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Gravitational-wave detectors

102110–210–410–610–810–1010–1210–1410–16

LIGOLISA-likepulsar timingCMB future space

Hz

early-Universe quantum fluctuations

massive black-hole binaries
captures into MBHs merging NS, BH

rotating NSGalactic binariesGravitational-wave detectors



Gravitational-wave detector sensitivity
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Universal: “it must get better before it gets worse”



Gravitational-wave detector sensitivity
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Gravitational-wave detector sensitivity
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eLISA: ESA’s Cosmic Vision L3 mission 
(start/launch 2019/2034)

plot: Danzmann



extreme mass-ratio inspirals with 104–107 M☉ 
MBH produce GWs detectable by eLISA 

EMRIs originate in dense nuclear 
clusters when compact objects 
are captured by the MBH after 
two-body relaxation, tidal 
stripping of binaries or giants, or 
star formation in a disc. 
There are many complications: 
mass segregation, triaxial 
potentials, resonant relaxation… 
Rates are very uncertain, and 
depend on MBH density, nuclear 
cluster populations, compact-
object fractions. 
EMRIs have very complex GWs 
with 100,000s cycles in the LISA 
band, so they offer excellent 
parameter estimation and tests 
of BH nature.
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Pulsar…

image: Saxton

plot: Lorimer and Kramermsec pulsars



Pulsar timing…

plot: Cordes

plot: Lorimer and Kramer



Gravitational-wave detector sensitivity
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Pulsar timing
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Pulsar timing array
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Binaries as gravitational-wave sources
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Binaries as gravitational-wave sources
plot: Sesana et al. 2012
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In closing, on the relevance of “Capra” dynamics

We should be able to solve the general-relativistic two-body 
problem for any combination of masses. 

Accurate waveforms from EMRIs and IMRIs will be crucial to 
eLISA data analysis. (And you have time.) 

For PTAs, maybe, but good old PN may be sufficient.


