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APPLYING THE EFFECTIVE-SOURCE 
APPROACH TO FREQUENCY-DOMAIN 

SELF-FORCE CALCULATIONS

• Avoid instabilities in the 
low multipole modes	



• High accuracy: only 
need to solve ODEs

• Modelling I/EMRIs	


• 2nd-order self-force 

needed for phase 
evolution to O(1)	



• Compute gauge invariants

h(2)
↵� / 1

r2
S.H.D.����! log(r)

mode-sum	


effective-source

h(1)
↵� / 1

r
S.H.D.����! r0



Effective-source: scalar-field

⇤�ret/S = �4⇡⇢ ⇤�R = 0F↵ = r↵�
R

Basic idea is to move the singular piece into the source

⇤�ret = ⇤(�R + �S) �! ⇤�res = �4⇡⇢�⇤(W�P )

Variation of parameters gives the inhomogeneous solutions
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Next decompose everything into spherical harmonics	


and frequency modes
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Effective-source: scalar-field
Decompose the approximation to the Detweiler-Whiting singular field into spherical-

harmonic and Fourier modes

We do this decomposition analytically with methods similar to those used in mode-sum 
regularisation

�̃S =
X

`m!

�S
`m!(r)Y`m(✓,�)e�i!t

In a coordinate system where the world line is on the north pole

Spherical-harmonic modes in unrotated coordinate system (where particle is on an equatorial 
orbit) obtained by rotating using Wigner-D symbol

�S
l,m0=0 =� (2l + 1)|�r|

2r0(r0 � 2M)

r
1� 3M

r0


1� (r0 �M)�r

r0(r0 � 2M)

�

+
1

⇡r0

s
r0 � 3M

(r0 � 2M)


2K +

(E � 2K)

r0
�r +

(2l + 1)2E
4r0(r0 � 2M)

�r2
�

�S
lm =

X̀

m0=�`

�S
lm0D`

mm0(0,⇡/2,⌦t)



Standard mode-sum frequency-domain approach

Effective-source: scalar-field
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Find solutions to homogeneous equation which satisfy outgoing boundary conditions on horizon 
and at infinity, respectively
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Construct inhomogeneous solutions by matching on the world line

where W is the Wronskian of homogeneous solutions
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Effective-source: scalar-field

Effective-source in the frequency-domain

Find solutions to homogeneous equation which satisfy outgoing boundary conditions on horizon 
and at infinity, respectively

Construct inhomogeneous solutions using variation of parameters

where W is the Wronskian of homogeneous solutions
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Effective-source: scalar-field
Window-function and world-tube equivalence

Detweiler-Whiting singular field defined through Hadamard form Green function which is not 
defined globally

Need to introduce a method for restricting the singular field to a region near the particle. Two 
common approaches:

Window-function:

Multiply the singular field by a function 
which is 1 near the particle and goes 

to 0 far away

⇤�R = �⇤(W�S)

World-tube:

�ret = �S + �R

World tube around the particle

Inside solve for the R-field, outside solve 
for the retarded field

On the world tube boundary apply the 
boundary condition



Effective-source: scalar-field
Window-function and world-tube equivalence
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Heaviside window function with a=8M, b=11M, r0=10M

Both approaches can be shown to be equivalent in the frequency-domain by choosing a 
Heaviside distribution as the window function



S

e↵
lm = �⇤lm(W�P

lm) ⌘ S

I
lm⇧(x) + S

B
lm

Effective-source: scalar-field
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Effective-source splits into two terms, one coming from the interior of the puncture region 
and the other from the boundary of the puncture
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Window-function and world-tube equivalence
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Effective-source: scalar-field

Integrating the delta-function terms analytically, we find that the scaling coefficients 
are equivalent to world tube jumps

Window-function and world-tube equivalence



Effective-source: scalar-field

Relation to mode-sum scheme

c+R
0 ⌘ LB

"
�̃�

W

#

a=r�0

, c�R
0 ⌘ RB

"
�̃+

W

#

b=r+0

c+S
0 ⌘ RB

"
�̃�

W

#

a=r±0

, c�S
0 ⌘ LB

"
�̃+

W

#

b=r±0

c±0 = c±R
0 + c±S

0 ↵lm
�̃⌥
0

W0

�S
0 = c+S

0 �̃+
0 + c�S

0 �R
0 = c+R

0 �̃+
0 + c�R

0 �̃�
0

“Regularization parameters” and regularised field

Recover standard mode-sum matching condition

Effective-source turns to jump on the world line

Taking the limit of the world tube width to a point, i.e., a ➝ r0, b ➝r0 we recover the 
usual Barack-Ori mode-sum scheme



Phys. Rev. D.  89:044046	


arXiv: 1311.3104Results: scalar field
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Effective-source: Lorenz-gauge gravity

⇤h̄µ⌫ + 2R↵�
µ ⌫ h̄↵� = �16⇡Tµ⌫ rµh̄
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Decompose hP into tensor harmonics	


and construct the effective-sources: h̄(i)P
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Variations of parameters to find the residual field
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Effective-source: Lorenz-gauge gravity
Punctures and relation to mode-sum

h̄µ⌫ =
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At first-order we can subtract the the punctures from the individual lmi-
modes of the retarded field
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Effective-source: Lorenz-gauge gravity
Punctures and relation to mode-sum
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At first-order we can subtract the the punctures from the individual lmi-
modes of the retarded field
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Can regularize the tensor-harmonic modes directly!

At first-order we can re-write this as a mode-sum formula

h̄R
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Effective-source: Lorenz-gauge gravity

Compare with scalar-harmonic regularisation formula:



Effective-source: Lorenz-gauge gravity
Effective-source and window-function

W = e�8�r2
Use a Gaussian window-
function: it’s effectively 

compact for our purposes
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Variation of parameters 
with multiple fields:
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l-2 reference

l-6 reference
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Difference:

Effective-source: Lorenz-gauge gravity
With zero-width world-tube
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Road to 2nd-order 

h̃lm

h(1)ret
lm

Mode-sum

h(1)R



Road to 2nd-order 
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h(1)ret
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Mode-sum Eff. source
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h(1)R h(2)R

For next Capra…


