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• Kerr

• scalar field for now
develop techniques for future work with gravitational field

• be able to handle generic orbits (inclined & highly-eccentric)
• astrophysical EMRIs likely have inclined orbits, any e up to ∼ 0.99
• low to moderately eccentric orbits

⇒ frequency-domain is fast & accurate
• highly-eccentric orbits ⇒ need time-domain

• compute self-force very accurately
• eLISA will (eventually) want parameter-estimation templates with

phase error . 0.01 radians over ∼105 orbits of inspiral
⇒ would need instantaneous ω to . 10−7 (0.1 ppm) relative accuracy

• as efficient as possible (orbital evolution!)
• (but still much less accurate/efficient than frequency-domain

for orbits where frequency-domain works)

• [now] geodesic approximation; [future] orbital evolution

Work in progress: some goals accomplished, some not yet!
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Effective-Source (also known as puncture-function) regularization

• use Barry Wardell’s 4th order effective src and puncture fn

• scalar field for now

• gravitational field in the future? (m = 0,1 Lorenz-gauge instabilities)

m-mode decomposition, time domain
⇒ separate 2+1D numerical evolution for each m

• can handle (almost) any orbit, including high eccentricity

• worldtube scheme

• worldtube moves in (r , θ) to follow the particle around the orbit

• Cauchy evolution

• fixed mesh refinement; some (finer) grids follow the worldtube/particle

• [now] (almost) causally-disconnected spatial boundaries
(with mesh refinement this isn’t very expensive)

• [future] hyperboloidal outer boundary
(Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286)
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It’s very hard to explicly compute ϕregular

Instead
(

Barack & Golbourn (2007), Vega & Detweiler (2008)
)

we construct a
“puncture function” ϕp which closely approximates ϕsingular near the particle, then
numerically compute the (finite) “residual field” ϕr := ϕ− ϕp by solving

�ϕr = �(ϕ− ϕp)=�ϕ−�ϕp

= δ
(

x − xparticle(t)
)

−�ϕp

=

{

0 at the particle
−�ϕp elsewhere

=: Seffective

If ϕp “closely-enough” approximates ϕsingular near the particle,
then the self-force is given (exactly!) by Fa = q (∇aϕr )

∣

∣

particle

I.e., Seffective compensates for the fact that ϕp 6= ϕsingular
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• finite differencing must locally “adjust” (a copy of) ϕnum by ∓ϕp

across the worldtube bndry to undo the jump discontinuity in ϕnum
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∑

m

e imφ̃ϕnum,m(t, r , θ)

(where φ̃ := φ+ f (r) to avoid Kerr infinite-twisting at horizon)

• now each ϕnum,m satisfies
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
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

where
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Seffectivee
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]
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∫ π
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write this integral in terms of
complete elliptic integrals

]

• the self-force is given (exactly!) by Fa = q
∞
∑

m=0

(∇aϕnum,m)
∣

∣

particle

• we actually do m-mode decomposition before introducing worldtube
⇒ worldtube “lives” in (t, r , θ) space, not full spacetime
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Initial data:

• start evolution with arbitrary initial data (ϕnum,m = 0)

• evolution then produces an initial burst of “junk radiation”

• junk radiation quickly propagates out of the system,
field configuration settles down to a quasi-equilibrium statequasi-equilibrium state

• we see no signs of non-radiating Jost “junk solutions”

• how to detect “quasi-equilibrium state”?

• equatorial orbit: see if ϕnum,m is periodic (with orbital period)
• generic orbit: see if ϕnum,m is the same for different

initial data choices (integrated concurrently)

Boundary Conditions:
• [now] use almost causally-disconnected spatial boundaries

(with mesh refinement this isn’t very expensive)

• [future] hyperboloidal outer boundary
(Zenginoğlu, arXiv:1008.3809 = J. Comp. Phys. 230, 2286)
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Small eccentricity: can use a worldtube big enough to contain the entire orbit

Large eccentricity:

• must move the worldtube in (r , θ) to follow the particle around the orbit

• recall that our numerically-evolved field is

ϕnum :=

{

ϕ− ϕp inside the worldtube
ϕ outside the worldtube

this means then if we move the worldtube, we must adjust the evolved ϕnum:
add ±ϕp at spatial points which change from being inside the worldtube to
being outside, or vice versa

Finite Differencing:

• finite differencing must locally “adjust” (a copy of) ϕnum by ∓ϕp

across the worldtube boundary to undo the jump discontinuity in ϕnum
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Current Status

Equatorial eccentric orbits:

• elliptic-integral puncture fn & effective src

• worldtube moves in (r , θ) to follow the particle around the orbit

• fixed mesh refinement: typically 5 levels, ∆r∗ = M/4 to M/64;
finest 3 refinement levels move to follow worldtube

• typical worldtube size particle± 5M in r∗, particle± π/8 (22.5◦) in θ

• 4th order finite differencing in space & time
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Equatorial eccentric orbits:

• elliptic-integral puncture fn & effective src

• worldtube moves in (r , θ) to follow the particle around the orbit

• fixed mesh refinement: typically 5 levels, ∆r∗ = M/4 to M/64;
finest 3 refinement levels move to follow worldtube

• typical worldtube size particle± 5M in r∗, particle± π/8 (22.5◦) in θ

• 4th order finite differencing in space & time

• effective source is ∼ 1
2 million terms

⇒ painful to compile machine-generated C code

Generic (inclined eccentric) orbits:

• our first attempt at an effective source had ∼ 20 million terms
⇒ impractical to compile machine-generated C code

• we are starting to explore various ideas to reduce the complexity,
and are optimistic we can solve this
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Self-force for e = 0.4 orbit
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Comparison with Frequency-Domain Results

Big thanks to Niels Warburton (Dublin) for frequency-domain results!
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Wiggles/Ripples (1)

We think these are caused by the particle (outbound) crossing the future light
cone of its inbound trajectory. See Niels Warburton talk.
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Wiggles/Ripples (2)

We think these are caused by the particle (outbound) crossing the future light
cone of its inbound trajectory. See Niels Warburton talk.
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Isofrequency Kerr Geodesics

Basic idea:

• parameterize bound equatorial geodesics in Kerr spacetime
by (a, p, e) where a = Kerr spin and (p, e) characterize the geodesic

• since Ωr = Ωr (a, p, e) and 〈Ωφ〉 = 〈Ωφ〉(a, p, e), in general we can find a
1-parameter family of (a, p, e) with the same Ωr and 〈Ωφ〉

• that is, these are geodesics in different-spin Kerr spacetimes
which have the same dominant GW frequencies
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Self-force for Isofrequency Kerr Geodesics

Very different self-forces ⇒ very different orbital evolutions ⇒ break degeneracies
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• puncture-function regularization
• note that this does not require geodesic approximation
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• worldtube

• m-mode decomposition and 2+1D evolution
• compute Seffective integrals via elliptic integrals
• gives moderate parallelism “for free”
• allows different numerical parameters for different m
• 2+1D code can do small runs on a laptop,

larger runs on cluster of workstations
•

∑

m and tail fit done in a separate post-processing code

• moving worldtube (allows highly eccentric orbits)

• mesh refinement (moving with particle & worldtube)

Highly eccentric orbits:

• numerical errors & cost per unit of evolution time
seem to be only weakly dependent on eccentricity

• main limits are cost due to long orbital period ⇒ long evolution time
June 23, 2014 17 / 18



Directions for further research

Things that don’t (yet) work well:

• Seffective is very expensive to calculate (& 2
3 of code’s CPU time)

• dynamically adjust mesh refinement and/or worldtube around the orbit

• evolved fields only C 2 ⇒ hard to get higher-order finite-diff convergence

• inclined eccentric orbits (Seffective is currently too complicated to be usable)
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(but needs a fully parallel code to be practical)
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• O(µ2)
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