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Testing the cosmic censorship with binary systems

What enforces cosmic censorship?

Is CC enforced at the level of the background geometry?

o Test particle in extremal Kerr-Newman space-time (Wald, 1972): no
violations (only need to look at the kinematics on the background
to reach the conclusion)

o Is the censorship encoded in the geodesic equations of motions
then?



Testing the cosmic censorship with

What enforces cosmic censorship?

@ The geodesic approximation is not enough for nearly-extremal
spacetimes

o Violations were found for Reissner-Nordstrém (Hubeny, 1999) and
Kerr (Jacobson and Sotiriou, 2010)

@ These occur when the initial configuration is such that
Q—M~m? or J—M?~m?



Testing the cosmic censorship with binary

A delicate balance

Two competing small parameters in these scenarios:
o deviation from extremality
@ mass of the body orbiting the black hole

In nearly-extremal spacetimes the conjecture must be enforced in a more
complex way (radiative effects, self-force...)!



Testing the cosmic censorship with binary systems

Previous works incorporating back-reaction: charged BH

@ Isoyama, Sago and Tanaka: reformulate the problem in term of a
static configuration, which admits analytical treatment

@ Zimmeram, Poisson, Vega and Haas: numerical computation of the
EM self-force —found to exert just the right amount of repulsive
effect, but neglect potentially important effects of the gravitational
self-force



Testing the cosmic censorship with binary systems

The system under consideration

Binary system composed of
o nearly extremal Kerr BH of mass M and angular momentum J, with
spin parameter

a=J/M>*=1-¢€, e<1 J

@ small, non-spinning, non-charged body of mass m, such that
n=m/M < 1, on an equatorial orbit

M, J Q

mE << M



Testing the cosmic censorship with binary systems

Previous works incorporating back-reaction: Kerr BH

@ Previous works (Barausse, Cardoso and Khanna) numerically
computed radiative effects for ultra-relativistic orbits

@ They showed that radiative effects cannot always prevent the BH
from being overspun

In this work we

o Relax ultra-relativistic assumption and allow for fine-tuning

@ Account for the full back-reaction (radiative + conservative),
working consistently at first order



Overspinning a Kerr BH in the geodesic approximation

Finding the overspinning domain in the test particle

approximation

@ The particle has to overcome a potential barrier nL < nL.(E)
(exclude deeply bound orbits)

Captured if L<L,

@ but also needs to have the right proprortion of energy and angular
momentum to overspin:
(M +nE)* < aM +nL (D)
@ the maximum width of the L range satisfying both conditions is
e(E% -1)

A =
mrz;mxn L Y58



Overspinning a Kerr BH in the geodesic approximation

Test mass approximation: overspinning domain

VE > 1 overspinning achieved (A, > 0) in the range

en—(E) <n < eny(E) (2)

= We will focus on unbound orbits




The self-force effect

The GSF effect

@ Shift in the parameters of the “critical” orbits (defining the
separatrix between scatter and plunge)

Lo(Eco)+dLeo

Le(Ee)

@ The small body radiates energy and angular momentum




The self-force effect
[ Jele]e]

Evolution of critical, unbound orbits including the self-force

E
approach Ex
generic 10(77 )
( :
E; >F,
P77\ adiabatic evolution
lunge
prne Er~Eisco
O(e) r
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The self-force effect
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Conservative shift in the critical angular momentum

approach

) .
R=R;+dR self-force
geodesic

o Contribution to 6 Lo (Es) from the quasi-circular motion is shown
to be negligible at leading order in 7, €

1 [
2n J_

where 7, is some arbitrary time at the end of approach (such that
R—r(r.) < 1).

(Sngns (Eoo) = (2Ftcons + thons)dT = WCO"S’



The self-force effect
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The effect of the dissipative self-force

@ The total 6L (E) contains a dissipative contribution

@ The final Bondi energy and angular momentum of the system do not
correspond to the ADM ones (some radiation is emitted to null
infinity)



The self-force effect
[e]ele] ]

Shift in the critical angular momentum with the full

self-force

E
approach E,
B~E of)
r(vc) d
8Loo(Eoc) = SLE (Boo) ~ Winpe /M J
where Wi, = —5, [T (2F{""** + F{**)dr (at leading order, only the

approach contributes).



The self-force effect
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Censorship condition with the self-force

The final state is a black hole iff

(BEapm(Boo) — €Y (B, Lo))? = [Lapm (Lo, Boo) — L1 (Eoo, Los)] > 0 J

The only orbits that can potentially overspin are the ones for which

Loo = 2B+ + O(n, €) J




The self-force effect
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Reduction to near critical orbits

(Eapm (Boo) = £+ (Boo, Loo))? = [Lapat (Loos Eoo) = £+ (Eoo, L) 2 0f

I

(71B= = £4)2 =W + 1 [26Bapns — (SLLBw — Winpr /)] +1Weo + € 2 0 |

I

(77Eoo _5+) W;;u.swwc W;unge 7](2 5EADM -6 %OB?W)+7IW°°+€2 Z OJ

In the above we set Eapy = M [1 4+ n(Eo + dEapm(Ex))] (and similarly
for L) and W = 2Eo — Lo



The self-force effect
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Classification of near-critical orbits

We divide near-critical orbits into two families
Q fine-tuned, for which €7, L% ~ n
@ generic, for which £, LT ~ n%log(n) — radiative effects drop out
at first order

(NEoo — B = WEL +1(20Eapas — SLGB3) +1Woo + € > 0

E
E,
approach
generic I o)
E¢ >E
foisco adiabatic evolution
lunge
pne Ey~Eysco
O(e) r
Teh r(te) Tisco



The self-force effect
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Overspinning with near-critical orbits

o If one factors out the 7 and ¢ dependence from every term , the
censorship condition can be rewritten in the compact form

®:=e+enF +n°H >0,

@ One can show that ® is minimized by exactly critical orbits —
generic orbits can be reduced to a one-parameter family of orbits



The self-force effect
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Censorship condition for generic orbits

For generic orbits
® .= +enF +n°H >0,

where

o F:=—\/6EZ -2
o H:=F2% +20Eapy — LB,

Overspinning is averted provided that

SLapm < 1(1—E2%)  Eapum =fixed J

The shift in L. must be negative enough to close the window where
overspinning was possible in the test particle approx.



The self-force effect
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Overspinning with fine-tuned orbits

If one factors out the 1 and € dependence from every term, the
censorship condition can be rewritten as

®:= e+ enF +n*H >0,

where
° F= _W;;Lasicirc + We
o H=(Fw —E )2 +20Eapy — LGRS,
A necessary and sufficient censorship condition for fine-tuned orbits is

H > min (F/2,0)*



The self-force effect
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The effect of fine-tuning

Evaluation of the condition

The radiative contribution needs to be numerically computed. For this
purpose it is convenient to introduce

R(E) :=E7(E)/ET(E)

The radiative terms featuring in the censorship condition for fine-tuned
orbits can be conveniently re-expressed in terms of R(E):

g+__/Ef dE
 Jel 1+R(E)

X Er b(E)
Wi = / —— _dE,
" Jp 1+R(E)

where b(FE) is defined through Q = 1/2 — 1/4b(E)e + O(€?).



The self-force effect
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Methods to calculate L 4pys

@ The hard way: numerically compute the force along unbound orbits

@ The easier way: compute the shift on circular orbits, using the
Hamiltonian formalism of Isoyama et al. or the 1st law of binary
black-hole mechanics (which give 6L Aapar(2))

We can already tell what the outcome of applying 2) is... J




The self-force effect
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Conservative 0L 4pys: how to compute it

The shift in the critical angular momentum can be related to the SF
correction to the redshift z := 1/u’

0Lapm(E) = —nZ1(E), J

where Z1(F) :=lim_,0 21 (Q2(E; €),€)
o Evaluate the correction to the redshift for a sequence of
nearly-extremal spacetimes with ¢ < 1

o Take the limit € — 0, at fixed energy.

o Evaluate the censorship condition

Z1(E) 2 3(E* - 1) [




The self-force effect
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Conservative d L 4pas: numerical results

x10 0

.A(F;n/:
.
le
e
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i

E =125

o Non-critical orbits cannot overspin

o For critical, non-exponentially fine-tuned orbits, the BH appears to
be saturated within the first order self-force approximation



The self-force effect
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Conservative 0L 4pys: analytical derivation?

@ The RHS of the censorship condition

Z1(E) >

N =

(B2 1) J

turns out to be equal to contribution to z; coming from the low
multipoles £ = 0,¢ = 1 in the limit e — 0

1
llH(l)Zl V= 1—hm zo(dhz 04 onisty = §(E2—1) J

o Assuming he>2 is finite in the limit € — 0, we have
lim¢_,o zi = lim._,o 220(5h£>2) =0



The self-force effect
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Fine-tuned orbits cannot overspin

Assuming Z;(E) = %(EZO — 1), then one can show that the censorship
condition is satisfied as long as

R(E) = &~ J&+ > —1/3 |
0.5
min (R(E)) ~ —0.0479
0.4 E
0.3
@ 0.2
&
0.1
end of superradiant regime
0.0k - A& = e
~0.1




Conclusions

Conclusions

e Working at first order, overspinning is ruled out for non-critical and
critical, fine-tuned orbits = as expected, the inclusion of self-force
works in favour of cosmic censorship

o Critical, non (exponentially) fine-tuned orbits represent a special
case, where the second-order SF seems to be needed

o It would be interesting to compare the result of a numerical SF
computation on unbound orbits with the one obtained using the 1st
law framework
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