エキセントリックコンパクトバイナリの軌道力学

Alexandre Le Tiec

Laboratoire Univers et Théories Observatoire de Paris / CNRS

Collaborators: S. Akcay, L. Barack, N. Sago, N. Warburton

Phys. Rev. D **91** 124014 (2015), arXiv:1503.01374 [gr-qc] Phys. Rev. D submitted (2015), arXiv:1506.05648 [gr-qc]

Averaged redshift

First law and applications 0000000

Outline

① Gravitational wave source modelling

^② Averaged redshift for eccentric orbits

③ First law of mechanics and applications

YITP, Kyoto - July 1, 2015

Alexandre Le Tiec

Averaged redshift

First law and applications

Outline

① Gravitational wave source modelling

² Averaged redshift for eccentric orbits

³ First law of mechanics and applications

YITP, Kyoto - July 1, 2015

Alexandre Le Tiec

First law and applications

First law and applications

First law and applications

First law and applications

First law and applications

Source modelling of compact binaries

YITP, Kyoto - July 1, 2015

Alexandre Le Tiec

Why?

- Independent checks of long and complicated calculations
- Identify domains of validity of approximation schemes
- Extract information inaccessible to other methods
- Develop a universal model for compact binaries

Why?

- Independent checks of long and complicated calculations
- Identify domains of validity of approximation schemes
- Extract information inaccessible to other methods
- Develop a universal model for compact binaries

How?

- $\pmb{\mathsf{X}}$ Use the same coordinate system in all calculations
- ✓ Using coordinate-invariant relationships

Why?

- Independent checks of long and complicated calculations
- Identify domains of validity of approximation schemes
- Extract information inaccessible to other methods
- Develop a universal model for compact binaries

How?

- $\pmb{\mathsf{X}}$ Use the same coordinate system in all calculations
- ✓ Using coordinate-invariant relationships

What?

- Gravitational waveforms at future null infinity
- Conservative effects on the orbital dynamics

Paper	Year	Methods	Observable	Orbit	Spin
Detweiler	2008	SF/PN	redshift observable		
Blanchet et al.	2010	SF/PN	redshift observable		
Damour	2010	SF/EOB	ISCO frequency		
Mroué et al.	2010	NR/PN	periastron advance		
Barack et al.	2010	SF/EOB	periastron advance		
Favata	2011	SF/PN/EOB	ISCO frequency		
Le Tiec et al.	2011	NR/SF/PN/EOB	periastron advance		
Damour et al.	2012	NR/EOB	binding energy		
Le Tiec et al.	2012	NR/SF/PN/EOB	binding energy		
Akcay et al.	2012	SF/EOB	redshift observable		
Hinderer et al.	2013	NR/EOB	periastron advance		1
Le Tiec et al.	2013	NR/SF/PN	periastron advance		1
Damour et al.	2014	NR/PN/EOB	scattering angle	hyperbolic	
Bini, Damour Shah et al. Blanchet et al }	2014	SF/PN	redshift observable		
Dolan et al. Bini, Damour }	2014	SF/PN	precession angle		1
lsoyama et al. Akcay et al.	2014 2015	SF/PN/EOB SF/PN	ISCO frequency averaged redshift	eccentric	1

YITP, Kyoto - July 1, 2015

Paper	Year	Methods	Observable	Orbit	Spin
Detweiler	2008	SF/PN	redshift observable		
Blanchet et al.	2010	SF/PN	redshift observable		
Damour	2010	SF/EOB	ISCO frequency		
Mroué et al.	2010	NR/PN	periastron advance		
Barack et al.	2010	SF/EOB	periastron advance		
Favata	2011	SF/PN/EOB	ISCO frequency		
Le Tiec et al.	2011	NR/SF/PN/EOB	periastron advance		
Damour et al.	2012	NR/EOB	binding energy		
Le Tiec et al.	2012	NR/SF/PN/EOB	binding energy		
Akcay et al.	2012	SF/EOB	redshift observable		
Hinderer et al.	2013	NR/EOB	periastron advance		1
Le Tiec et al.	2013	NR/SF/PN	periastron advance		1
Damour et al.	2014	NR/PN/EOB	scattering angle	hyperbolic	
Bini, Damour Shah et al. Blanchet et al	2014	SF/PN	redshift observable		
Dolan et al. Bini, Damour }	2014	SF/PN	precession angle		1
lsoyama et al. Akcay et al.	2014 2015	SF/PN/EOB <mark>SF/PN</mark>	ISCO frequency averaged redshift	eccentric	1

YITP, Kyoto - July 1, 2015

Averaged redshift

First law and applications 0000000

Outline

① Gravitational wave source modelling

O Averaged redshift for eccentric orbits

³ First law of mechanics and applications

YITP, Kyoto - July 1, 2015

Alexandre Le Tiec

First law and applications

Post-Newtonian expansions and black hole perturbations

First law and applications

Redshift invariant for circular orbits

• It measures the redshift of light emitted from the point particle [Detweiler 2008]

$$\frac{\mathcal{E}_{obs}}{\mathcal{E}_{em}} = \frac{(p^a u_a)_{obs}}{(p^a u_a)_{em}} = z$$

 It is a constant of the motion associated with the helical Killing field k^a:

$$z = -k^a u_a$$

In coordinates adapted to the symmetry:

$$z = \frac{\mathrm{d}\tau}{\mathrm{d}t} = \frac{1}{u^t}$$

YITP, Kyoto - July 1, 2015

First law and applications

Averaged redshift for eccentric orbits

• Generic eccentric orbit parameterized by the two invariant frequencies

$$m = \frac{2\pi}{P}, \quad \omega = \frac{\Phi}{P}$$

• Time average of $z = d\tau/dt$ over one radial period [Barack & Sago 2010]

$$\langle z \rangle \equiv \frac{1}{P} \int_0^P z(t) \, \mathrm{d}t = \frac{T}{P}$$

• Coordinate-invariant relation $\langle z \rangle (n, \omega)$ is well defined in GSF and PN frameworks

Averaged redshift 00000

First law and applications

	Coeff.	Exact value	Fitted value	Fitted value
		[Akcay et al. 2015]	[Akcay et al. 2015]	[Meent, Shah 2015]
	e^2	4	4.0002(8)	$4\pm6\times10^{-12}$
1PN	e^4	-2	-2.00(1)	$-2\pm4\times10^{-10}$
	e^{6}	0		$0 \pm 4 \times 10^{-9}$

	Coeff.	Exact value	Fitted value	Fitted value
		[Akcay et al. 2015]	[Akcay et al. 2015]	[Meent, Shah 2015]
	e^2	4	4.0002(8)	$4\pm6\times10^{-12}$
1PN	e^4	-2	-2.00(1)	$-2\pm4\times10^{-10}$
	e^{6}	0		$0\pm4\times10^{-9}$
	e^2	7	7.02(2)	$7\pm6\times10^{-9}$
2PN	e^4	1/4		$^{1/4} \pm 4 \times 10^{-7}$
	e^{6}	5/2		$5/2 \pm 4 \times 10^{-6}$

	Coeff.	Exact value	Fitted value	Fitted value
		[Akcay et al. 2015]	[Akcay et al. 2015]	[Meent, Shah 2015]
	e^2	4	4.0002(8)	$4\pm6\times10^{-12}$
1PN	e^4	-2	-2.00(1)	$-2\pm4\times10^{-10}$
	e^{6}	0		$0\pm4\times10^{-9}$
	e^2	7	7.02(2)	$7\pm6\times10^{-9}$
2PN	e^4	1/4		$^{1/4} \pm 4 \times 10^{-7}$
	e^6	5/2		$5/2 \pm 4 \times 10^{-6}$
	e^2	$-14.312097\cdots$	-14.5(4)	-14.3120980(5)
3PN	e^4	$83.382963\cdots$		83.38298(7)
	e^{6}	$-36.421975\cdots$		-36.421(3)

	Coeff.	Exact value	Fitted value	Fitted value
		[Akcay et al. 2015]	[Akcay et al. 2015]	[Meent, Shah 2015]
	e^2	4	4.0002(8)	$4\pm6\times10^{-12}$
1PN	e^4	-2	-2.00(1)	$-2\pm4\times10^{-10}$
	e^6	0		$0\pm4\times10^{-9}$
	e^2	7	7.02(2)	$7\pm6\times10^{-9}$
2PN	e^4	1/4		$^{1/4} \pm 4 \times 10^{-7}$
	e^6	5/2		$5/2 \pm 4 \times 10^{-6}$
	e^2	$-14.312097\cdots$	-14.5(4)	-14.3120980(5)
3PN	e^4	$83.382963\cdots$		83.38298(7)
	e^{6}	$-36.421975\cdots$		-36.421(3)

New coefficients at 4PN and 5PN orders [van de Meent, Shah 2015]

Averaged redshift

First law and applications

Outline

① Gravitational wave source modelling

² Averaged redshift for eccentric orbits

③ First law of mechanics and applications

YITP, Kyoto - July 1, 2015

Alexandre Le Tiec

First law of binary mechanics

- Canonical ADM Hamiltonian H of two point masses m_a
- Variation δH + Hamilton's equation + orbital averaging:

$$\delta M = \omega \, \delta L + n \, \delta R + \sum_{a} \langle z_a \rangle \, \delta m_a$$

• First integral associated with the variational first law:

$$M = 2\left(\omega L + nR\right) + \sum_{a} \langle z_{a} \rangle m_{a}$$

These relations are satisfied up to at least 3PN order

Applications of the first law

- Conservative dynamics beyond the geodesic approximation
- Shift of the Schwarzschild separatrix and singular curve
- Calibration of EOB potentials for generic bound orbits

$$\frac{\partial M}{\partial m_1} = \langle z \rangle - \omega \frac{\partial \langle z \rangle}{\partial \omega} - n \frac{\partial \langle z \rangle}{\partial n}$$
$$\frac{\partial L}{\partial m_1} = -\frac{\partial \langle z \rangle}{\partial \omega}$$
$$\frac{\partial R}{\partial m_1} = -\frac{\partial \langle z \rangle}{\partial n}$$

Averaged redshift 00000

First law and applications

Schwarzschild separatrix

Averaged redshift 00000

First law and applications

Schwarzschild separatrix

First law and applications

Shift of the Schwarzschild separatrix

• Separatrix $\omega = \omega_{sep}(e)$ characterized by the condition

n = 0

 GSF-induced shift of Schwarzschild ISCO frequency [Barack & Sago 2009; Le Tiec et al. 2012; Akcay et al. 2012]

$$\frac{\Delta\omega_{\rm isco}}{\omega_{\rm isco}} = 1.2101539(4) \, q$$

- GSF-induced shift of Schwarzschild IBSO frequency ?
- $\mathcal{O}(q)$ shift in $\omega = \omega_{sep}(e)$ controlled by $\langle z \rangle_{GSF}(n, \omega)$

Averaged redshift 00000 First law and applications

Schwarzschild singular curve

Averaged redshift 00000 First law and applications 0000000

Schwarzschild singular curve

Shift of the Schwarzschild singular curve

• Singular curve $\omega = \omega_{sing}(n)$ characterized by condition

$$\left|\frac{\partial(n,\omega)}{\partial(M,L)}\right| = 0$$

• In the test-particle limit $q \rightarrow 0$ this is equivalent to

$$\left[\left(\partial_{n\omega}^{2}\langle z\rangle\right)^{2}-\partial_{n}^{2}\langle z\rangle\,\partial_{\omega}^{2}\langle z\rangle\right]^{-1}=0$$

• $\mathcal{O}(q)$ shift in $\omega = \omega_{sing}(n)$ controlled by $\langle z \rangle_{GSF}(n, \omega)$

First law and applications

EOB dynamics beyond circular motion

Conservative EOB dynamics determined by "potentials"

$$A = 1 - 2u + \nu a(u) + \mathcal{O}(\nu^2)$$
$$\bar{D} = 1 + \nu \bar{d}(u) + \mathcal{O}(\nu^2)$$
$$Q = \nu q(u) p_r^4 + \mathcal{O}(\nu^2)$$

• Functions a(u), $\overline{d}(u)$ and q(u) controlled by $\langle z \rangle_{GSF}(n, \omega)$

Summary

- GSF/PN comparison for eccentric orbits relying on $\langle z \rangle (n, \omega)$
- First law of mechanics can be extended to eccentric orbits
- Numerous applications of the first law:
 - Conservative dynamics beyond the geodesic approximation
 - Shift of the Schwarzschild separatrix and singular curve
 - Calibration of EOB potentials for generic bound orbits

o ...

Prospects

- GSF/PN comparison for eccentric orbits relying on $\langle \psi \rangle(n,\omega)$
- Extension of the first law to precessing spinning binaries