

Self-force for Cosmic Strings

Barry Wardell Department of Astronomy, Cornell University with David Chernoff and Éanna Flanagan

Capra 17, June 26th 2014

Sources of Gravitational Waves

Generated using Gravitational Wave Sensitivity Curve Plotter by Christopher Moore, Robert Cole and Christopher Berry

Cosmic Strings

- Can be treated as approximately one-dimensional objects (Nambu-Goto).
- Predicted by cosmological models of early-universe phase transitions, field theory models, string theory.
- * Radiate gravitational waves at all frequencies (power law)
 ⇒ LIGO, LISA and PTA
- Gravitational-wave detections
 ⇒ upper limits on string tension
 ⇒ constrain physical models.

Image credit: eLISA/NGO Yellow book (ftp://ftp.rssd.esa.int/pub/ojennric/NGO_YB/NGO_YB.pdf)

Cosmic String Loop Formation

- Cosmic string loops form from large string networks.
- Whenever a string self-intersects it breaks apart, leaving two smaller strings with kinks behind.
- Kinks eventually evolve into cusps.
- Kinks, cusps are generically expected to be present in cosmic strings.
- Galactic-scale strings essentially moving in flat space.

Perturbative sources of GWs

- * Disparity of length-scales ⇒ not well suited to Numerical Relativity.
- * Well approximated as perturbation of some background spacetime.
- Ignore any internal structure.
- Point particle/string approximation ⇒ divergent perturbations

	EMRI	Cosmic String
Small parameter	Mass ratio,	String tension, G
Modelled as	Zero-dimensional point particle	One-dimensional string
Length scale	Mass of larger black hole (typically ~10	Sub-galactic scale (also higher harmonics)
Background spacetime	Rotating black hole (Kerr)	Flat space (Minkowski)
Divergence of self-field	1/	log(

Perturbative sources of GWs

	EMRI	Cosmic String
Parametrisation	Worldline,	Worldsheet,
Stress-energy	$m \int_{\gamma} \frac{g^{\alpha}{}_{\mu}(x,z)g^{\beta}{}_{\nu}(x,z)\dot{z}^{\mu}\dot{z}^{\nu}}{\sqrt{-g_{\mu}\nu\dot{z}^{\mu}\dot{z}^{\nu}}} \delta_4(x,z)d\lambda$	$-\frac{G\mu}{\sqrt{-g}}\int\sqrt{-\gamma}\gamma^{AB}\partial_A z^\alpha\partial_B z^\beta\delta_4(x,z)d\zeta d\tau$
Unperturbed Equation of Motion	$\frac{d^2 z^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{d^2 z^{\mu}}{d\tau^2} \frac{d^2 z^{\mu}}{d\tau^2} = 0$	$\frac{1}{\sqrt{\gamma}} \frac{\partial z (\sqrt{\gamma} \gamma AB \partial z \partial B z^{\rho})}{\partial \zeta^{2}_{\gamma AB} z^{A}_{,A} z^{A}_{,B} \tau^{A}_{,B} \tau^{\rho}_{\lambda \mu}} = 0$
First order equation of motion	$\frac{d^2\xi^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\alpha\beta} \frac{d^2\xi^{\mu}}{d\tau^2} \frac{d^2\xi^{\mu}}{d\tau^2} = \frac{1}{2} \perp^{\mu\nu} (2\nabla_{\lambda}h_{\mu\rho} - \nabla_{\mu}h_{\lambda\rho})u^{\lambda}u^{\rho}$	$\begin{split} \frac{\partial \mathscr{L}^{\rho}_{\chi} \bar{\nabla}_{\mu} \sqrt[\mathbf{\nabla} \mathscr{L}^{\rho} \xi^{\chi}}{\partial \zeta_{+}^{2} \perp^{\beta \rho} \xi^{\gamma} F^{\mu \nu} R_{\mu \varepsilon \nu \beta} \xi^{\varepsilon} = K^{\alpha \beta \rho} h_{\alpha \beta}} \\ = \frac{1}{2} \stackrel{1}{\pm} \stackrel{\rho}{}_{\beta \beta} P^{\lambda \tau}_{\lambda \tau} \left(\begin{array}{c} \nabla_{\lambda} h^{\beta}_{\beta \tau} - \frac{1}{2} \nabla^{\beta}_{\beta} h_{\lambda \tau} \\ \nabla_{\lambda} h^{\beta}_{\tau} - \frac{1}{2} \nabla^{\beta}_{\beta} h_{\lambda \tau} \end{array} \right) \end{split}$

Unperturbed motion

Motion of a Cosmic String

- A one-dimensional string traces out a two-dimensional *worldsheet* in spacetime.
- Concentrate on the case of closed cosmic string loops.
- Parametrise worldsheet z(τ,ζ) by time coordinate, τ, and spatial coordinate, ζ, which picks out a location on the string.
- * Periodic in τ and ζ , period L.
- "Geodesic" equation of motion

$$\frac{\partial^2 z^a}{\partial \tau^2} - \frac{\partial^2 z^a}{\partial \zeta^2} = 0$$

Kinks and Cusps

- A generic string will have either a kink or a cusp.
- * Tangent-sphere representation $\vec{z}'(\tau + \zeta) = \vec{z}'(\tau - \zeta)$
- Difficult (impossible?) to find string configurations which don't contain either kinks, cusps or self-intersections.

Kinks and Cusps

- Kinks and cusps are highly relativistic, smooth parts of the string much less so.
- Radiation from kinks, and cusps in particular, is strongly amplified relative to smooth string.
- Gravitational radiation dominated by cusp.
- Cusp models used for bounds on string tension from gravitational wave detectors.

Gravitational Radiation

- But, strings can couple to gravity.
- Gravitational radiation damping causes string to evaporate.
- Which happens first, evaporation or cusp formation?
- If evaporation happens first, then existing gravitational wave bounds may be missing a key component in their models.

Self-force for Cosmic Strings

Self-force for Cosmic Strings

* When gravitational backreaction is taken into account, the string feels a self-force at linear order in string tension, μ

$$\frac{\partial^2 z^a}{\partial \tau^2} - \frac{\partial^2 z^a}{\partial \zeta^2} = F^a \propto \nabla_b h_{cd}^1$$

- * As with point particles, Lorenz gauge $\$ metric perturbation h_{cd}^1 can be computed by convolving with the Green function.
- * $\nabla_a h_{cd}^1$ diverges like r^{-1} near the worldsheet, but it turns out that the combination as it appears in the self-force is finite (except at discontinuities such as kinks and cusps).

Self-force via World*sheet* Integration

- History dependence now comes about in two ways.
- There is a backscattering tail term as with point particles.
- There is also a direct-propagation contribution arising from radiation from one part of the string directly propagating and hitting another part of the string.
- Even in flat space the self-force is non-trivial and has a history dependence.

Evolving a Cosmic String with backreaction

- * In principal straightforward.
- Compute self-force at a point on the string by integrating retarded Green function over all points in the past.
- Repeat for each point on the string.
- Update the orbit using the selfforce as the right-hand side in the equation of motion.
- Repeat for an evaporation timescale ~1/μ.

Evolving a Cosmic String with backreaction

$$\bar{h}_{\alpha\beta}(x) = \int G_{\alpha\alpha'\beta\beta')(x,x')}^{\text{ret}} T^{\alpha'\beta'} \sqrt{-g} d^4 x'$$

$$= G\mu \int \sqrt{-\gamma'} P_{\alpha'\beta'} \delta[\sigma(x^{\gamma}, z^{\gamma}(\tau', \zeta'))] d\tau' d\zeta'$$

$$h_{\alpha\beta}(x) = G\mu \int \left[\frac{\sqrt{-\gamma'}}{r} \left(P_{\alpha'\beta'} - \frac{1}{2} g_{\alpha'\beta'} P^{\gamma'}{\gamma'} \right) \right]_{\tau'=\tau^{\text{ret}}} d\zeta'$$

$$F^{\rho} = G\mu \left[\perp^{\rho} {}_{\lambda}P^{\mu\nu} \left(\nabla_{\mu}h_{\nu}{}^{\lambda} - \frac{1}{2}\nabla^{\lambda}h_{\mu\nu} \right) - K^{\mu\nu\rho}h_{\mu\nu} \right]$$

 $F^a \sim O(1)$ for smooth strings, $O(\log \varepsilon)$ at discontinuities.

Self-force - divergence near kinks

Self-force diverges logarithmically in the vicinity of discontinuities (kinks and probably cusps)

Self-force - divergence near kinks

Divergence is integrable in the sense that Δz^{μ} is finite.

Self-force - divergence near kinks

But derivative along certain directions in the worldsheet are still divergent

