\\ (geodesic of g,,,,)

ar

inspiraling
orbit z*

\

\
\
\
1
)
L

i~ orbit 2

!
!
)
/
/

conservative
orbit 2#
(geodesicof g,,,)

In terms of quantities on the zeroth-order orbit

zeroth-order

in effective metric

(geodesic of g,,,)

An invariant quantity: Detweiler's redshift variable

~t 1

at= —L1
[1_3M
o

2
{1+34n8 + (&) 4h

R2
uouUo

2
+5 (i) —

2

6M

5 (ro—3M)
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@ Asymptotically flat Lorenz gauge solutions



The historical problem

There are two well-known monopole solutions in the Lorenz gauge:

Solution 1: ‘correct’ mass Solution 2: asymptotically flat
@ ‘physically correct’ total e lim A, =0
r—00

mass-energy M + uF
. s @ but the total mass-energy is

obutrli)ngohm,:const.#o M-'-/LE—&M#M-F/J.E

@ Historically, Solution 1 has been used as the ‘physically correct’
solution

o Can't use it here: It would produce a source ~ h},0h,\, ~ 1/r
= badly divergent h”,

@ Transforming it to an asymptotically flat gauge also leads to
catastrophe



Avoiding the historical problem

The two solutions differ only by an overall shift in the mass

= The shift can be absorbed into the definition of M
= The solutions are physically indistinguishable

Consider: a binary containing a black hole of mass m; and a small object
of mass my

Solution 1: ‘correct’ mass Solution 2: asymptotically flat
corresponds to expansion corresponds to expansion around
around background of mass background of mass

M = mq M= my + oM

@ Both solutions describe the same binary. So we can use Solution 2

@ When comparing numerical results to other calculations, simply note
that M # my



Summary and conclusions

Short-term objectives and current status

@ The first things to calculate at second order are invariant
conservative quantities

= compare to PN, fix PN and EOB parameters

@ Numerical implementation now in progress to calculate %! on a
circular orbit

But what should we mean by ‘the conservative dynamics’ at second
order?

e e.g., for a (quasi)circular orbit, the cleanest definitions involve
setting {2 = 0 everywhere in the calculation

—Would a different definition be more useful as input for PN/EOB?
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