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What enforces cosmic censorship?

Is CC enforced at the level of the background geometry?

Test particle in extremal Kerr-Newman space-time (Wald, 1972): no
violations (only need to look at the kinematics on the background
to reach the conclusion)

Is the censorship encoded in the geodesic equations of motions
then?
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What enforces cosmic censorship?

The geodesic approximation is not enough for nearly-extremal
spacetimes

Violations were found for Reissner-Nordström (Hubeny, 1999) and
Kerr (Jacobson and Sotiriou, 2010)

These occur when the initial configuration is such that
Q−M ∼ m2, or J −M2 ∼ m2
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A delicate balance

Two competing small parameters in these scenarios:

deviation from extremality

mass of the body orbiting the black hole

In nearly-extremal spacetimes the conjecture must be enforced in a more
complex way (radiative effects, self-force...)!
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Previous works incorporating back-reaction: charged BH

Isoyama, Sago and Tanaka: reformulate the problem in term of a
static configuration, which admits analytical treatment

Zimmeram, Poisson, Vega and Haas: numerical computation of the
EM self-force –found to exert just the right amount of repulsive
effect, but neglect potentially important effects of the gravitational
self-force
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The system under consideration

Binary system composed of
nearly extremal Kerr BH of mass M and angular momentum J, with
spin parameter

ã := J/M2 = 1− ε2, ε� 1

small, non-spinning, non-charged body of mass m, such that
η = m/M � 1, on an equatorial orbit

E, L 

M, J

m E << M
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Previous works incorporating back-reaction: Kerr BH

Previous works (Barausse, Cardoso and Khanna) numerically
computed radiative effects for ultra-relativistic orbits

They showed that radiative effects cannot always prevent the BH
from being overspun

In this work we

Relax ultra-relativistic assumption and allow for fine-tuning

Account for the full back-reaction (radiative + conservative),
working consistently at first order
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Finding the overspinning domain in the test particle
approximation

The particle has to overcome a potential barrier ηL < ηLc(E)
(exclude deeply bound orbits)

Captured if L<L2

but also needs to have the right proprortion of energy and angular
momentum to overspin:

(M + ηE)2 < aM + ηL (1)

the maximum width of the L range satisfying both conditions is

max
η

η∆L =
ε2(E2 − 1)

2E2
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Test mass approximation: overspinning domain

∀E > 1 overspinning achieved (∆L > 0) in the range

εη−(E) < η < εη+(E) (2)

⇒ We will focus on unbound orbits
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The GSF effect

1 Shift in the parameters of the “critical” orbits (defining the
separatrix between scatter and plunge)
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2 The small body radiates energy and angular momentum

Erad 

Lrad
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Evolution of critical, unbound orbits including the self-force

r

E
E∞ 

O(η)

O(ε)

adiabatic evolution

rISCOr(τc)reh

 

Ef  ≻EISCO

Ef∼EISCO

approach

plunge

generic
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Conservative shift in the critical angular momentum

r

E
E∞ 

O(ε)

 

approach

R=R0+δR
geodesic

self-force

Contribution to δL∞(E∞) from the quasi-circular motion is shown
to be negligible at leading order in η, ε

δLcons∞ (E∞) = − 1

2η

∫ τc

−∞
(2F const + F consφ )dτ := Wcons,

where τc is some arbitrary time at the end of approach (such that
R− r(τc)� 1).
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The effect of the dissipative self-force

1 The total δL∞(E∞) contains a dissipative contribution

2 The final Bondi energy and angular momentum of the system do not
correspond to the ADM ones (some radiation is emitted to null
infinity)
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Shift in the critical angular momentum with the full
self-force

r

E
E∞ 

O(η)

r(τc)

 Ei ∼E∞

approach

δL∞(E∞) = δLcons∞ (E∞)−W+
appr/η

where W+
appr = − 1

2η

∫ τc
−∞ (2F disst + F dissφ )dτ (at leading order, only the

approach contributes).
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Censorship condition with the self-force

The final state is a black hole iff

(EADM (E∞)− E+(E∞, L∞))2 −
[
LADM (L∞, E∞)− L+(E∞, L∞)

]
≥ 0

The only orbits that can potentially overspin are the ones for which

L∞ = 2E∞ +O(η, ε)
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Reduction to near critical orbits

(EADM (E∞)− E+(E∞, L∞))2 − [LADM (L∞, E∞)− L+(E∞, L∞)] ≥ 0

⇓

(ηE∞ − E+)2 −W+ + η
[
2 δEADM −

(
δLcons

ADM −W+
appr/η

)]
+ ηW∞ + ε2 ≥ 0

⇓

(ηE∞−E+)2−W+
quasicirc−W

+
plunge+η(2 δEADM −δLcons

ADM )+ηW∞+ε2 ≥ 0

In the above we set EADM =M [1 + η(E∞ + δEADM (E∞))] (and similarly
for L) and W∞ = 2E∞ − L∞.
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Classification of near-critical orbits

We divide near-critical orbits into two families
1 fine-tuned, for which E+,L+ ∼ η
2 generic, for which E+,L+ ∼ η2 log(η)→ radiative effects drop out

at first order

(ηE∞ −��ZZE+ )2 −
�
�Z
Z
W+
qc + η(2 δEADM − δLconsADM ) + ηW∞ + ε2 ≥ 0

r

E
E∞ 

O(η)

O(ε)

adiabatic evolution

rISCOr(τc)reh
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Ef∼EISCO
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Overspinning with near-critical orbits

If one factors out the η and ε dependence from every term , the
censorship condition can be rewritten in the compact form

Φ := ε2 + εηF + η2H ≥ 0,

One can show that Φ is minimized by exactly critical orbits →
generic orbits can be reduced to a one-parameter family of orbits
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Censorship condition for generic orbits

For generic orbits

Φ := ε2 + εηF + η2H ≥ 0,

where

F := −
√

6E2
∞ − 2

H := E2
∞ + 2δÊADM − δL̂consADM

Overspinning is averted provided that

δL̂ADM ≤ 1
2 (1− E2

∞) EADM =fixed

The shift in Lc must be negative enough to close the window where
overspinning was possible in the test particle approx.
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Overspinning with fine-tuned orbits

If one factors out the η and ε dependence from every term, the
censorship condition can be rewritten as

Φ := ε2 + εηF + η2H ≥ 0,

where

F = −Ŵ+
quasicirc +W∞

H = (E∞ − Ê+)2 + 2δÊADM − δL̂consADM

A necessary and sufficient censorship condition for fine-tuned orbits is

H ≥ min (F/2, 0)
2
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The effect of fine-tuning

Evaluation of the condition

The radiative contribution needs to be numerically computed. For this
purpose it is convenient to introduce

R(E) := Ė−(E)/Ė+(E)

The radiative terms featuring in the censorship condition for fine-tuned
orbits can be conveniently re-expressed in terms of R(E):

Ê+ = −
∫ Ef

E∞

dE

1 +R(E)

Ŵ+
qc =

∫ Ef

E∞

b(E)

1 +R(E)
dE,

where b(E) is defined through Ω = 1/2− 1/4b(E)ε+O(ε2).
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Methods to calculate δLADM

1 The hard way: numerically compute the force along unbound orbits

2 The easier way: compute the shift on circular orbits, using the
Hamiltonian formalism of Isoyama et al. or the 1st law of binary
black-hole mechanics (which give δLADM (Ω))

We can already tell what the outcome of applying 2) is...
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Conservative δLADM : how to compute it

The shift in the critical angular momentum can be related to the SF
correction to the redshift z := 1/ut

δLADM (E) = −ηZ1(E),

where Z1(E) := limε→0 z1(Ω(E; ε), ε)

Evaluate the correction to the redshift for a sequence of
nearly-extremal spacetimes with ε� 1

Take the limit ε→ 0, at fixed energy.

Evaluate the censorship condition

Z1(E) ≥ 1
2 (E2 − 1)
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Conservative δLADM : numerical results
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Remarks

Non-critical orbits cannot overspin

For critical, non-exponentially fine-tuned orbits, the BH appears to
be saturated within the first order self-force approximation
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Conservative δLADM : analytical derivation?

The RHS of the censorship condition

Z1(E) ≥ 1

2
(E2 − 1)

turns out to be equal to contribution to z1 coming from the low
multipoles ` = 0, ` = 1 in the limit ε→ 0

lim
ε→0

z`=0
1 + z`=1

1 = lim
ε→0

1

2
z0(δh`=0

uu + δh`=1
uu ) =

1

2
(E2 − 1)

Assuming h`≥2uu is finite in the limit ε→ 0, we have
limε→0 z

l>=2
1 = limε→0

1
2z0(δh`≥2uu ) = 0
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Fine-tuned orbits cannot overspin

Assuming Z1(E) = 1
2 (E2

∞ − 1), then one can show that the censorship
condition is satisfied as long as

R(E) := Ė−/Ė+ ≥ −1/3
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Conclusions

Working at first order, overspinning is ruled out for non-critical and
critical, fine-tuned orbits ⇒ as expected, the inclusion of self-force
works in favour of cosmic censorship

Critical, non (exponentially) fine-tuned orbits represent a special
case, where the second-order SF seems to be needed

It would be interesting to compare the result of a numerical SF
computation on unbound orbits with the one obtained using the 1st
law framework
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