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MAPMO, UMR CNRS 7349, Rue de Chartres, 45067 Orléans, France
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Plan of the talk

Indirect (source-free) integration method for EMRIs: waveforms
from geodesic generic orbits

First order perturbation approach radial fall

Self-force consistent radial fall
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Johannes Droste
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Lorenz (1829-1891) - de Donder (1872-1957)

and FitzGerald...
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Use of jump conditions

Haas (PRD 2007)

Field, Hesthaven, Lau (CQG 2009)

Barack, Sago (PRD 2010)

Cañizares, Sopuerta (PRD 2009); Cañizares, Sopuerta, Jaramillo
(2010)

Aoudia, Spallicci (PRD 2011), Ritter, Spallicci, Aoudia, Cordier
(CQG 2011)
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Indirect integration method: hµν, Ψ in RW gauge

∂2Ψ`(t, r)

∂r∗2
− ∂2Ψ`(t, r)

∂t2
− V `(r)Ψ`(t, r) = S`(t, r) , (1)

S`(t, r) = G `(t, r)δ[r − R(t)] + F `(t, r)δ′[r − R(t)] . (2)

At the particle, we have Ψ ∈ C−1

hµν ∈ C 0 for radial infall, while it is more discontinuous for generic orbits.
Jump conditions are derived either by

the RWZ equation directly or by

the inverse relations.

Once that the jump conditions are derived, we proceed as follows.
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Indirect integration method: features

Integration domain h discretised by 2-dimensional uniform mesh (t, r∗).

Initial data, empty cells, dealt as Lousto and Price, Martel and Poisson, Martel, Lousto, Haas.

The forward time value at the upper node of the (r∗, t) grid cell is obtained by
i) the preceding node values of the same cell,
ii) analytic expressions from the jump conditions on Ψ and its derivatives,
iii) AT HIGH ORDERS: the values of the wave function at adjacent cells .

The numerical integration does not deal with the source and potential terms
directly, for cells crossed by the particle world line.
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Indirect integration method: example at 1st order. I

Case 1: particle crosses the β - δ line at a and γ - α line at b
εa = min {aδ, aβ}, εb = min {bα, bγ}; Ψ±

b = Ψ±(tb, r
∗
b ), Ψ±

a = Ψ±(ta, r
∗
a )

6 analytic expressions and 6 numerical equations:

`
Ψ+ −Ψ−´

a
= [Ψ]a

`
Ψ+

,r∗ −Ψ−
,r∗

´
a

= [Ψ,r∗ ]a
`
Ψ+

,t −Ψ−
,t

´
a

= [Ψ,r∗ ]a (3)

`
Ψ+ −Ψ−´

b
= [Ψ]b

`
Ψ+

,r∗ −Ψ−
,r∗

´
b

= [Ψ,r∗ ]b
`
Ψ+

,t −Ψ−
,t

´
b

= [Ψ,t ]b (4)

Ψ+
α = Ψ+(tb + εb, r

∗
b ) = Ψ+

b + εb Ψ+
,t

˛̨
b

(5)

Ψ−
σ = Ψ−(tb − (h − εb), r

∗
b ) = Ψ−

b − (h − εb) Ψ−
,t

˛̨
b

(6)

Ψ−
γ = Ψ−(tb − 2h + εb, r

∗
b ) = Ψ−(tσ − h, r∗b ) = Ψ−

σ − h Ψ−
,t

˛̨
σ

(7)

Ψ+
δ = Ψ+(ta, r

∗
a + εa) = Ψ+

a + εa Ψ+
,r∗

˛̨
a

(8)

Ψ−
σ = Ψ−(ta, r

∗
a − (h − εa)) = Ψ−

a − (h − εa) Ψ−
,r∗

˛̨
a

(9)

Ψ−
β = Ψ−(ta, r

∗
a − 2h + εa) = Ψ−(tσ, r∗σ − h) = Ψ−

σ − h Ψ−
,r∗

˛̨
σ

(10)
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Indirect integration method: example at 1st order. II

Our aim: determination of the value of Ψ+
α, knowing those of Ψ−

β , Ψ−
γ , Ψ+

δ , εa, εb,
[Ψ]a,b, [Ψ,r ]a,b and [Ψ,t ]a,b

Through algebraic manipulation, we get

Ψ+
α = Ψ−

σ + [Ψ]b + [Ψ,t ]b + h Ψ−
,t

˛̨
b

(11)

Ψ+
δ = Ψ−

σ + [Ψ]a + [Ψ,r∗ ]a + h Ψ−
,r∗

˛̨
a

(12)

Ψ+
α = Ψ−

β −Ψ−
γ + Ψ+

δ − [Ψ]a + [Ψ]b − εa [Ψ,r∗ ]a + εb [Ψ,t ]b +O(h2) (13)

No need of direct integration of the singular source

Top cell value depending upon analytic expressions (and other cell’s corners)
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Indirect integration method: second order for generic orbits

Figure: Second order mesh for the cells crossed by the particle. The number of
grid nodes are six, for four cases.
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Indirect method of integration: geodesic waveforms

Full agreement with previous results of other groups using other methods.

Radial fall from r0 = 5(2M)
for the mode ` = 2.

Odd parity waveform for an
eccentric orbit
(e, p) = (0.5, 7.2) for the
mode (`, m) = (2, 1).

Even parity zoom-whirl
waveform orbit
(e, p) = (1.0, 8.001) for the
mode (`, m) = (2, 2).
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Geodesic waveforms (2nd order): circular (Ė∞`m)

` m Ė∞`m Ė∞`m Poisson (1995,1997) Ė∞`m Martel 2004 Ė∞`m Barack Lousto 2005 Ė∞`m Sopuerta Laguna 2006

2 1 8.1680.10−07 8.1633.10−07 [0.06%] 8.1623.10−07 [0.07%] 8.1654.10−07 [0.03%] 8.1662.10−07 [0.02%]

2 2 1.7064.10−04 1.7063.10−04 [0.006%] 1.7051.10−04 [0.07%] 1.7061.10−04 [0.02%] 1.7064.10−04 [<0.001%]

3 1 2.1757.10−09 2.1731.10−09 [0.1%] 2.1741.10−09 [0.07%] 2.1734.10−09 [0.1%] 2.1732.10−09 [0.1%]

3 2 2.5203.10−07 2.5199.10−07 [0.02%] 2.5164.10−07 [0.2%] 2.5207.10−07 [0.01%] 2.5204.10−07 [0.002%]

3 3 2.5471.10−05 2.5471.10−05 [0.001%] 2.5432.10−05 [0.2%] 2.5479.10−05 [0.03%] 2.5475.10−05 [0.02%]

4 1 8.4124.10−13 8.3956.10−13 [0.2%] 8.3507.10−13 [0.7%] 8.3982.10−13 [0.2%] 8.4055.10−13 [0.08%]

4 2 2.5099.10−09 2.5091.10−09 [0.03%] 2.4986.10−09 [0.5%] 2.5099.10−09 [0.002%] 2.5099.10−09 [0.002%]

4 3 5.7750.10−08 5.7751.10−08 [0.001%] 5.7464.10−08 [0.5%] 5.7759.10−08 [0.02%] 5.7765.10−08 [0.03%]

4 4 4.7251.10−06 4.7256.10−06 [0.01%] 4.7080.10−06 [0.4%] 4.7284.10−06 [0.07%] 4.7270.10−06 [0.04%]

5 1 1.2632.10−15 1.2594.10−15 [0.3%] 1.2544.10−15 [0.7%] 1.2598.10−15 [0.3%] 1.2607.10−15 [0.2%]

5 2 2.7910.10−12 2.7896.10−12 [0.05%] 2.7587.10−12 [1.2%] 2.7877.10−12 [0.1%] 2.7909.10−12 [0.003%]

5 3 1.0933.10−09 1.0933.10−09 [<0.001%] 1.0830.10−09 [0.9%] 1.0934.10−09 [0.009%] 1.0936.10−09 [0.03%]

5 4 1.2322.10−08 1.2324.10−08 [0.01%] 1.2193.10−08 [1.1%] 1.2319.10−08 [0.03%] 1.2329.10−08 [0.05%]

5 5 9.4544.10−07 9.4563.10−07 [0.02%] 9.3835.10−07 [0.8%] 9.4623.10−07 [0.08%] 9.4616.10−07 [0.08%]

Total 2.0293.10−04 2.0292.10−04 [0.005%] 2.0273.10−04 [0.096%] 2.0291.10−04 [0.009%] 2.0293.10−04 [<0.001%]

Table: Circular orbit: energy flux Ė`m values at infinity, for different `m modes and ` < 5
(units of M2/m2

0). The semi-latus rectum is p = 7.9456. The first column lists our results,
and the second those of Poisson (1995,1997), the third of Martel (2004), the fourth of Barack
and Lousto (2005), the fifth of Sopuerta and Laguna (2006).
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Geodesic waveforms (2nd order): circular (L̇∞`m)

` m L̇∞`m L̇∞`m Poisson (1995,1997) L̇∞`m Martel (2004) L̇∞`m Sopuerta Laguna

2 1 1.8294.10−05 1.8283.10−05 [0.06%] 1.8270.10−05 [0.1%] 1.8289.10−05 [0.03%]

2 2 3.8218.10−03 3.8215.10−03 [0.009%] 3.8164.10−03 [0.1%] 3.8219.10−03 [0.002%]

3 1 4.8729.10−08 4.8670.10−08 [0.1%] 4.8684.10−08 [0.09%] 4.8675.10−08 [0.1%]

3 2 5.6448.10−06 5.6439.10−06 [0.02%] 5.6262.10−06 [0.3%] 5.6450.10−06 [0.003%]

3 3 5.7048.10−04 5.7048.10−04 [<0.001%] 5.6878.10−04 [0.2%] 5.7057.10−04 [0.02%]

4 1 1.8841.10−11 1.8803.10−11 [0.2%] 1.8692.10−11 [0.8%] 1.8825.10−11 [0.09%]

4 2 5.6213.10−08 5.6195.10−08 [0.03%] 5.5926.10−08 [0.5%] 5.6215.10−08 [0.003%]

4 3 1.2934.10−06 1.2934.10−06 [0.003%] 1.2933.10−06 [0.01%] 1.2937.10−06 [0.02%]

4 4 1.0583.10−04 1.0584.10−04 [0.01%] 1.0518.10−04 [0.6%] 1.0586.10−04 [0.03%]

5 1 2.8293.10−14 2.8206.10−14 [0.3%] 2.8090.10−14 [0.7%] 2.8237.10−14 [0.2%]

5 2 6.2509.10−11 6.2479.10−11 [0.05%] 6.1679.10−11 [1.3%] 6.2509.10−11 [0.001%]

5 3 2.4487.10−08 2.4486.10−08 [0.002%] 2.4227.10−08 [1.1%] 2.4494.10−08 [0.03%]

5 4 2.7598.10−07 2.7603.10−07 [0.02%] 2.7114.10−07 [1.8%] 2.7613.10−07 [0.05%]

5 5 2.1175.10−05 2.1179.10−05 [0.02%] 2.0933.10−05 [1.2%] 2.1190.10−05 [0.07%]

Total 4.5449.10−03 4.5446.10−03 [0.007%] 4.5369.10−03 [0.2%] 4.5452.10−03 [0.005%]

Table: Circular orbit: angular momentum flux L̇`m values at infinity, for different `m modes
and ` < 5 (units of M/m2

0). The semi-latus rectum is p = 7.9456. The first column lists our
results, and the second those of Poisson (1995,1997), the third of Martel (2004), the fourth of
Sopuerta and Laguna (2006).
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Geodesic waveforms (2nd order): elliptic (< Ė∞ >, < L̇∞ >)

e p < Ė∞ > < Ė∞ > Cutler et al. (1994) < Ė∞ > Martel (2004) < Ė∞ > Sopuerta, Laguna (2006)

0.188917 7.50478 3.1617.10−04 3.1680.10−04[0.2%] 3.1770.10−04[0.5%] 3.1640.10−04[0.07%]

0.764124 8.75455 2.1026.10−04 2.1008.10−04[0.09%] 2.1484.10−04[2.1%] 2.1004.10−04[0.1%]

Table: Elliptic orbit: average of the energy flux (units of M2/m2
0), taken over a few periods

in the case of two elliptic orbits (e, p)=(0.188917, 7.50478) and (0.764124, 8.75455). The
differences with the results of Cutler et al. (1994), Martel (2004), and Sopuerta and Laguna
(2006) are shown.

e p < L̇∞ > < L̇∞ > Cutler et al. (1994) < L̇∞ > Martel (2004) < L̇∞ > Sopuerta, Laguna (2006)

0.188917 7.50478 5.9550.10−03 5.9656.10−03[0.2%] 5.9329.10−03[0.4%] 5.9555.10−03[0.008%]

0.764124 8.75455 2.7531.10−03 2.7503.10−03[0.1%] 2.7932.10−03[1.4%] 2.7505.10−03[0.09%]

Table: Elliptic orbit: average of the angular momentum flux (units of M/m2
0) taken over a

few periods in the case of two elliptic orbits (e, p)=(0.188917, 7.50478) and
(0.764124, 8.75455). The differences with the results of Cutler et al. (1994), Martel (2004),
and Sopuerta and Laguna (2006) are shown.
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Geodesic waveforms (2nd order): elliptic (< Ė∞` >, < L̇∞` >)

` < Ė∞` > < Ė∞` > Hopper, Evans (2010) < L̇∞` > < L̇∞` > Hopper, Evans (2010)

2 1.571333.10−04 1.57133846.10−04[0.0004%] 2.092406.10−03 2.09219582.10−03[0.01%]

3 3.776283.10−05 3.77696202.10−05[0.02%] 4.745961.10−04 4.74663748.10−04[0.01%]

4 1.149375.10−05 1.14987458.10−05[0.04%] 1.399210.10−04 1.39978027.10−04[0.04%]

5 3.837470.10−06 3.84046353.10−06[0.08%] 4.575322.10−05 4.57886526.10−05[0.08%]

Total 2.102273.10−04 2.10242676.10−04[0.007%] 2.752676.10−03 2.75262625.10−03[0.002%]

Table: Elliptic orbit: average of the `-mode energy (units of M2/m2
0) and angular

momentum (units of M/m2
0) fluxes radiated to infinity and taken over a few periods in the

case of an elliptic orbit (e, p)=(0.764124, 8.75455). Each `-mode is obtained by summing the

flux over all the azimuthal m-modes such that (Ė∞` , L̇∞` ) =
P`

m=−`(Ė
∞
`m, L̇∞`m). The

differences with the results of Hopper and Evans (2010) are shown.
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Geodesic waveforms (2nd order): parabolic (E∞, L∞)

p E∞ E∞ Martel (2004)E∞ Sopuerta, Laguna (2006) E eh E eh Martel (2004) E eh Sopuerta, Laguna (2006)

8.00001 3.5820 3.6703[2.4%] 3.5603[0.6%] 1.8900.10−1 1.8876.10−1[0.1%] 1.8884.10−1[0.008%]

8.001 2.2350 2.2809[2.0%] 2.2212[0.6%] 1.1349.10−1 1.1260.10−1[0.8%] 1.1339.10−1[0.09%]

Table: Parabolic orbit: energy radiated to infinity E∞, and to the horizon E eh (units of
M/m2

0) for p ' 8. The differences with the results of Martel (2004), and Sopuerta and
Laguna (2006) are shown.

p L∞ L∞ Martel (2004)L∞ Sopuerta, Laguna (2006) Leh Leh Martel (2004) Leh Sopuerta, Laguna (2006)

8.00001 2.9596.101 3.0133.101[1.8%] 2.9415.101[0.6%] 1.5137 1.5208[0.5%] 1.5112[0.2%]

8.001 1.8813.101 1.9088.101[1.4%] 1.8704.101[0.6%] 9.0964.10−1 9.1166.10−1[0.2%] 9.0783.10−1[0.2%]

Table: Parabolic orbit: angular momentum radiated to infinity L∞, and to the horizon Leh

(units of 1/m2
0) for p ' 8. The differences with the results of Martel (2004), and Sopuerta

and Laguna (2006) are shown.

16/30

Alessandro D.A.M. Spallicci 25 June 2014, Pasadena



First order perturbation equation

Geodesic motion in the backgrouns metric

D2zα

dτ 2
=

d2zα

dτ 2
+bΓα

µνuµuν =
d2zα

dτ 2
+bΓα

µν
dzµ

dτ

dzν

dτ
= 0 (14)

Through the Dirac-Detweiler-Whiting radiative perturbation, it is possible to suppose
that the particle crosses the perturbed spacetime under geodesic motion

D2ẑα

dλ2
=

d2ẑα

dλ2
+fΓα

µν ûµûν =
d2ẑα

dλ2
+fΓα

µν
dẑµ

dλ

dẑν

dλ
= 0 (15)

τ and λ: proper time in the -b- and -f- metric, respectively.
ẑα = zα

g + ∆zα: coordinates of m in gµν + h∗µν , where h∗µν is the DeWh radiative
(effective) or the MiSaTuQuWa tail perturbation.

Computing the difference between these two geodesics, we get
Spallicci, Ritter, Aoudia (IJGMMP 2014)

D2∆zα

dτ 2
= −Rµβν

αuµ∆zβuν| {z }
Background geodesic deviation

−1

2
(gαβ + uαuβ)(2h∗µβ;ν − h∗µν;β)uµuν| {z }

Self−acceleration MiSaTaQuWa−DeWh

. (16)

The BGD term is an out-product of the SF.
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Self-force on radial fall. Why? hardly any time for cumulation

1 Plunges and highly eccentric orbits (EMR bursts) much more frequent than
expected for non-rotating BHs (Amaro-Seoane, Sopuerta).

2 Jets and tidal disruption (Mashhoon et al.)

3 Plunges differ if non-SD black hole, like boson stars, or reveal dark matter
(Kesden et al., Macedo et al.).

4 In particle physics, transplanckian regime and black hole production, back-action
has a pivotal role in head-on collisions (Gal’tsov et al.).

5 Application and verification of the indirect method.

6 Comparison with NR (now only head-on collisions for large mass ratio).

7 Lousto (2000) self-force is repulsive, divergence at the horizon, ` dependency
while Barack, Lousto (2001) self-force is attractive but without analysis of the
impact on the trajectory.

8 de Donder (harmonic) and Regge-Wheeler gauges: regular transformation (for
radial only). The mode-sum regularisation is carried out entirely in RW gauge.

9 The most non-adiabatic orbit of all. Full justification for self-consistency.

10 Does a self-consistent computation bring any difference?

11 Worthwhile problem à la Feynman: I do it because I can solve it.

12 Epistemology: it measures knowledge in physics (stone, tower, apple, lift, EMRI).

13 The most classic problem in gravitation ever. 18/30
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Self-force: the pragmatic approach

Pragmatic approach computes the correction in t and not τ time.

∆r̈ = Λ0 (g , ṙg ) ∆r + Λ1 (g , ṙg ) ∆ṙ︸ ︷︷ ︸
Background geodesic deviation

+ Λ2 (h, ṙg )︸ ︷︷ ︸
Self acceleration

Λ0 = −
M

r2

"
6M

r2
−

2

r
+

6(r − M)

r2

„
1−

2M

r

«−2

ż2
g

#
∆z Λ1 =

6M

r2

„
1−

2M

r

«−1

żg ∆ż (17)

Λ2 =
1

r − 2M

"
r2H0,t

2(r − 2M)
−

MH1

r − 2M
− rH1,r

#
ż3
g−

3

2
H0,r ż

2
g−3

„
H0,t

2
−

MH1

r2

«
żg +

r − 2M

r

»
2MH0

r2
+

(r − 2M)H0,r

2r
−H1,t

–

Features include:

Numerical computation of first order derivatives of the perturbations (third order
derivatives of the wave function). It implies a fourth order scheme.
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Fourth order stencil

Ten points are need. Eight possible ways to cross the stencil.

20/30

Alessandro D.A.M. Spallicci 25 June 2014, Pasadena



Pragmatic results

Table: The four zones according to the sign of ∆r , ∆ṙ , ∆r̈ .

Zone IV III II I
rg−1.2 rg 1.2 rg−2.2 rg 2.2 rg−3.5 rg 3.5 rg−r0

∆r - - - -
∆ṙ + + - -
∆r̈ - + + -
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Pragmatic results: black hole premises reached earlier

Zone I, particle falls faster than geodesic.
Zone II, acceleration deviation turns positive, velocity deviation remains negative.
Zone III, breaking is stronger and also velocity deviation turns positive.
Zone IV, acceleration deviation reappears negative, but velocity deviation remains
positive.
At horizon, all deviation quantities approach zero, and agree with classic stand point.
The self-quantities act always inward the black hole. Conversely, the geodesic deviation
is repulsive (except the acceleration close to the horizon), and often of larger magnitude
than self-quantities. Incidentally, a1∆r and a2∆ṙ have opposite signs.
The maximal coordinate velocity |dr/dt|max is not any longer 0.3592c but increases of
5m/M%, while rmax = 2.647rg moves towards larger r.
The back-action is dominated by the l = 2 mode, about 55% of the total.
Uniform behaviour of aret and aself vis à vis the different ` modes
For increasing r0, ∆r increases (like ∆ṙ).

Zone IV III II I
rg−1.2 rg 1.2 rg−2.2 rg 2.2 rg−3.5 rg 3.5 rg−r0

∆r - - - -
∆ṙ + + - -
∆r̈ - + + -
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Pragmatic results
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Self-consistent

At late times ∆r grows considerably.

The self-consistent prescription describes motion continuously corrected.

ex |0 ∼ 1 + x + x2

2 replaced by
ex |0 ∼ 1 → ex |1 ∼ e + e(x − 1) → ex |2 ∼ e2 + e2(x − 2) et caetera.

Gralla-Wald prescription: At each successive instant, the geodesic is
corrected by the self-acceleration and a new geodesic is determined
(without BGD). In a numerical implementation, the corrections will occur
at discrete steps between short stretches of geodesics (BGD included).

The equations of motion at nth order perturbation theory are more
accurate than the (n-1)th equations, but at late times the corrections at
nth order will become comparable to the corrections at (n-1)th order.

The self-consistent approach can be applied at first order, as well as at
higher orders. There isn’t a conceptual impediment.

Two ways to implement self-consistency: through stretches of osculating
geodesics (the case here), or computing self-force quantities and
mode-sum parameters on the ’real’ non-geodesic trajectory (never done for
a gravitational case).

Though the background geodesic deviation loses relevance in a continuous
correction approach, its presence is justified by discretisation (time slices)
of the trajectory.
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Evolution: self-consistent prescription. II8>>>>>>><>>>>>>>:

∇γ∇γ h̃αβ − 2Rγ
αβ

δh̃γδ = −16πmuα(t)uβ(t)
δ(3)

ˆ
xµ − zµ

p (t)
˜

√
−g

dτ

dt

uβ∇βuα = −(gαβ + uαuβ)(∇δh
tail
βγ − 1

2
∇βhtail

γδ )uγuδ

htail
αβ (x) = m

Z τ−ret

−∞

„
G+

αβα′β′ −
1

2
gαβG+γ

γα′β′

« ˆ
x , zp(τ

′)
˜
uα′uβ′dτ ′

(18)

where uα(τ), normalised in the background metric, refers to the self-consistent motion
zp(τ); G+

αβα′β′ is the retarded Green function; the symbol τ−ret indicates the range of
the integral being extended just short of the retarded time τret, so that only the interior
part of the light-cone is used; note the use of htail

βγ equivalent to hR
βγ for our purposes.

Difficulties include:

System of 3 eqs. for each of the 10 metric components (harmonic gauge ⇒6 ∃
wave equation). At each integration step:

30 eqs. have to be computed for an adequate number of modes (work in
spherical harmonics).

Regularisation by mode-sum (or Riemann-Hurwitz ζ).

Geodesic correction, crossed cell identification, source term computation.
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Evolution: the iterative correction at work.I
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Evolution: the iterative correction at work. II
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Pragmatic versus self-consistent (osculating)

aself , ∆r , ∆ṙ , and ∆r̈ from the

pragmatic and self-consistent

(osculating) methods, and their

difference, for r0 = 15rg . The

amplitudes, when computed

self-consistently, differ of about

3% after 4rg , and the four

zones are slightly shifted

towards the horizon.
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Grazie per la vostra attenzione

How does it happen that a properly endowed natural scientist
comes to concern himself with epistemology?
Is there not some more valuable work to be done in his specialty? That’s
what I hear many of my colleagues ask, and I sense it from many more.
But I cannot share this sentiment. When I think about the ablest
students whom I have encountered in my teaching - that is, those who
distinguish themselves by their independence of judgment and not just
their quick-wittedness - I can affirm that they had a vigorous interest in
epistemology. They happily began discussions about the goals and
methods of science, and they showed unequivocally, through tenacious
defense of their views, that the subject seemed important to them. 30/30
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