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Order of µ in wave form

( ) ( )2        0        µµ OO
dt

dEorbit ++=

dt

df≡

Energy balance argument is sufficient. 

dt

dE

dt

dE orbitGW =

Wave form         for quasi-circular orbits, for example. 

df

dE

dt

dE

dt

df orbitorbit=

( ) ( ) ( )2 geodesic µµ OO
df

dEorbit ++=

leading order (O(µ -1) phase) 
linear perturbation

only up to here 

next leading order 
(O(1) phase) 

( ) ( ) ( )fiefAfh Ψ≈



( )γτµ ,selfF
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Particle’s 
trajectory

h~µ/r

Perturbation is everywhere 
small outside the world tube

“tube radius” >> µ
Unavoidable ambiguity in the 
perturbed trajectory of O(µ)

“Self-force is gauge dependent”

Source trajectory 
has unnecessary information.

While, “long term orbital evolution is gauge 
invariant”

There must be a concise description keeping 
only the gauge invariant information

Gauge invariance
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H(0)=u2/2, and hence X 0 is τ and X i ( i =1,2,3 ) are all 
constant for background geodesics.

Use of canonical transformation

It is natural to change the variables to the constants of motion in 
the background      and their conjugates Xα

.

( ) ( )
( ) ( ) θθφ
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,Generating fn:  
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intHInteraction Hamiltonian
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Radiation reaction to the constants of motion
“retarded” = “radiative”             +          ”symmetric”

Geodesic preserving transformation (Mino transformation):
t→ -t, φ→ -φ, τ → -τ

2

adv""ret"" −

α
α

τ X

H

d

dP

∂
∂= int ( )( )

γγ
α γγττ

=′

′
∂

∂′≈ ∫∫ ,retG
X

dd

Only radiative part contributes to the change of 
“constants of motion” except for resonance orbits. (last Capra) 

no need for 
regularization

Xµ→ -Xµ, G(ret)→ G(adv)

For resonance orbits, X 3 =∆λ has physical meaning. 
which means “Orbits with different values of X are basically equivalent.”

λ (Mino’s time)
θ

r

∆λ ∆λ

∫ +
=

θ
τλ

222 cosar

d

2

adv""ret"" +
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{X} is not a good set of variables to see the orbital phase 
evolution. 

Small change of P, with fixed X, at a late time 
large variation of x

( ) ( )
( ) ( ) θθ

ππ
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Further canonical transformation: 
(X,P) → (q,J) action-angle variables

µµ q

W
J

∂
∂−=

~
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Second canonical transformation
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t − qt  is a periodic function w.r.t. qr ,qθ . 

After nr and nθ cycles, qr = 2π nr, qθ = 2π nθ, 
irrespective of                    . { }QLE z ,,−
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qµ is gauge invariant in the context of long term evolution. 
which allows an O(µ ) error at each time, 
but the error should not accumulate. 

Physical meaning of the angle variables

Small change in J (or in P) with fixed Xi small variation of x



8

Mino transformation 
Jµ→ Jµ

“averaged change rate of qµ ” = “phase velocity”

( ) ( )
γγµµ

µ
µ γγ

τ
=′

∂
′∂−

∂
∂

−==Ω
J

H

J

H

d

dq ,int0

Here, not           but          . 

almost directly related to the phase of observed GWs

Phase velocity

averaged after 
force calculation

( ) ( )( ) ( )( )γγγγγγ
µγγµγγµ
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differentiation 
of a fn of Jµ
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X i ( i =1,2,3 ) are all constant 
for the background geodesic.
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This term should 
be removed
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Can we insist                            ?

?
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The same transformation can be achieved by

Yes!  “Jµ=constant” can be realized by an appropriate gauge 
transformation, xµ → xµ – ξ µ , without secular growth of ξ µ.

( )
Jx

x

u

u

J
J 














∂
∂










∂
∂−= ν

ρ
ρ

ν
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αξ

ξ
δ

Additional δW makes Jµ constant. 

Perturbation of generating function

( ) ( )( ) µ
µξδ uPJPqxW =,,

~

L.h.s. is gauge inv. (δq caused by δW is purely oscillatory)
while r.h.s. may look a gauge-independent fn. of J. 
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∂
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J was originally gauge dependent but            must be gauge invariant.

~

JJ ξδ+
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Why does             fix the gauge completely?0=J&

( )
Jx

x

u

u

J
J 
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∂










∂
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ρ
ρ
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α
αξ

ξ
δ

Let’s consider the above gauge transformation     
at the reflection point of Mino transformation,

where                .0== θuur

( ) 0=ρ
ρξ uFrom the symmetry,                 at the reflection point.

( ) ( )
0=
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J
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u
u ν

ρ
ρ

ν ξ
Normalization condition 

By considering two approximate reflection points 
corresponding to rmin and rmax, we can conclude 
that constant shift of Jα is not allowed. 

LuEu t
ξ

φ
ξ δδ =
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We discussed the effect of long-term evolution due to first order self-force. 

Conclusion

Radiative part requires no regularization.
The contribution of symmetric part is concisely encoded in gauge-
invariant interaction Hamiltonian: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )ττττττττ σρ
µνρσ

νµ ′′′′≈ ∫ ∫
−− uuxxGuuddJH SsymSsym ,int

Instead of the direct computation of the self-force,  alternative 
simple regularization based on Hint might be handy. 

Scalar quantity.
Lower order differentiation.
Time integral can be performed first.

( ) ( )λ∆− ,int JH Ssym

Evolution of Q in the resonance case can be also described by a similar quantity: 

{


