
Metric reconstruction via Hertz potential
in the time domain

Paco Giudice

University of Southampton

with Leor Barack
Charalampos Markakis

June 30, 2015

Paco Giudice (University of Southampton) Metric reconstruction in time-domain June 30, 2015 1 / 24



Overview

1 Background and Motivation

2 Our new method: Metric reconstruction in the time domain

3 Cases
Static particle in flat space
Circular orbit in Schwarzschild
Generic orbit in Schwarzschild
Kerr

4 Implementation

5 Outlook

Paco Giudice (University of Southampton) Metric reconstruction in time-domain June 30, 2015 2 / 24



Background and Motivation
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Motivation: Long Term evolution of a particle on Kerr background

Solve For hLorentz Solve Teukolsky equation

Frequency
domain

(Akcay etal, Osburn etal)

Hard to evolve orbit

Hard to get high
eccentricity

Degenerate modes

(Shah etal ,van de Meent)

Hard to evolve orbit

Hard to get high
eccentricity

Time
domain

(Barack, Sago, Dolan)

Computationally
expansive

Some unstable modes

OUR NEW METHOD:
Any orbit
No ”bad modes”
Evolution
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Background I : Metric reconstruction in vacuum

The CCK metric reconstruction procedure involves three steps:

Solving the Teukolsky equation for ψs

Tsψs = 0

Finding Hertz potential that satisfies both the Teukolsky equation
T−sΨ∗ = 0 and a differential equation with ψs as a source

D4
s Ψ = ψs

Operating on the Hertz potential with another differential operator to
obtain metric prerturbation in a (traceless) radiation gauge

hαβ = HαβΨ
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Background I : Metric reconstruction in vacuum

The Kinnersley tetrad in Boyer-Linquist coordinates is given by
eαa = (`α, nα,mα, m̄α) . We can use ORG or IRG gauges defined as

IRG : lαgαβ = 0 ORG : nαgαβ = 0

Reconstruction of the metric via Hertz potential is done via

HORG
αβ =

− %−4
{

nαnβ
(
δ̄ − 2α

) (
δ̄ − 4α

)
+ m̄αm̄β (∆ + 5µ− 2γ) (∆ + µ− 4γ)

−n(αm̄β)
[(

δ̄ − 2α
)

(∆ + µ− 4γ) + (∆ + 4µ− 4γ)
(
δ̄ − 4α

)]}
± c.c.

similar for IRG
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Background II : Metric reconstruction with point particle

Gauges: full-string, half-string, no-string1

Singular along `α Regular at `α+ Regular at `α− Discontinuous across
a surface

No-string reconstruction in f-domain done by Friedman, Shah etal,
Merlin , van de Meent
Here we will discuss no-string gauge in time domain

1Courtesy of C.Merlin
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Background III : Self-force from reconstructed metric

In either of the two half string gauges via

F±α =
∑

l
(F l±
α − A±αL− Bα − Cα/L) + D±α

radial limit ±
A,B,C as in Lorenz gauge
D±
α non zero in general (depends on uα extension)

In no-string gauge

Fα =
∑

l
(F̄ l
α − Bα) F̄ l = 1

2(F + + F−)
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Our new method: Metric reconstruction in the time
domain
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Our Method

Evolve Hertz Potential directly in the time domain

Need:
Evolution equation (Teukolsky equation) X

Boundary conditions
Junction condition at the particle
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Ψ Boundary conditions

ψ4 and ψ0 satisfy the vacuum Teukolsky equation for spin-weights ∓2
when ΨORGor ΨIRG satisfy the spin-weight ±2 Teukolsky equations.
The asymptotic behaviour will be
(Ingoing)

ΨIRG ∝ e−iωv/r5 r →∞ , ΨIRG ∝ e−iωv ∆−s r → 2M

(Outgoing)

ΨIRG ∝ e−iωu/r r →∞ ,ΨIRG ∝ e−iωu r → 2M

Similar for ΨORG .

Regularity condition at the Horizon
∆sΨ is smooth with ∆ = (r − r−)(r − r+)
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Junction condition for Ψ

Obtained from inversion relation and field equation in vacuum

D4Ψ = ψ0, T Ψ = 0

given the junction conditions for ψ0

1 On either sides of the world line

(`µ∂µ)4Ψ± = ψ±0

2 Take Right-Left difference (denoted by [. . . ])
3 use T Ψ± = 0 to write LHS in terms of [Ψ] and [Ψv ]
4 Solve for [Ψ] and [Ψv ] in terms of [ψ0] and [ψ0,v ] (known)
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Cases
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Case1: Static particle in flat space

The inversion relation reduces to

d4

dr4 Ψ∗ = ψ0

By taking derivatives of T Ψ∗ = 0 repeatedly express d4

dr4 Ψ∗ and
d5

dr5 Ψ∗ in terms of Ψ∗ and Ψ∗r .
Take ’Right-Left” difference to obtain

− 16(l2 + l + 15)
r 3 [∂r Ψ∗] + (l2 + l + 60)(l + 3)(l − 2)

r 4 [Ψ∗] = [ψ0]

1800 + (l2 + l)(l2 + l + 198)
r 4 [∂r Ψ∗] − 20(l2 + l + 24)(l2 + l − 6)

r 5 [Ψ∗] = [∂rψ0]

This can be inverted algebraically to derive [Ψ∗] and [Ψ∗r ]
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Case2: Schwarzschild for circular orbits

In this case the inversion relations can be written as

[Ψvvvv ] = [ψ0]

Mixed derivative jumps can be derived via TE in vacuum

[Ψvu] = −(Au
p[Ψu] + Av

p[Ψv ] + Vp[Ψ])

Taking τ derivatives we derive the set

˙[Ψ] = u̇[Ψu] + v̇ [Ψv ] = 0

˙[Ψv ] = u̇[Ψvu] + v̇ [Ψvv ] = 0
¨[Ψ] = 2v̇ u̇[Ψvu] + u̇2[Ψuu] + v̇2[Ψvv ] = 0

This can be done till the 5th derivative, all the jumps of the form
[Ψv ...vu...u] will be written in terms of [Ψv ], [Ψ] so we can solve as the
previous case
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Case3: Schwarzschild for generic orbits

Same inversion relation as previous case
Second derivatives terms can be derived by solving

˙[Ψ] = u̇[Ψu] + v̇ [Ψv ]

˙[Ψv ] = u̇[Ψvu] + v̇ [Ψvv ]
¨[Ψ] = v̈ [Ψv ] + ü[Ψu] + 2v̇ u̇[Ψvu] + u̇2[Ψuu] + v̇2[Ψvv ]

Same procedure to the next order looking at d
dτ [Ψvv ] and d3

dτ3 [Ψ].
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Case3: Schwarzschild for generic orbits

We solve iteratively till the 5th order where [Ψvvvv ] and [Ψvvvvv ] will be
written in terms of ([Ψ], d

dτ [Ψ], . . . , d4

dτ4 [Ψ])) and ([Ψv ], . . . , d4

dτ4 [Ψv ])) so
we obtain the system

3∑
n=0

an
dn

dτn [Ψ] +
3∑

n=0
bn

dn

dτn [Ψv ] = [ψ0]

4∑
n=0

ãn
dn

dτn [Ψ] +
4∑

n=0
b̃n

dn

dτn [Ψv ] = [ψ0,v ]

where the RHS is known. This is a system of coupled ODEs of 3rd and
4th order to be solved numerically.
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Case4: Kerr Case

Use the decomposition in spin-weighted spherical harmonics

Ψ =
∑
lm

YslmΨlm

The 1+1D Teukolsky equation has mixed l-modes terms

[Ψl
uv ] + Au[Ψl

u] + Av [Ψl
v ] + V [Ψl ] +

l+2∑
q=l−2

l 6=n

Il ,q[Ψq] = 0

Truncate the number of l modes and write the system in a band
diagonal matrix form

[


T̃2 I2,3 I2,4 0
I3,2 T̃3 I3,4 · · ·
I4,2 I4,3 · · · · · ·

0 · · · · · · · · ·




...
Ψl

...

] = 0

This equation will be used to reduce the order as previously and write
{[Ψl ], [Ψl

v ]} in terms of their τ derivatives
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Case4: Kerr Case

The inversion relation reduces to

[(∂v + ima
∆ )4Ψl ] =

4∑
n=0

cn[∂n
v Ψl ] = [ψl

0]

Each term can we written in terms of {[Ψl ], [Ψl
v ]} and its τ

derivatives. As before this are coupled ODEs

4∑
n=0

An
dn

dτn [~Ψ] +
3∑

n=0
Bn

dn

dτn [~Ψv ] = [~ψ0]

4∑
n=0

Ãn
dn

dτn [~Ψ] +
3∑

n=0
B̃n

dn

dτn [~Ψv ] = [~ψ0,v ]

with A,B, Ã, B̃ band diagonal matrices. The system can be solved
numerically.
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Implementation

Paco Giudice (University of Southampton) Metric reconstruction in time-domain June 30, 2015 20 / 24



Implementation

Numerics
1 Use (u,v) coordinates grid
2 Set initial condition to zero

on (u,v) axis
3 Evolve via finite difference

scheme
4 Discard junk radiation and

record late time behaviour

Time evolution in (u, v) for circular
orbit in Schwarzschild for ψ0
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Outlook
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Conclusion and Outlook

We propose to solve Teukolsky equation for Ψ in time-domain via
finite difference scheme using the derived jumps
Numerical solutions can be used to reconstruct metric perturbation in
a no-string radiation gauge and derive the self force based on Pound
etal (2013)
We are currently implementing numerical code that uses this method
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(Thank you)
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