Scalar self-force for highly eccentric orbits in Kerr spacetime

Jonathan Thornburg

in collaboration with

Barry Wardell

Department of Astronomy and Center for Spacetime Symmetries Indiana University Bloomington, Indiana, USA Department of Astronomy Cornell University Ithaca, New York, USA

June 23, 2014

1 / 18

イロト イポト イヨト イヨト

Goals, overall plan of the computation

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Some details of the computation

- *m*-mode decomposition
- separate 2+1D time-domain evolution for each mode
- worldtube scheme
 - finite differencing across the worldtube boundary
 - moving the worldtube
- computing the effective source and puncture function
- finite differencing near the particle (where fields are only C^2)

June 23, 2014

2 / 18

mesh refinement

Goals, overall plan of the computation

Brief review of effective-source (puncture-function) regularization

Some details of the computation

- *m*-mode decomposition
- separate 2+1D time-domain evolution for each mode
- worldtube scheme
 - finite differencing across the worldtube boundary
 - moving the worldtube
- computing the effective source and puncture function
- finite differencing near the particle (where fields are only C^2)

June 23, 2014

2 / 18

mesh refinement

Sample results

Conclusions, Plans, Lessons Learned

• Kerr

• Kerr

• scalar field for now develop techniques for future work with gravitational field

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e úp to ~ 0.99

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 - \Rightarrow frequency-domain is fast & accurate

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits
 - \Rightarrow frequency-domain is fast & accurate
 - highly-eccentric orbits \Rightarrow need time-domain

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any $e \text{ up to } \sim 0.99$
 - low to moderately eccentric orbits

 \Rightarrow frequency-domain is fast & accurate

- highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA will (eventually) want parameter-estimation templates with phase error $\lesssim 0.01$ radians over $\sim 10^5$ orbits of inspiral \Rightarrow would need instantaneous ω to $\lesssim 10^{-7}$ (0.1 ppm) relative accuracy

June 23, 2014

3 / 18

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits

 \Rightarrow frequency-domain is fast & accurate

- highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA will (eventually) want parameter-estimation templates with phase error ≤ 0.01 radians over $\sim 10^5$ orbits of inspiral \Rightarrow would need instantaneous ω to $\leq 10^{-7}$ (0.1 ppm) relative accuracy
- as efficient as possible (orbital evolution!)
 - (but still much less accurate/efficient than frequency-domain for orbits where frequency-domain works)
- [now] geodesic approximation; [future] orbital evolution

- Kerr
- scalar field for now develop techniques for future work with gravitational field
- be able to handle generic orbits (inclined & highly-eccentric)
 - astrophysical EMRIs likely have inclined orbits, any e up to ~ 0.99
 - low to moderately eccentric orbits

 \Rightarrow frequency-domain is fast & accurate

- highly-eccentric orbits \Rightarrow need time-domain
- compute self-force very accurately
 - eLISA will (eventually) want parameter-estimation templates with phase error ≤ 0.01 radians over $\sim 10^5$ orbits of inspiral \Rightarrow would need instantaneous ω to $\leq 10^{-7}$ (0.1 ppm) relative accuracy
- as efficient as possible (orbital evolution!)
 - (but still much less accurate/efficient than frequency-domain for orbits where frequency-domain works)
- [now] geodesic approximation; [future] orbital evolution

Work in progress: some goals accomplished, some not yet! (B > (E

Effective-Source (also known as puncture-function) regularization

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity
 - worldtube scheme

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0.1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity
 - worldtube scheme
 - worldtube moves in (r, θ) to follow the particle around the orbit

June 23, 2014

4 / 18

Effective-Source (also known as puncture-function) regularization

- use Barry Wardell's 4th order effective src and puncture fn
- scalar field for now
- gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain

- \Rightarrow separate 2+1D numerical evolution for each m
 - can handle (almost) any orbit, including high eccentricity
 - worldtube scheme
 - worldtube moves in (r, θ) to follow the particle around the orbit
 - Cauchy evolution
 - fixed mesh refinement; some (finer) grids follow the worldtube/particle
 - [now] (almost) causally-disconnected spatial boundaries (with mesh refinement this isn't very expensive)
 - [future] hyperboloidal outer boundary (Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286)

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a "puncture function" φ_p which closely approximates $\varphi_{\text{singular}}$ near the particle, then numerically compute the (finite) "residual field" $\varphi_r := \varphi - \varphi_p$ by solving

June 23, 2014 5 / 18

$$\Box \varphi_{r} = \Box (\varphi - \varphi_{p}) = \Box \varphi - \Box \varphi_{p}$$
$$= \delta (x - x_{\text{particle}}(t)) - \Box \varphi_{p}$$
$$= \begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_{p} & \text{elsewhere} \end{cases} =: S_{\text{effective}}$$

The particle's physical (retarded) field φ satisfies $\Box \varphi = \delta (x - x_{\text{particle}}(t))$

Detwiler and Whiting (2003) showed that φ can be decomposed into a singular field $\varphi_{\text{singular}}$ which is spherically symmetric at the particle (and hence exerts no self-force), and a finite regular part φ_{regular} which exerts the self-force

It's very hard to explicly compute $\varphi_{\rm regular}$

Instead (Barack & Golbourn (2007), Vega & Detweiler (2008)) we construct a "puncture function" φ_p which closely approximates $\varphi_{\text{singular}}$ near the particle, then numerically compute the (finite) "residual field" $\varphi_r := \varphi - \varphi_p$ by solving

$$\Box \varphi_r = \Box (\varphi - \varphi_p) = \Box \varphi - \Box \varphi_p$$
$$= \delta (x - x_{\text{particle}}(t)) - \Box \varphi_p$$
$$= \begin{cases} 0 & \text{at the particle} \\ -\Box \varphi_p & \text{elsewhere} \end{cases} =: S_{\text{effective}}$$

If φ_p "closely-enough" approximates $\varphi_{\text{singular}}$ near the particle, then the self-force is given (exactly!) by $F_a = q \left(\nabla_a \varphi_r \right) \Big|_{\text{particle}}$

I.e., $S_{\text{effective}}$ compensates for the fact that $\varphi_p \neq \varphi_{\text{singular}}$, $\varphi_p \neq \varphi_{\text{singular}}$, $\varphi_p \neq \varphi_{\text{singular}}$

Problems:

• φ_p and $S_{\rm effective}$ are only defined in a neighbourhood of the particle

Problems:

- φ_p and $S_{\rm effective}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi_{\rm r}$ not $\varphi_{\rm r}$

Problems:

- φ_p and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi,$ not φ_r

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_\rho$ across the worldtube boundary)

Problems:

- φ_{p} and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi,$ not $\varphi_{\rm r}$

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)

June 23, 2014 6 / 18

• compute φ_{num} by numerically solving

 $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

Problems:

- φ_{p} and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi,$ not $\varphi_{\rm r}$

Solution:

introduce finite worldtube containing the particle worldline

• define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_p$ across the worldtube boundary)

• compute φ_{num} by numerically solving

 $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

• $S_{\text{effective}}$ is only needed inside the worldtube

Problems:

- φ_{p} and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi,$ not $\varphi_{\rm r}$

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_\rho$ across the worldtube boundary)
- compute φ_{num} by numerically solving

 $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

- $S_{\text{effective}}$ is only needed inside the worldtube
- the self-force is given $(\underline{exactly!})$ by $F_a = q (\nabla_a \varphi_{num}) |_{particle}$

Problems:

- φ_{p} and $S_{\mathrm{effective}}$ are only defined in a neighbourhood of the particle
- far-field outgoing-radiation BCs apply to $\varphi,$ not $\varphi_{\rm r}$

Solution:

introduce finite worldtube containing the particle worldline

- define "numerical field" $\varphi_{num} = \begin{cases} \varphi_r & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$ (this has a jump discontinuity by $\pm \varphi_\rho$ across the worldtube boundary)
- compute φ_{num} by numerically solving

 $\Box \varphi_{\text{num}} = \begin{cases} S_{\text{effective}} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$

- $S_{\text{effective}}$ is only needed inside the worldtube
- the self-force is given (<u>exactly!</u>) by $F_a = q \left(\nabla_a \varphi_{num} \right) \Big|_{particle}$
- finite differencing must locally "adjust" (a copy of) φ_{num} by ∓φ_p across the worldtube bndry to undo the jump discontinuity in φ_{num}

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D:

•
$$\varphi_{num}(t, r, \theta, \varphi) = \sum_{m} e^{im\varphi} \varphi_{num,m}(t, r, \theta)$$

(where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon)

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{\mathsf{num}}(t, r, \theta, \varphi) = \sum e^{im\tilde{\phi}} \varphi_{\mathsf{num}, m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon) now each φ_{num,m} satisfies $\begin{bmatrix} numerically \\ solve this \\ for each m \\ in 2+1D \end{bmatrix}$ $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ where $S_{\text{effective},m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi} \qquad \begin{bmatrix} \text{write this integral in terms of} \\ \text{complete elliptic integrals} \end{bmatrix}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{\mathsf{num}}(t, r, \theta, \varphi) = \sum e^{im\tilde{\phi}} \varphi_{\mathsf{num}, m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon) now each φ_{num,m} satisfies numerically solve this for each min 2+1D $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ where $S_{\text{effective},m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi} \qquad \begin{bmatrix} \text{write this integral in terms of} \\ \text{complete elliptic integrals} \end{bmatrix}$ • the self-force is given (<u>exactly!</u>) by $F_a = q \sum_{m=0}^{\infty} (\nabla_a \varphi_{num,m}) |_{particle}$

Instead of numerically solving $\Box \varphi_{num} = \begin{cases} S_{effective} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ in 3+1D, we Fourier-decompose and solve for each Fourier mode in 2+1D: • $\varphi_{\mathsf{num}}(t, r, \theta, \varphi) = \sum e^{im\tilde{\phi}} \varphi_{\mathsf{num}, m}(t, r, \theta)$ (where $\tilde{\phi} := \phi + f(r)$ to avoid Kerr infinite-twisting at horizon) now each φ_{num,m} satisfies numerically solve this for each min 2+1D $\Box_m \varphi_{\text{num},m} = \begin{cases} S_{\text{effective},m} & \text{inside the worldtube} \\ 0 & \text{outside the worldtube} \end{cases}$ where $S_{\text{effective},m} = \frac{1}{2\pi} \int_{-\pi}^{\pi} S_{\text{effective}} e^{-im\tilde{\phi}} d\tilde{\phi} \qquad \begin{bmatrix} \text{write this integral in terms of complete elliptic integrals} \end{bmatrix}$ • the self-force is given (<u>exactly!</u>) by $F_a = q \sum_{a}^{\infty} (\nabla_a \varphi_{num,m}) |_{particle}$

• we actually do *m*-mode decomposition before introducing worldtube \Rightarrow worldtube "lives" in (t, r, θ) space, not full spacetime

Initial data:

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
 - we see no signs of non-radiating Jost "junk solutions"
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{\mathsf{num},m}$ is periodic (with orbital period)

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
 - we see no signs of non-radiating Jost "junk solutions"
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{\operatorname{num},m}$ is periodic (with orbital period)
 - generic orbit: see if φ_{num,m} is the same for different initial data choices (integrated concurrently)

Initial data:

- start evolution with arbitrary initial data ($\varphi_{num,m} = 0$)
- evolution then produces an initial burst of "junk radiation"
- junk radiation quickly propagates out of the system, field configuration settles down to a quasi-equilibrium state
 - we see no signs of non-radiating Jost "junk solutions"
- how to detect "quasi-equilibrium state"?
 - equatorial orbit: see if $\varphi_{\mathsf{num},m}$ is periodic (with orbital period)
 - generic orbit: see if φ_{num,m} is the same for different initial data choices (integrated concurrently)

Boundary Conditions:

- [now] use almost causally-disconnected spatial boundaries (with mesh refinement this isn't very expensive)
- [future] hyperboloidal outer boundary (Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286)

The worldtube must contain the particle in (r, θ) . But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

The worldtube must contain the particle in (r, θ) . But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

The worldtube must contain the particle in (r, θ) . But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity:

• must move the worldtube in (r, θ) to follow the particle around the orbit

The worldtube must contain the particle in (r, θ) .

But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity:

- must move the worldtube in (r, θ) to follow the particle around the orbit
- recall that our numerically-evolved field is

 $\varphi_{\mathsf{num}} := \begin{cases} \varphi - \varphi_{\textit{p}} & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$

this means then if we move the worldtube, we must adjust the evolved φ_{num} : add $\pm \varphi_p$ at spatial points which change from being inside the worldtube to being outside, or vice versa

June 23, 2014 9 / 18

The worldtube must contain the particle in (r, θ) .

But for a non-circular orbit, the particle moves in (r, θ) during the orbit.

Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity:

- must move the worldtube in (r, θ) to follow the particle around the orbit
- · recall that our numerically-evolved field is

 $\varphi_{\mathsf{num}} := \begin{cases} \varphi - \varphi_{\textit{p}} & \text{inside the worldtube} \\ \varphi & \text{outside the worldtube} \end{cases}$

this means then if we move the worldtube, we must adjust the evolved $\varphi_{\rm num}$: add $\pm \varphi_{\rm p}$ at spatial points which change from being inside the worldtube to being outside, or vice versa

Finite Differencing:

• finite differencing must locally "adjust" (a copy of) φ_{num} by $\mp \varphi_p$ across the worldtube boundary to undo the jump discontinuity in φ_{num}

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in (r, θ) to follow the particle around the orbit
- fixed mesh refinement: typically 5 levels, $\Delta r_* = M/4$ to M/64; finest 3 refinement levels move to follow worldtube
- typical worldtube size particle \pm 5*M* in r_* , particle \pm $\pi/8$ (22.5°) in heta
- 4th order finite differencing in space & time

Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in (r, θ) to follow the particle around the orbit
- fixed mesh refinement: typically 5 levels, $\Delta r_* = M/4$ to M/64; finest 3 refinement levels move to follow worldtube
- typical worldtube size particle \pm 5*M* in r_* , particle \pm $\pi/8$ (22.5°) in heta

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・ ヨ

June 23, 2014

10 / 18

- 4th order finite differencing in space & time
- effective source is $\sim \frac{1}{2}$ million terms
 - \Rightarrow painful to compile machine-generated C code

Current Status

Equatorial eccentric orbits:

- elliptic-integral puncture fn & effective src
- worldtube moves in (r, θ) to follow the particle around the orbit
- fixed mesh refinement: typically 5 levels, $\Delta r_* = M/4$ to M/64; finest 3 refinement levels move to follow worldtube
- typical worldtube size particle $\pm 5M$ in r_* , particle $\pm \pi/8$ (22.5°) in θ
- 4th order finite differencing in space & time
- effective source is $\sim \frac{1}{2}$ million terms
 - \Rightarrow painful to compile machine-generated C code

Generic (inclined eccentric) orbits:

- our first attempt at an effective source had ~ 20 million terms \Rightarrow impractical to compile machine-generated C code
- we are starting to explore various ideas to reduce the complexity, and are optimistic we can solve this

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● June 23, 2014

10 / 18

Self-force for e = 0.4 orbit

June 23, 2014 11 / 18

Comparison with Frequency-Domain Results

Big thanks to Niels Warburton (Dublin) for frequency-domain results!

June 23, 2014 12 / 18

Wiggles/Ripples (1)

We think these are caused by the particle (outbound) crossing the future light cone of its inbound trajectory. See Niels Warburton talk.

June 23, 2014 13 / 18

Wiggles/Ripples (2)

We think these are caused by the particle (outbound) crossing the future light cone of its inbound trajectory. See Niels Warburton talk.

June 23, 2014 14 / 18

Isofrequency Kerr Geodesics

Basic idea:

- parameterize bound equatorial geodesics in Kerr spacetime by (a, p, e) where a = Kerr spin and (p, e) characterize the geodesic
- since $\Omega_r = \Omega_r(a, p, e)$ and $\langle \Omega_{\phi} \rangle = \langle \Omega_{\phi} \rangle (a, p, e)$, in general we can find a 1-parameter family of (a, p, e) with the same Ω_r and $\langle \Omega_{\phi} \rangle$

June 23, 2014

15 / 18

• that is, these are geodesics in different-spin Kerr spacetimes which have the same dominant GW frequencies

Self-force for Isofrequency Kerr Geodesics

Very different self-forces \Rightarrow very different orbital evolutions \Rightarrow break degeneracies

- puncture-function regularization
 - note that this does not require geodesic approximation

- puncture-function regularization
 - note that this does not require geodesic approximation
- worldtube
- *m*-mode decomposition and 2+1D evolution
 - compute $S_{\text{effective}}$ integrals via elliptic integrals
 - gives moderate parallelism "for free"
 - allows different numerical parameters for different m
 - 2+1D code can do small runs on a laptop, larger runs on cluster of workstations
 - \sum_m and tail fit done in a separate post-processing code

June 23, 2014 17 / 18

- puncture-function regularization
 - note that this does not require geodesic approximation
- worldtube
- *m*-mode decomposition and 2+1D evolution
 - compute S_{effective} integrals via elliptic integrals
 - gives moderate parallelism "for free"
 - allows different numerical parameters for different m
 - 2+1D code can do small runs on a laptop, larger runs on cluster of workstations
 - \sum_m and tail fit done in a separate post-processing code

June 23, 2014 17 / 18

- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

- puncture-function regularization
 - note that this does not require geodesic approximation
- worldtube
- *m*-mode decomposition and 2+1D evolution
 - compute $S_{\text{effective}}$ integrals via elliptic integrals
 - gives moderate parallelism "for free"
 - allows different numerical parameters for different m
 - 2+1D code can do small runs on a laptop, larger runs on cluster of workstations
 - \sum_m and tail fit done in a separate post-processing code
- moving worldtube (allows highly eccentric orbits)
- mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

- numerical errors & cost per unit of evolution time seem to be only weakly dependent on eccentricity
- main limits are cost due to long orbital period \Rightarrow long evolution time = $\neg \land$

Directions for further research

Things that don't (yet) work well:

- $S_{\rm effective}$ is very expensive to calculate ($\gtrsim rac{2}{3}$ of code's CPU time)
- dynamically adjust mesh refinement and/or worldtube around the orbit
- evolved fields only $C^2 \Rightarrow$ hard to get higher-order finite-diff convergence
- inclined eccentric orbits ($S_{\text{effective}}$ is currently too complicated to be usable)

Directions for further research

Things that don't (yet) work well:

- $S_{\rm effective}$ is very expensive to calculate ($\gtrsim rac{2}{3}$ of code's CPU time)
- dynamically adjust mesh refinement and/or worldtube around the orbit
- evolved fields only $C^2 \Rightarrow$ hard to get higher-order finite-diff convergence
- inclined eccentric orbits ($S_{\text{effective}}$ is currently too complicated to be usable)
- orbital evolution: no conceptual problem (but needs a fully parallel code to be practical)
- gravitational field: have to cure (m = 0, 1 Lorenz-gauge instabilities)

Directions for further research

Things that don't (yet) work well:

- $S_{\text{effective}}$ is very expensive to calculate ($\gtrsim \frac{2}{3}$ of code's CPU time)
- dynamically adjust mesh refinement and/or worldtube around the orbit
- evolved fields only $C^2 \Rightarrow$ hard to get higher-order finite-diff convergence
- inclined eccentric orbits (S_{effective} is currently too complicated to be usable)

June 23, 2014

18 / 18

- orbital evolution: no conceptual problem (but needs a fully parallel code to be practical)
- gravitational field: have to cure (m = 0.1 Lorenz-gauge instabilities)
- $\mathcal{O}(\mu^2)$