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Summary

What can NR BBH simulations now do?
What science can we do with them?

@ Introduction: black-hole binaries and numerical relativity (NR)
@ Sources of error in BBH simulations

© Capabilities and challenges

@ Precession

e Large spins

o Large mass ratios

e Large number of orbits

o Parameter space coverage
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Introduction
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Numerical Relativity (NR) and the BBH problem

Some problems, like the binary black hole problem, are difficult to treat
with approximation methods in the general case.
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The only way to solve nonlinear, dynamical, strong-field Einstein
equations is numerically.

= Numerical Relativity
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Numerical relativity (NR)
@ Write Einstein’s field equations as an initial value problem for g,,,..

— Constraints (like V-B=0)
- { Evolution egs. (like ;B = -V x E)
@ Choose ’free’ initial data at t = 0
@ Choose gauge (=coordinate) conditions

Get yourself a computer cluster, and
@ Solve constraints at t = 0
(4 (+1) coupled nonlinear 2nd-order elliptic PDESs)
@ Use evolution egs. to advance in time
( 50 coupled nonlinear 1st-order hyperbolic PDEs )
@ Use constraints to check quality of evolution.
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Numerical relativity (NR)
@ Write Einstein’s field equations as an initial value problem for g,,,..

— Constraints (ike V-B=0)
- { Evolution egs. (like ;B = -V x E)
@ Choose ’free’ initial data at t = 0
@ Choose gauge (=coordinate) conditions

Get yourself a computer cluster, and
@ Solve constraints at t = 0
(4 (+1) coupled nonlinear 2nd-order elliptic PDESs)
@ Use evolution egs. to advance in time
( 50 coupled nonlinear 1st-order hyperbolic PDEs )
@ Use constraints to check quality of evolution.

@ First successful black-hole binary computation: Pretorius 2005
@ Today several research groups worldwide have NR codes.
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NR Codes for BHBH binaries

About a dozen in existence

Form of Equations: BSSN Zdc
Singularity Treatment: Moving Punctures
Numerical Methods: Finite Differencing
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NR Codes for BHBH binaries

About a dozen in existence

Most codes

Form of Equations: Generalized Harmonic

Singularity Treatment: Moving Punctures Excision

Finite Differencing Spectral

Numerical Methods:
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NR Codes for BHBH binaries

About a dozen in existence

Most codes BAM

Form of Equations:

Singularity Treatment: Moving Punctures

Numerical Methods: Finite Differencing

Mark A. Scheel (Caltech)

Generalized Harmonic

Excision

Spectral

June 25 2014

6/45



NR Codes for BHBH binaries

About a dozen in existence

Most codes BAM

Form of Equations: Generalized Harmonic

Singularity Treatment: Moving Punctures Excision

Spectral

Numerical Methods: Finite Differencing

—

Princeton, AEI Harmonic Code
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NR Codes for BHBH binaries

About a dozen in existence

Most codes BAM

‘ Moving Punctures

Form of Equations: Generalized Harmonic

Singularity Treatment: Excision

Numerical Methods: Finite Differencing
—
Princeton, AEI Harmonic Code SXS Collaboration (SpEC)
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NR Codes for BHBH binaries

About a dozen in existence

Form of Equations: Generalized Harmonic

Most codes BAM
S

‘ Moving Puncture

Numerical Methods: Finite Differencing
—

Princeton, AEI Harmonic Code SXS Collaboration (SpEC)

Singularity Treatment: Excision

@ Comparing different codes improves confidence in results.
@ Most examples | will show will be from SpEC.
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SpEC - Spectral Einstein Code

http://www.black-holes.org/SpEC.html

Parallel computer code developed at Caltech, Cornell, CITA (Toronto),
Washington State, UC Fullerton, plus several contributors at other

institutions.
@ Spectral methods (exponential convergence for smooth problems).
@ Generalized Harmonic form of Einstein’s equations.
@ Black hole excision.

@ Relativistic hydrodynamics (neutron stars,. .. ).
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SpEC run time

Run time: depends on masses, spins,
number of orbits.

@ Days to months wallclock time running on ~ 50 cores.
@ Spectral methods: small memory usage, run ‘fits’ on laptop.
@ Can run many simulations at once on large machines.
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Sources of Error
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Numerical truncation error
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Outer boundary error

T T T . .
0.02F  g=6, zero spin -4 @ Most simulations use a
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Buchman et al., PRD 79:124028 (2009)

More about this later. ..
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Initial data “error”
Astrophysical initial data

@ Initial data should be ’snapshot’ of inspiral from { = —oco

@ Tidal distortion, initial gravitational radiation are not correct.
T

= “Junk radiation” spoils o00tr
beginning of simulation. Zo
= Masses & spins relax 0,001

during junk epoch.

Eccentricity

@ Cannot a priori choose initial data
to get desired eccentricity.

@ Can produce small eccentricity via
iterative scheme: expensive.
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Wave extraction error

@ Waves are computed at finite distance from source.
= Contaminated by gauge, near-field terms.

@ Cauchy-characteristic
extraction (CCE) mostly
solves this problem—gauge
invariant.

@ Still some error w/ CCE
(free data on initial null
slice).

— Gauge 1, extrap
— Gauge 2, extrap b
—- Gauge 1, CCE
—- Gauge‘ 2, CCE
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Taylor et al., PRD 88, 124010 (2013

Mark A. Scheel (Caltech) June 25 2014 14 /45

o

o]

o

—_
T




Capabilities and Challenges

Precession
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Precession allows us to study

@ Spin and orbit dynamics.

Mroue, MAS, et al., PRL 111:241104 (2013)
Followup: Ossokine et al., in prep

@ Calibration of analytical waveform models.
Taracchini et al., PRD 89:061502 (2014)
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Precession Color = Vorticity

Large hole spin ~ 0.91 (& measure of spin)
Small hole spin ~ 0.3  Mass ratio 6

Time: 863
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Event Horizon: Andy Bohn Movie: Curran Muhlberger
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Capabilities and Challenges

Large spins
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Numerical simulations of large spins allow us to study

@ The effect of high BH spin on BH/NS binaries.
Lovelace et al, CQG 30:135004 (2013)

@ Remnant properties as a function of initial parameters.
Hemberger et al., PRD 88:064014 (2013)

@ Calibration of analytical waveform models.
Taracchini et al., PRD 89:061502 (2014)

@ How high a spin can LIGO distinguish? Hemberger et al., in prep
@ Initial spin of merged horizon. Lovelace et al., in prep
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Why is it difficult to simulate large spins?

@ Initial data

e Standard conformally flat data limited to y(= S/M?) < 0.93.
o Superposed Kerr-Schild data breaks this barrier.
Lovelace et al., PRD 78:084017 (2008)
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Why is it difficult to simulate large spins?

@ Initial data

e Standard conformally flat data limited to y(= S/M?) < 0.93.
o Superposed Kerr-Schild data breaks this barrier.
Lovelace et al., PRD 78:084017 (2008)

@ Evolution

e Need high accuracy.
o Need precise excision.

\ = 0.2 (left BH), y = 0.991 (right BH)
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Isn’t x = 0.93 large enough already?

Rotational energy
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Isn’t x = 0.93 large enough already?

Black hole / neutron star binary:
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Lovelace et al, CQG 30:135004 (2013)
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New simulation: Equal mass, aligned spins, xy = 0.994

0.995r b

=
0.9945r 1 Remnant properties:
L Radiated energy: 11.35%
Final spin: x = 0.9499
09944 100 t/M‘ 200 Hemberger et al. 2013 predicts:
Radiated energy 11.3%
Run pushed by Matt Giesler Final spin = 0.950

Mark A. Scheel (Caltech) June 25 2014 23/45



New simulation: high spin with (mild) precession

Mass ratio 1.5
Large BH: y = 0.991
Small BH: y =0.2

Horizon colors: Vorticity

Remnant properties:
Radiated energy: 7.8%
Final spin: x = 0.897
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Initial spin of the merged apparent horizon

preliminary results

/—\

Measure spin of common AH at formation,
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Initial spin of the merged apparent horizon

preliminary results

Measure spin of common AH at formation,
as function of initial spin.

Equal spins, aligned with L,

S/M? < 1 trivially, by construction.
M2 = M2+ S?/4M2,

Instead plot extremality parameter
8rS/A = S/2M>..

We find 87 S/A always < 1.
Unclear if lim,,  .1(87S/A) < 1

8nS/A (merged BH)
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Capabilities and Challenges

Large mass ratios
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Large mass ratios

Why is it difficult?

@ Time scale of orbit ~ My + M>
@ Size of time step ~ Mynan

@ Need high resolution near smaller BH.

Mass ratio 8:1  Mroue, MAS, et al., PRL 111:241104 (2013)
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Large mass ratios allow us to study

@ Comparison with PN.
MacDonald et al., PRD 87, 024009 (2013)

@ Calibration of analytical waveform models.
Taracchini et al., PRD 89:061502 (2014)

@ Periastron advance
Le Tiec et al., PRL 107:141101 (2011)
Hinderer et al., PRD 88:084005 (2013)
Le Tiec et al., PRD 88:124027 (2013)

@ Early BH/NS inspirals, using BHBH as a proxy
Barkett et al., in prep
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Large mass ratios

~— 10:1, no spin
30 orbits
e~ 1073

Largest mass ratio
done w/ SpEC

o N

0:1 in progress;
ifficulties remain.

Run pushed by S. Ossokine, B. Szilagyi
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Large mass ratios
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Lousto & Zlochower, PRL 106:041101 (2011)
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Large mass ratios
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Capabilities and Challenges

Number of orbits
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Why do we want many orbits? PN matching

Waveform visible to LIGO has 100s of binary orbits.
Problem: Following many orbits with NR is difficult.

tlme
Solution: Match NR simulation to PN, before PN becomes inaccurate.
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How do you know when PN is accurate?

Two ways: time
@ Test PN approximants against each other.
Example: Nitz et al., arXiv:1307.1757 (2013):

e For BH/NS parameters (q ~ 7:1, spingy = 0.2),
PN is inaccurate for most of the aLIGO frequency band.

= There is no good model for BH/NS inspiral waveforms.

© Compare PN with NR.
(Need enough NR orbits to reach realm of PN validity.)

Example: Boyle et al., PRD 76:124038 (2007)

e g =1, spin=0: PN accurate ~ 10 orbits before merger.
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PN investigations

PN NR

time
@ We would like to

o Determine how many NR orbits must be simulated for aLIGO.
Boyle et al., PRD 76:124038 (2007)

e Investigate PN accuracy.
MacDonald et al., PRD 87, 024009 (2013)

Ossokine et al., in prep.
o Build better waveform models for BH/NS inspirals.
Barkett et al., in prep.

@ Most SpEC simulations now follow 20+ orbits.
Still not enough for spinning binaries.
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175 orbit simulation

@ 7:1 mass ratio @ 175 orbits, merger, ringdown
@ zero spin @ 4 numerical resolutions
0.15 . ReY22(h), extraploated to Scri+ ‘
020
0.05 Lo
0.00 Il
—0.05}--
—010f
70'150 20600 40(I)OO 60600 120000

time /M

Szilagyi, Blackman, MAS, et al., in prep.

Mark A. Scheel (Caltech) June 25 2014 37/45



175 orbit simulation
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175 orbit simulation

Unphysical center of mass motion

full trajectories
T T T T

traj up to t=20,000
30 . 30— dp o =
20t 2000,
100 10}
o} o
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Capabilities and Challenges

Template banks and parameter space
coverage
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How to use NR to assist LIGO detection of BBHs?

@ Use NR to calibrate analytical models of waveforms.
Example: “Effective One Body” model (fitted to SpEC waveforms).
Pan et al., PRD 84:124052 (2011)
Taracchini et al., PRD 86:024011 (2012), PRD 89:061502(R) (2014)

@ Use NR as 'signals’ to test LIGO detection algorithms.
@ Numerical Injection Analysis (NINJA) project.
8 NR groups+LIGO Scientific Collaboration
Aasi et al., arXiv:1401.0939 (2014)

@ Use NR to generate waveform templates.
o Difficult: >
- 7D parameter space
- Simulations are expensive. M,
e Can do for 1D subspace (mass ratio) using SpEC.
Kumar et al., PRD 89, 042002 (2014)
e May be possible in 7D with “reduced basis” methods.
Blackman et al., arXiv:1401.7038 (2014)
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Simulation catalogs

NR simulations for LIGO science

@ NRAR (Numerical Relativity/Analytical Relativity) project
o Goal: Improve analytic waveform models using NR simulations.
@ 9 NR codes.
e 25 simulations
Hinder et al., CQG 31 025012 (2014)
@ NINJA (Numerical INJection Analysis) collaboration
o Goal:

@ Add numerical waveforms into LIGO/Virgo detector noise
@ Test how well detection pipelines can detect/identify them

o 8 NR groups.
@ 60 waveforms, matched to PN.

@ Georgia Tech
@ ~ 200 simulations, Pekowsky et al., arXiv:1304.3176
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SpEC public simulation catalog
174 simulations; www.black—-holes.org/waveforms
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www.black-holes.org/waveforms

SpEC simulation catalog: parameter space coverage

@ Red/blue arrows =
Initial spin directions

@ Spins up to 0.97
@ Mass ratios up to 8

TN e oa g o
Mass Ratio q

@ Very sparse coverage!
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Mroue, MAS, et al., PRL 111:241104 (2013)
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Summary

@ Binary black hole simulations are now mature.
@ Now being used for LIGO science and studies of strong-field
compact object interactions.
In the future . ..
@ Push current limitations on mass ratios, spins, number of orbits.
@ Enlarge catalog, informed by reduced basis.
@ Further comparisons with analytic approximations.
@ Improve accuracy to levels necessary for LISA-like missions.
@ Comparisons with future events detected by LIGO.
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