Self-force corrections to spin precession for eccentric orbits in Schwarzschild spacetime

Sarp Akcay University College Dublin in collaboration with

David Dempsey, Sam Dolan (U. Sheffield)

de Sitter 1916

• • • • • • • • • • • •

de Sitter 1916

Precession due to spacetime curvature

de Sitter 1916

Precession due to spacetime curvature

de Sitter 1916

Precession due to spacetime curvature

Orthonormal frame: $\bar{e}^{\alpha}_{(a)} = \{u^{\alpha}, \bar{e}^{\alpha}_1, \bar{e}^{\alpha}_2 \propto \hat{\theta}^{\alpha}, \bar{e}^{\alpha}_3\}$ on the geodesic $\bar{\gamma}$

イロト イポト イヨト イヨ

Orthonormal frame: $\bar{e}^{\alpha}_{(a)} = \{u^{\alpha}, \bar{e}^{\alpha}_1, \bar{e}^{\alpha}_2 \propto \hat{\theta}^{\alpha}, \bar{e}^{\alpha}_3\}$ on the geodesic $\bar{\gamma}$

Consider //-transport of spin $s^{\alpha} = s^i \bar{e}_i^{\alpha}$: $u^{\beta} \nabla_{\beta} s^{\alpha} = 0$, $(s^{\alpha} u_{\alpha} = 0)$

< □ > < □ > < □ > < □ > < □ > < □ >

Orthonormal frame: $\bar{e}^{\alpha}_{(a)} = \{u^{\alpha}, \bar{e}^{\alpha}_1, \bar{e}^{\alpha}_2 \propto \hat{\theta}^{\alpha}, \bar{e}^{\alpha}_3\}$ on the geodesic $\bar{\gamma}$

Consider //-transport of spin $s^{\alpha} = s^{i} \bar{e}_{i}^{\alpha}$: $u^{\beta} \nabla_{\beta} s^{\alpha} = 0$, $(s^{\alpha} u_{\alpha} = 0)$

$$\dot{s}^{i} = \omega_{ij}s^{j}$$
, $\omega_{ij} = (u^{\gamma}\nabla_{\gamma}\bar{e}^{\alpha}_{i})\bar{e}_{\alpha,j} = -\omega_{ji}$, $i, j = 1, 2, 3$

< □ > < □ > < □ > < □ > < □ > < □ >

Orthonormal frame: $\bar{e}^{\alpha}_{(a)} = \{u^{\alpha}, \bar{e}^{\alpha}_1, \bar{e}^{\alpha}_2 \propto \hat{\theta}^{\alpha}, \bar{e}^{\alpha}_3\}$ on the geodesic $\bar{\gamma}$

Consider //-transport of spin $s^{\alpha} = s^{i} \bar{e}_{i}^{\alpha}$: $u^{\beta} \nabla_{\beta} s^{\alpha} = 0$, $(s^{\alpha} u_{\alpha} = 0)$

$$\dot{s}^{i} = \omega_{ij}s^{j}$$
, $\omega_{ij} = (u^{\gamma}\nabla_{\gamma}\bar{e}^{\alpha}_{i})\bar{e}_{\alpha,j} = -\omega_{ji}$, $i, j = 1, 2, 3$

1 non-zero component $\omega_{13} = -\omega_{31} \equiv \omega$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

Orthonormal frame: $\bar{e}^{\alpha}_{(a)} = \{u^{\alpha}, \bar{e}^{\alpha}_1, \bar{e}^{\alpha}_2 \propto \hat{\theta}^{\alpha}, \bar{e}^{\alpha}_3\}$ on the geodesic $\bar{\gamma}$

Consider //-transport of spin $s^{\alpha} = s^i \bar{e}_i^{\alpha}$: $u^{\beta} \nabla_{\beta} s^{\alpha} = 0$, $(s^{\alpha} u_{\alpha} = 0)$

$$\dot{s}^{i} = \omega_{ij}s^{j}$$
, $\omega_{ij} = (u^{\gamma}\nabla_{\gamma}\bar{e}^{\alpha}_{i})\bar{e}_{\alpha,j} = -\omega_{ji}$, $i, j = 1, 2, 3$

1 non-zero component $\omega_{13} = -\omega_{31} \equiv \omega$

Accumulated precession: $\Psi = \omega \tau$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへの

Orthonormal frame: $\bar{e}^{\alpha}_{(a)} = \{u^{\alpha}, \bar{e}^{\alpha}_1, \bar{e}^{\alpha}_2 \propto \hat{\theta}^{\alpha}, \bar{e}^{\alpha}_3\}$ on the geodesic $\bar{\gamma}$

Consider //-transport of spin $s^{\alpha} = s^i \bar{e}_i^{\alpha}$: $u^{\beta} \nabla_{\beta} s^{\alpha} = 0$, $(s^{\alpha} u_{\alpha} = 0)$

$$\dot{s}^{i} = \omega_{ij}s^{j}$$
, $\omega_{ij} = (u^{\gamma}\nabla_{\gamma}\bar{e}_{i}^{\alpha})\bar{e}_{\alpha,j} = -\omega_{ji}$, $i, j = 1, 2, 3$

1 non-zero component $\omega_{13} = -\omega_{31} \equiv \omega$

Accumulated precession: $\Psi = \omega \tau$

If $\bar{e}^{\alpha}_{(a)}$ is //-transported then $\Psi = \omega = 0 \mapsto$ Need a second frame

Sarp Akcay (University College Dublin)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

Let $\bar{e}^{\alpha}_{(a)}$ be a Lie-transported tetrad // to fixed stars mod 2π

Let $\bar{e}^{\alpha}_{(a)}$ be a Lie-transported tetrad // to fixed stars mod 2π

Consider //-transported tetrad $\lambda^{\alpha}_{(a)} = \{u^{\alpha}, \lambda^{\alpha}_1, \lambda^{\alpha}_2, \lambda^{\alpha}_3\}$

Let $\bar{e}^{\alpha}_{(a)}$ be a Lie-transported tetrad // to fixed stars mod 2π

Consider //-transported tetrad $\lambda^{\alpha}_{(a)} = \{u^{\alpha}, \lambda^{\alpha}_{1}, \lambda^{\alpha}_{2}, \lambda^{\alpha}_{3}\}$ $\lambda^{\alpha}_{(a)}$ is a rotation of $\bar{e}^{\alpha}_{(a)}$ in the 1 – 3 plane by $\Psi = \omega \tau$ $\begin{pmatrix}\lambda^{\alpha}_{1}\\\lambda^{\alpha}_{3}\end{pmatrix} = \begin{pmatrix}\cos(\omega\tau) & -\sin(\omega\tau)\\\sin(\omega\tau) & \cos(\omega\tau)\end{pmatrix}\begin{pmatrix}\bar{e}^{\alpha}_{1}\\\bar{e}^{\alpha}_{3}\end{pmatrix}$

・ロ・・(日・・ヨ・・ヨ・・ヨ)
・

Let $\bar{e}^{\alpha}_{(a)}$ be a Lie-transported tetrad // to fixed stars mod 2π

Consider //-transported tetrad $\lambda_{(a)}^{\alpha} = \{u^{\alpha}, \lambda_{1}^{\alpha}, \lambda_{2}^{\alpha}, \lambda_{3}^{\alpha}\}$ $\lambda_{(a)}^{\alpha}$ is a rotation of $\bar{e}_{(a)}^{\alpha}$ in the 1-3 plane by $\Psi = \omega \tau$ $\begin{pmatrix}\lambda_{1}^{\alpha}\\\lambda_{3}^{\alpha}\end{pmatrix} = \begin{pmatrix}\cos(\omega\tau) & -\sin(\omega\tau)\\\sin(\omega\tau) & \cos(\omega\tau)\end{pmatrix}\begin{pmatrix}\bar{e}_{1}^{\alpha}\\\bar{e}_{3}^{\alpha}\end{pmatrix}$

 $\lambda^{lpha}_{(\mathsf{a})}$ precesses by $2\pi\psi_0=2\pi-\Psi$ per circular orbit

イロト イヨト イヨト イヨト 二日

Let $\bar{e}^{\alpha}_{(a)}$ be a Lie-transported tetrad // to fixed stars mod 2π

Consider //-transported tetrad $\lambda_{(a)}^{\alpha} = \{u^{\alpha}, \lambda_{1}^{\alpha}, \lambda_{2}^{\alpha}, \lambda_{3}^{\alpha}\}$ $\lambda_{(a)}^{\alpha}$ is a rotation of $\bar{e}_{(a)}^{\alpha}$ in the 1 – 3 plane by $\Psi = \omega \tau$ $\begin{pmatrix}\lambda_{1}^{\alpha}\\\lambda_{3}^{\alpha}\end{pmatrix} = \begin{pmatrix}\cos(\omega\tau) & -\sin(\omega\tau)\\\sin(\omega\tau) & \cos(\omega\tau)\end{pmatrix}\begin{pmatrix}\bar{e}_{1}^{\alpha}\\\bar{e}_{3}^{\alpha}\end{pmatrix}$

 $\lambda^lpha_{(a)}$ precesses by $2\pi\psi_0=2\pi-\Psi$ per circular orbit

Point particle in circular orbit: $\mu \ll M$, $|\vec{s}| \ll \frac{G\mu^2}{C}$

Dissipation **OFF**

イロン 不通 とうせい うほ

Point particle in circular orbit: $\mu \ll M$, $|\vec{s}| \ll \frac{G\mu^2}{c}$

Dissipation OFF \mapsto perturbed geodesic γ

(日)

Point particle in circular orbit: $\mu \ll M$, $|\vec{s}| \ll \frac{G\mu^2}{C}$

Dissipation OFF \mapsto perturbed geodesic γ Associated with background geodesic $\bar{\gamma}$: $\Omega = \bar{\Omega}$

(日)

Point particle in circular orbit: $\mu \ll M$, $|\vec{s}| \ll \frac{G\mu^2}{c}$

Dissipation OFF \mapsto perturbed geodesic γ Associated with background geodesic $\bar{\gamma}$: $\Omega = \bar{\Omega}$

Gauge invariance: $\xi \sim \mathcal{O}(\mu)$ such that $(\partial_t + \bar{\Omega} \partial_\phi) \xi^{\alpha} = 0$

イロト 不得下 イヨト イヨト 二日

Point particle in circular orbit: $\mu \ll M$, $|\vec{s}| \ll \frac{G\mu^2}{c}$

Dissipation OFF \mapsto perturbed geodesic γ Associated with background geodesic $\bar{\gamma}$: $\Omega = \bar{\Omega}$

Gauge invariance: $\xi \sim \mathcal{O}(\mu)$ such that $(\partial_t + \overline{\Omega} \partial_\phi) \xi^{\alpha} = 0$ Define

$$\delta X \equiv X(\Omega) - \bar{X}(\bar{\Omega})$$
$$\Delta Y \equiv Y(\Omega) - \bar{Y}(\Omega) = \delta Y - \frac{d\bar{Y}}{d\Omega}\delta\Omega$$

(日)

Point particle in circular orbit: $\mu \ll M$, $|\vec{s}| \ll \frac{G\mu^2}{c}$

Dissipation OFF \mapsto perturbed geodesic γ Associated with background geodesic $\bar{\gamma}$: $\Omega = \bar{\Omega}$

Gauge invariance: $\xi \sim \mathcal{O}(\mu)$ such that $(\partial_t + \overline{\Omega} \partial_{\phi})\xi^{\alpha} = 0$ Define

$$\delta X \equiv X(\Omega) - \bar{X}(\bar{\Omega})$$
$$\Delta Y \equiv Y(\Omega) - \bar{Y}(\Omega) = \delta Y - \frac{d\bar{Y}}{d\Omega}\delta\Omega$$

Note: $\delta \Omega \neq 0$ but $\Delta \Omega = 0$

Image: A math a math

Using
$$\psi = 1 - \frac{\omega}{u^{\phi}} \Longrightarrow \delta \psi = -\sqrt{1 - \frac{3M}{r_0}} \left(\frac{\delta \omega}{\bar{\omega}} - \frac{\delta u^{\phi}}{\bar{u}^{\phi}} \right)$$

< □ > < 同 > < 回 > < Ξ > < Ξ

Using
$$\psi = 1 - \frac{\omega}{u^{\phi}} \Longrightarrow \delta \psi = -\sqrt{1 - \frac{3M}{r_0}} \left(\frac{\delta \omega}{\bar{\omega}} - \frac{\delta u^{\phi}}{\bar{u}^{\phi}} \right)$$

and $\omega = \Gamma_{\alpha\beta\gamma} e_3^{\alpha} u^{\beta} e_1^{\gamma}, \quad \Gamma = \Gamma[g], \quad g = \bar{g} + h^R$

< □ > < 同 > < 回 > < Ξ > < Ξ

Using
$$\psi = 1 - \frac{\omega}{u^{\phi}} \Longrightarrow \delta \psi = -\sqrt{1 - \frac{3M}{r_0}} \left(\frac{\delta \omega}{\bar{\omega}} - \frac{\delta u^{\phi}}{\bar{u}^{\phi}} \right)$$

and $\omega = \Gamma_{\alpha\beta\gamma} e_3^{\alpha} u^{\beta} e_1^{\gamma}, \quad \Gamma = \Gamma[g], \quad g = \bar{g} + h^R$

Obtain
$$\delta \omega = \frac{1}{2} \bar{\omega} (h_{uu} + h_{33} - h_{11}) + \beta_{03} \bar{\Gamma}_{313} + \delta \Gamma_{310}$$

 $\delta \psi = \frac{1}{\bar{u}^t} \left(\frac{1}{2} (h_{11} - h_{33}) - r_0^{3/2} \delta \Gamma_{310} + \frac{1}{2} r_0 F_r \right)$

< □ > < 同 > < 回 > < Ξ > < Ξ

Using
$$\psi = 1 - \frac{\omega}{u^{\phi}} \Longrightarrow \delta \psi = -\sqrt{1 - \frac{3M}{r_0}} \left(\frac{\delta \omega}{\bar{\omega}} - \frac{\delta u^{\phi}}{\bar{u}^{\phi}} \right)$$

and $\omega = \Gamma_{\alpha\beta\gamma} e_3^{\alpha} u^{\beta} e_1^{\gamma}, \quad \Gamma = \Gamma[g], \quad g = \bar{g} + h^R$

Obtain
$$\delta \omega = \frac{1}{2} \bar{\omega} (h_{uu} + h_{33} - h_{11}) + \beta_{03} \bar{\Gamma}_{313} + \delta \Gamma_{310}$$

 $\delta \psi = \frac{1}{\bar{u}^t} (\frac{1}{2} (h_{11} - h_{33}) - r_0^{3/2} \delta \Gamma_{310} + \frac{1}{2} r_0 F_r)$

Finally $\Delta \psi = \delta \psi + \underbrace{\frac{r_0}{2\bar{u}^t}F_r + \delta_\alpha \psi}_{-\frac{d\bar{\psi}}{d\Omega}\delta\hat{\Omega}} \text{ with } \bar{u}^t = \left(1 - \frac{3M}{r_0}\right)^{-1/2}$

See Dolan et al. 2014 for details

Eccentric geodesics in Schwarzschild spacetime 2-D parameter space: $(E_0, L_0) \leftrightarrow (r_{\min}, r_{\max}) \leftrightarrow (p, e)$

Eccentric geodesics in Schwarzschild spacetime 2-D parameter space: $(E_0, L_0) \leftrightarrow (r_{\min}, r_{\max}) \leftrightarrow (p, e)$

Eccentric geodesics in Schwarzschild spacetime 2-D parameter space: $(E_0, L_0) \leftrightarrow (r_{\min}, r_{\max}) \leftrightarrow (p, e) \leftrightarrow (\Omega_r, \Omega_{\phi})$ p = 10, e = 0.50.985 Radially periodic: $t \in [0, T_r]$ Parametrize using $\chi \in [0, 2\pi]$ 0.9725 $r(\chi$ $\phi(\chi)$ 0.95 10 15 25 r_{min} r max $r_{\rm max}$ $r_{\rm min}$ $r_{\min} = \frac{p}{1+e}, r_{\max} = \frac{p}{1-e}$ TWO frequencies $r(\chi) = \frac{\rho}{1 + e \cos \chi}$ $\Omega_r = \frac{2\pi}{T_r}, \Omega_\phi = \frac{\Phi}{T_r}$ $\Phi > 2\pi$

Sarp Akcay (University College Dublin)

Eccentric spin precession

18th Capra Meeting 7 / 18

Dissipation **OFF**

- 4 回 ト 4 ヨ ト 4 ヨ

 $\begin{array}{rcl} \text{Bound orbit:} \\ \text{Dissipation OFF} & \mapsto & \{r_{\min}, r_{\max}, \mathcal{T}_r, \Phi, \Omega_r, \Omega_\phi\} \\ & \chi \in [0, 2\pi] \end{array}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Bound orbit:

Dissipation OFF $\mapsto \{r_{\min}, r_{\max}, T_r, \Phi, \Omega_r, \Omega_{\phi}\}\ \chi \in [0, 2\pi]$

NO conserved \underline{E} or \underline{L} : $E = E_0 + \delta E$, $L = L_0 + \delta L$ Shifted 4-velocity: $u^{\alpha} = \overline{u}^{\alpha} + \delta u^{\alpha}$

$$\delta X \equiv X(p, e) - \bar{X}(p, e)$$

4 AR & 4 E & 4 E

Bound orbit:

- Dissipation OFF $\mapsto \{r_{\min}, r_{\max}, T_r, \Phi, \Omega_r, \Omega_{\phi}\}\ \chi \in [0, 2\pi]$
- NO conserved E or L: $E = E_0 + \delta E$, $L = L_0 + \delta L$ Shifted 4-velocity: $u^{\alpha} = \bar{u}^{\alpha} + \delta u^{\alpha}$

$$\delta X \equiv X(p,e) - \bar{X}(p,e)$$

Associated orbits: $z^{\alpha}(\tau) \leftrightarrow \overline{z}^{\alpha}(\overline{\tau})$ with $\{p, e, \chi\}$ fixed $\delta\{p, e, \chi, r(\chi)\} = 0$

Sarp Akcay (University College Dublin)

< □ > < □ > < □ > < □ > < □ > < □ >

Bound orbit:

- Dissipation OFF $\mapsto \{r_{\min}, r_{\max}, T_r, \Phi, \Omega_r, \Omega_{\phi}\}\ \chi \in [0, 2\pi]$
- NO conserved E or L: $E = E_0 + \delta E$, $L = L_0 + \delta L$ Shifted 4-velocity: $u^{\alpha} = \bar{u}^{\alpha} + \delta u^{\alpha}$

$$\delta X \equiv X(p,e) - \bar{X}(p,e)$$

Associated orbits: $z^{\alpha}(\tau) \leftrightarrow \overline{z}^{\alpha}(\overline{\tau})$ with $\{p, e, \chi\}$ fixed $\delta\{p, e, \chi, r(\chi)\} = 0$

Gauge invariant: $\int \psi(\Omega_r, \Omega_\phi)$

Sarp Akcay (University College Dublin)

(日)

Defining $\psi \equiv 1 - \frac{\Psi}{\Phi}$ where $\Psi = \int \dot{\Psi} d\tau$ Gauge invariant correction

Defining $\psi \equiv 1 - \frac{\Psi}{\Phi}$ where $\Psi = \int \dot{\Psi} d\tau$ Gauge invariant correction

$$\Delta \psi \equiv \psi(\Omega_r, \Omega_\phi, \mu) - \psi(\Omega_r, \Omega_\phi, 0)$$
$$= \delta \psi - \frac{\partial \bar{\psi}}{\partial \Omega_r} \delta \hat{\Omega}_r - \frac{\partial \bar{\psi}}{\partial \Omega_\phi} \delta \hat{\Omega}_\phi$$

where $\delta \hat{\Omega}_i = \delta \Omega - \alpha \bar{\Omega}_i$ and

(1)

Defining $\psi \equiv 1 - \frac{\Psi}{\Phi}$ where $\Psi = \int \dot{\Psi} d\tau$ Gauge invariant correction

$$\psi \equiv \psi(\Omega_r, \Omega_\phi, \mu) - \psi(\Omega_r, \Omega_\phi, 0)$$
$$= \delta \psi - \frac{\partial \bar{\psi}}{\partial \Omega_r} \delta \hat{\Omega}_r - \frac{\partial \bar{\psi}}{\partial \Omega_\phi} \delta \hat{\Omega}_\phi$$

where $\delta \hat{\Omega}_i = \delta \Omega - \alpha \bar{\Omega}_i$ and

Λ

$$\delta\psi = -\frac{\bar{\Psi}}{\bar{\Phi}}\left(\frac{\delta\Psi}{\bar{\Psi}} - \frac{\delta\Phi}{\bar{\Phi}}\right)$$

Sarp Akcay (University College Dublin)

(1)

(2)

Recall: we need TWO frames

• • = • • =

Recall: we need TWO frames

- //-transported tetrad: $\dot{\lambda}_i^{\alpha} = 0 \quad \{u^{\alpha}, \lambda_1^{\alpha}, \lambda_2^{\alpha}, \lambda_3^{\alpha}\}$
- 2 Marck's tetrad (Marck 1983): $\{u^{\alpha}, \bar{e}_{1}^{\alpha}, \bar{e}_{2}^{\alpha} \propto \hat{\theta}, \bar{e}_{3}^{\alpha}\}$

Recall: we need TWO frames

• //-transported tetrad: $\dot{\lambda}_{i}^{\alpha} = 0$ { $u^{\alpha}, \lambda_{1}^{\alpha}, \lambda_{2}^{\alpha}, \lambda_{3}^{\alpha}$ } • Marck's tetrad (Marck 1983): { $u^{\alpha}, \bar{e}_{1}^{\alpha}, \bar{e}_{2}^{\alpha} \propto \hat{\theta}, \bar{e}_{3}^{\alpha}$ } Rotation in the 1 – 3 plane by Ψ

$$\begin{pmatrix} \lambda_1^{\alpha} \\ \lambda_3^{\alpha} \end{pmatrix} = \begin{pmatrix} \cos \Psi & -\sin \Psi \\ \sin \Psi & \cos \Psi \end{pmatrix} \begin{pmatrix} \bar{e}_1^{\alpha} \\ \bar{e}_3^{\alpha} \end{pmatrix}$$

Using $\dot{\lambda}_1 = \dot{\lambda}_3 = 0$ we get $\dot{\Psi} = \bar{e}_{3\alpha} \dot{\bar{e}}_1^{\alpha} = \bar{g}_{\alpha\beta} \bar{e}_3^{\beta} \left(\bar{u}^{\gamma} \bar{\nabla}_{\gamma} \bar{e}_1^{\alpha} \right)$

Recall: we need TWO frames

• //-transported tetrad: $\dot{\lambda}_{i}^{\alpha} = 0$ { $u^{\alpha}, \lambda_{1}^{\alpha}, \lambda_{2}^{\alpha}, \lambda_{3}^{\alpha}$ } • Marck's tetrad (Marck 1983): { $u^{\alpha}, \bar{e}_{1}^{\alpha}, \bar{e}_{2}^{\alpha} \propto \hat{\theta}, \bar{e}_{3}^{\alpha}$ } Rotation in the 1 – 3 plane by Ψ

$$\begin{pmatrix} \lambda_1^{\alpha} \\ \lambda_3^{\alpha} \end{pmatrix} = \begin{pmatrix} \cos \Psi & -\sin \Psi \\ \sin \Psi & \cos \Psi \end{pmatrix} \begin{pmatrix} \bar{e}_1^{\alpha} \\ \bar{e}_3^{\alpha} \end{pmatrix}$$
Using $\dot{\lambda}_1 = \dot{\lambda}_3 = 0$ we get $\dot{\Psi} = \bar{e}_{3\alpha} \dot{\bar{e}}_1^{\alpha} = \bar{g}_{\alpha\beta} \bar{e}_3^{\beta} \left(\bar{u}^{\gamma} \bar{\nabla}_{\gamma} \bar{e}_1^{\alpha} \right)$ Thus

$$\delta \dot{\Psi} = \delta \left(\mathbf{g}_{lphaeta} \mathbf{e}_{\mathbf{3}}^{eta} \mathbf{u}^{\gamma}
abla_{\gamma} \mathbf{e}_{\mathbf{1}}^{lpha}
ight)$$

Sarp Akcay (University College Dublin)

More work yields

$$\delta \dot{\Psi} = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + c_{01} \bar{\Gamma}_{311} + c_{03} \bar{\Gamma}_{313} + \underbrace{\frac{dc_{13}}{d\tau}}_{\text{averages to } 0} + \delta \Gamma_{310}$$

$$\begin{array}{rcl} \delta \Psi & = & \int_{0}^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\bar{\psi}} - \frac{\delta \dot{R}}{\bar{u}'} \right) d\chi \\ \delta \Phi & = & \int_{0}^{2\pi} \frac{d\bar{\Phi}}{d\chi} \left(\frac{\delta L}{L_0} - \frac{\delta \dot{R}}{\bar{u}'} \right) d\chi \end{array}$$

 $\delta \Phi$: Barack & Sago 2011

More work yields

$$\delta \dot{\Psi} = \frac{1}{2} \dot{\bar{\Psi}} \left(h_{uu} + h_{33} - h_{11} \right) + c_{01} \bar{\Gamma}_{311} + c_{03} \bar{\Gamma}_{313} + \underbrace{\frac{dc_{13}}{d\tau}}_{\text{averages to } 0} + \delta \Gamma_{310}$$

$$\delta \Psi = \int_{0}^{2\pi} \frac{d\bar{\Psi}}{d\chi} \left(\frac{\delta \dot{\Psi}}{\bar{\Psi}} - \frac{\delta \dot{R}}{\bar{u}'} \right) d\chi$$

$$\delta \Phi = \int_{0}^{2\pi} \frac{d\bar{\Phi}}{d\chi} \left(\frac{\delta L}{L_{0}} - \frac{\delta \dot{R}}{\bar{u}'} \right) d\chi$$
 Insert into Eqs. (1), (2)

 $\delta \Phi$: Barack & Sago 2011

Small eccentricity for now: e = 0.05, 0.1Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

4 1 1 4 1 1 1

Small eccentricity for now: e = 0.05, 0.1Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\mathsf{circ}}
eq \lim_{e o 0} \Delta \psi$$

Small eccentricity for now: e = 0.05, 0.1Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\text{circ}} \neq \lim_{e \to 0} \Delta \psi$$

e.g., $\Delta \psi_{(p=10, e=0.1)} = 0.00593855^*$
$$\Delta \psi_{(p=10, e=0.1)} = -0.0503747$$
$$\lim_{e \to 0} \Delta \psi_{(p=10, e)} = -0.0506715$$

Small eccentricity for now: e = 0.05, 0.1Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\text{circ}} \neq \lim_{e \to 0} \Delta \psi$$

e.g., $\Delta \psi_{\text{circ}}(p = 10) = 0.00593855^*$
 $\psi(p = 10, e = 0.1) = -0.0503747$
 $\lim_{e \to 0} \Delta \psi(p = 10, e) = -0.0506715$

Shown analytically+numerically that $\lim_{\rm e\to 0}\delta\psi=\delta\psi_{\rm circ}$ But

1 E N 1 E N

Small eccentricity for now: e = 0.05, 0.1Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\text{circ}} \neq \lim_{e \to 0} \Delta \psi$$

e.g.,
$$\Delta \psi_{\text{circ}}(p = 10) = 0.00593855^*$$
$$\Delta \psi(p = 10, e = 0.1) = -0.0503747$$
$$\lim_{e \to 0} \Delta \psi(p = 10, e) = -0.0506715$$

Shown analytically+numerically that $\lim_{\rm e\to 0}\delta\psi=\delta\psi_{\rm circ}$ But

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\mathsf{circ}} = \frac{2(p-3)^{1/2}(p-6)^{5/2}}{p(4p^2 - 39p + 86)} \, \left(\delta k + \frac{q \; 2x}{(1-6x)^{3/2}}\right)$$

Small eccentricity for now: e = 0.05, 0.01Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\text{circ}} \neq \lim_{e \to 0} \Delta \psi$$

E.g.
$$\Delta \psi_{\text{circ}}(p = 10) = 0.00593855^*$$
$$\Delta \psi(p = 10, e = 0.1) = -0.0503747$$
$$\lim_{e \to 0} \Delta \psi(p = 10, e) = -0.0506715$$

Shown analytically+numerically that $\lim_{\rm e\to 0}\delta\psi=\delta\psi_{\rm circ}$ But

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\rm circ} = \frac{2(\rho - 3)^{1/2}(\rho - 6)^{5/2}}{\rho(4\rho^2 - 39\rho + 86)} \left(\frac{\delta k}{(1 - 6x)^{3/2}}\right)$$

• δk : Fractional periastron advance per T_r (Barack-Damour-Sago 2010)

Small eccentricity for now: e = 0.05, 0.01Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\text{circ}} \neq \lim_{e \to 0} \Delta \psi$$

E.g.
$$\Delta \psi_{\text{circ}}(p = 10) = 0.00593855^*$$
$$\Delta \psi(p = 10, e = 0.1) = -0.0503747$$
$$\lim_{e \to 0} \Delta \psi(p = 10, e) = -0.0506715$$

Shown analytically+numerically that $\lim_{\rm e\to 0}\delta\psi=\delta\psi_{\rm circ}$ But

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\rm circ} = \frac{2(p-3)^{1/2}(p-6)^{5/2}}{p(4p^2 - 39p + 86)} \left(\frac{\delta k}{(1-6x)^{3/2}}\right)$$

• δk : Fractional periastron advance per T_r (Barack-Damour-Sago 2010) • $x \equiv \left[(M + \mu) \hat{\Omega}_{\phi} \right]^{2/3}$

Small eccentricity for now: e = 0.05, 0.01Compare with circular-orbits \mapsto Extract PN expansion of $O(e^2)$ term

$$\Delta \psi_{\text{circ}} \neq \lim_{e \to 0} \Delta \psi$$

E.g.
$$\Delta \psi_{\text{circ}}(p = 10) = 0.00593855^*$$
$$\Delta \psi(p = 10, e = 0.1) = -0.0503747$$
$$\lim_{e \to 0} \Delta \psi(p = 10, e) = -0.0506715$$

Shown analytically+numerically that $\lim_{\rm e\to 0}\delta\psi=\delta\psi_{\rm circ}$ But

$$\lim_{e \to 0} \Delta \psi - \Delta \psi_{\rm circ} = \frac{2(p-3)^{1/2}(p-6)^{5/2}}{p(4p^2 - 39p + 86)} \left(\frac{\delta k}{(1-6x)^{3/2}}\right)$$

• δk : Fractional periastron advance per T_r (Barack-Damour-Sago 2010) • $x \equiv \left[(M + \mu) \hat{\Omega}_{\phi} \right]^{2/3}$

Difference is gauge invariant

Sarp Akcay (University College Dublin)

Numerical Results e = 0.1

PRELIMINARY

р	$\Delta\psi$	$\lim_{e ightarrow 0}\Delta\psi$	$(\ \Delta\psi - \lim_{e ightarrow 0}\Delta\psi)/e^2$
10	$-5.0374746183 imes 10^{-2}$	$-5.06715 imes 10^{-2}$	$2.96711 imes 10^{-2}$
20	$-4.105502714 imes 10^{-2}$	$-4.12414 imes 10^{-2}$	$1.8634 imes10^{-2}$
30	$-2.97664644 imes 10^{-2}$	$-2.99044 imes 10^{-2}$	$1.3792 imes10^{-2}$
40	$-2.309158147 imes 10^{-2}$	$-2.32001 imes 10^{-2}$	$1.085 imes10^{-2}$
50	$-1.880823903 imes 10^{-2}$	$-1.88976 imes 10^{-2}$	$8.93 imes10^{-3}$
60	$-1.58482057 imes10^{-2}$	$-1.59242 imes 10^{-2}$	$7.595 imes10^{-3}$
70	$-1.3686455636 imes 10^{-2}$	$-1.37523 imes 10^{-2}$	$6.588 imes10^{-3}$
80	$-1.204035626 imes 10^{-2}$	$-1.20966 imes 10^{-2}$	$5.826 imes10^{-3}$
90	$-1.074624358 imes 10^{-2}$	$-1.07983 imes 10^{-2}$	$5.204 imes10^{-3}$
100	$-9.702092699 imes 10^{-3}$	$-9.74941 imes 10^{-3}$	$4.732 imes10^{-3}$
110	$-8.84229541 imes 10^{-3}$	$-8.88571 imes 10^{-3}$	$4.341 imes10^{-3}$
120	$-8.122988585 imes 10^{-3}$	$-8.16224 imes 10^{-3}$	$3.925 imes10^{-3}$
130	$-7.511573415 imes 10^{-3}$	$-7.54748 imes 10^{-3}$	$3.59 imes10^{-3}$
140	$-6.985103217 imes 10^{-3}$	$-7.01869 imes 10^{-3}$	$3.359 imes10^{-3}$
150	$-6.526467808 imes 10^{-3}$	$-6.55905 imes 10^{-3}$	$3.258 imes10^{-3}$

Sarp Akcay (University College Dublin)

A D N A B N A B N A B N

Numerical Results e = 0.1

Numerical Results e = 0.1

< ⊒ >

What's next?

- Sort out the disagreement with 1PN Bug(s)? Implementation? Formulation?
- Cover Schwarzschild parameter space

 $0 < e \lesssim 0.5, \ 10 \lesssim p \lesssim 150$

- Comparison with PN as was done for ΔU in gr/qc-1503.01374
- Future: Equatorial, eccentric Kerr calculation using MST, CCK reconstruction, metric completion (see van de Meent's talk)

• • = • • = •