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The problem.

We wish to determine the self-forced motion and field (e.g. energy
and angular momentum fluxes) of a particle with scalar charge

�ψret = −4πq
∫
δ(4)(x− z(τ)) dτ.

2 general approaches:

I Compute enough “geodesic”-based self-forces and then use
this to drive the motion of the particle. (Post-processing, fast,
accurate self-forces, relies on slow orbit evolution)

I Compute the “true” self-force while simultaneously driving the
motion. (Slow and expensive, less accurate self-forces)



Effective source approach.

... is a general approach to self-force and self-consistent orbital
evolution that doesn’t use any delta functions.

Key ideas

I Compute a regular field, ψR, such that the self-force is

Fα = ∇αψR|x=z,

where ψR = ψret − ψS, and ψS can be approximated via local
expansions: ψS = ψ̃S +O(εn).

I The effective source, S, for the field equation for ψR is regular at
the particle location.

�ψR = �ψret −�ψS = S(x|z, u)

where �ψS = −4πq
∫
δ(4)(x− z(τ)) dτ − S.



Self-consistent vs. geodesic evolutions.

I One main goal is to compare our self-consistent evolutions
with Niels Warburton’s geodesic evolutions.

I First attempt: 3+1 multi-patch finite difference code with a
C0 effective source.

I 3+1 accuracy limited by the non-smoothness of the source
leading to high frequency noise with 2nd order convergent
amplitude.

I Self-consistent evolutions agreed beautifully with geodesic
evolutions within the errors (dominated by the noise).

I Next attempt: 3+1 multi-patch finite difference code with a
C2 effective source.

I Geodesic evolution agreed with the C0 evolutions and the
frequency domain result with the noise reduced by more than
an order of magnitude.

I However, we found differences between C2 and C0 results as
soon as the back-reaction was turned on.



Self-consistent vs. geodesic evolutions.
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Discontinuous Galerkin method.

E0 E E E1 2 3

I Split the domain into
N nth order
elements.

I Each element
contains n+1 nodes.

I u(t, x) ≈∑n
i=0 ũ(t, xi)Pi(x)
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I The numerical approximation is double valued at all element
boundaries.

I Derivatives are approximated by multiplying the state vector
in each element by a derivative matrix.

I Neighboring elements are glued together by numerical fluxes.



Discontinuous Galerkin method.

I Numerical fluxes can be constructed in many different ways in
order to maintain numerical stability and to guarantee that
the jumps in the solution at the element boundaries converge
to zero.

I We use fluxes based on characteristic information.

The convergence properties of the DG method for smooth
solutions are

I Exponential with the order n (with N kept fixed).

I polynomial with the element size 1/N (with n kept fixed).

As the DG scheme has discontinuities built in at the element
boundaries, we retain these convergence properties even when the
solution itself is non-smooth IF and only if, the non-smooth
features can be placed at element boundaries.
(Hesthaven & Warburton, 2007)



Code description.

The code is a 1+1 dimensional code based on the spherical
harmonic decomposition of the scalar wave equation in
Schwarzschild in tortoise coordinates r∗ = r+2M log(r/(2M)− 1)
with a spherically harmonic decomposed effective source.

−∂
2ψ`m

∂t2
+
∂2ψ`m

∂r2
∗
− V`(r)ψ`m = Seff

`m.

As r∗ ∈ [−∞,∞] we split the domain into three regions. In the
inner (r∗ ∈ [−∞, a]) and outer (r∗ ∈ [b,∞]) regions we introduce
new coordinates (τ, ρ) by (Bernuzzi, Nagar & Zenginoğlu, 2011)

t = τ + h(ρ)

r∗ = ρ/Ω(ρ)

where h(ρ) and Ω(ρ) are chosen suitably (hyperboloidal layers) in each region

to make the inner boundary (ρmin) coincide with the horizon and the outer

boundary (ρmax) coincide with I +.



Code description.

In the middle region (r∗ ∈ [a, b]) we introduce a time dependent
coordinate transformation (Field, Hesthaven & Lau, 2009)

t = λ

r∗ = a+
rp∗ − a

ξp − a
(ξ − a) +

(b− rp∗)(ξp − a) − (rp∗ − a)(b− ξp)

(ξp − a)(b− ξp)(b− a)
(ξ − a)(ξ − ξp)

where rp∗ is the time-dependent particle location. This satisfies r∗(λ, a) = a,
r∗(λ, ξp) = rp∗ , r∗(λ, b) = b.
In addition we use the world tube approach so that we in the middle region
evolve ψR

`m = ψret
`m − ψS

`m, while we in the inner and outer region evolve ψret
`m.

The values of a and b is of course chosen to coincide with element boundaries.

ρ
min

ρ
maxψ Rψ ret ψ reta b

(τ,ρ) (λ,ξ) (τ,ρ)



Results for circular orbit (r = 10).

Relative error for ψt (data extracted at t = 4000M).
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Results for circular orbit (r = 10).

Absolute error for ψt (data extracted at t = 4000M).
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Results for circular orbit (r = 10).

Relative error for ψr (data extracted at t = 4000M).
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Results for circular orbit (r = 10).

Absolute error for ψr (data extracted at t = 4000M).
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Results for eccentric orbit (e = 0.1, p = 9.9).

Relative error for ψt (data extracted at t = 4000M).
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Results for eccentric orbit (e = 0.1, p = 9.9).

Absolute error for ψt (data extracted at t = 4000M).
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Results for eccentric orbit (e = 0.1, p = 9.9).

Relative error for ψr (data extracted at t = 4000M).
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Results for eccentric orbit (e = 0.1, p = 9.9).

Absolute error for ψr (data extracted at t = 4000M).
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Conclusions and Outlook.

Discontinuous Galerkin is a powerful numerical method that allows
us to overcome the non-smoothness of the effective source.

The accuracy has been improved and computational cost reduced
by at least 2 orders of magnitude.

What is needed before self-consistent evolutions can be done?

I Make the world-tube smaller.

I Implement high l-mode fitting.

I Add self-force terms to osculating orbit equations.

What else is in the pipeline.

I Implement flux calculation at horizon and I +.

I Coupled modes for Kerr.

I Gravitational perturbations in Lorenz-gauge.

We hope that we now have enough accuracy to perform the
comparison between the self-consistent and geodesic evolutions.


