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Motivation and history of high-order post-Newtonian calculations
(analytical and numerical)

- A brief introduction to experimental mathematics and integer relation
algorithms

- A sketch of the methods we used to obtain analytic forms of high-
order PN coefficients of AU from a high-accuracy numerical
computation

First results of a study of the structure of the energy flux at infinity for
circular, equatorial orbits in Kerr

- Conclusions



Motivation and history |

- There has recently been considerable interest in very high-order calculations of
linear-in-mass-ratio post-Newtonian coefficients using self-force technigues. In
principle, one can carry out these computations to arbitrarily high order, though in
practice one is limited by the amount of time spent on computation and the
combinatorial complexity of the high-order coefficients.

In particular, there are now analytic calculations of all known gauge invariant
quantities have been taken to ~20PN in Schwarzschild (by Fuijita [fluxes] and
Kavanagh et al. [everything else]).

- Calculations in Kerr are more difficult (and the expansion is more involved), and
only exist for the fluxes so far: Fujita has calculated the fluxes analytically to 11PN
for circular, equatorial orbits, and Fujita and Sago have calculated them to 4PN and
oth order in the eccentricity for inclined eccentric orbits.

Numerical calculations in Kerr can go to higher orders more easily, and Abhay Shah
has calculated the fluxes to 20PN for circular, equatorial orbits.



Motivation and history |l

- There are no analytic calculations of the other invariants in Kerr,
so it is possible that numerical calculations (e.g., an extension of
the recent work by Maarten van de Meent and Abhay Shah) will
provide the first to provide the currently unknown PN
coefficients (even at quite lower orders) for these quantities.

- Additionally, the convergence of the PN series becomes slower
as one increases the spin (and the ISCO moves closer to the
horizon, so the small body can reach even larger speeds)—
Fujita estimates that one would need to go to 28PN to obtain a
relative error of 10 in the energy flux at the ISCO for circular,
equatorial orbits for g = 0.9, as would likely be necessary In
order to use PN waveforms to detect EMRIs.




Motivation and history |l

- The recent interest in using numerical methods to calculate PN coefficients for
EMRIs starts primarily with the work by Shah, Friedman, and Whiting (SFW) on
obtaining PN coefficients for Detweiller’s redshift observable AU for circular orbits in
Schwarzschild, where they found the existence of half-integer terms, starting at
5.5PN. Additionally, they were able to infer analytic forms for some simple
coefficients (rationals and rationals times 1) from a high-accuracy numerical
calculation.

- When SFW first appeared on the arXiv, | realized that there was a way to obtain
analytic forms of more complicated coefficients by using an integer relation
algorithm (PSLQ), and was able to obtain an analytic form for one coefficient that
same day using PSLQ, which was then verified by Bini and Damour’s purely
analytic calculation which appeared the next day.

- Abhay Shah has also applied similar technigues (including application of PSLQ) to
the precession and quadrupolar tidal invariants for circular orbits in Schwarzschild,
IN addition to the aforementioned fluxes in Kerrt.



The present work

- Such naive application of PSLQ to the PN coefficients of the full quantity allows one to obtain
analytic forms for some coefficients of moderate complexity (just a few transcendentals) with not
too many digits (tens to a few hundred).

- However, if one wants to obtain analytic forms for more complicated coefficients (e.g., 30+ terms)
from numerical data of reasonable precision, one has to use a more refined application of PSLQ:

1. We consider the individual (retarded) ¢,mm modes, which have a nice structure that is obscured in
the sum over all modes.

- 2. We study this structure and find a simplification of the PN expansion of the modes that allows us
to predict some (or even all of) certain higher-order coefficients, including some complete leading
logarithmic terms in the full quantity.

- 3. We find the general form of the PN coefficients of the renormalized ¢-modes for large ¢ (and the

PN orders we consider), which allows us to perform the sum over all modes analytically, keeping us
from having to find high-order regularization coefficients to obtain the requisite numerical accuracy
in the infinite ¢-sum to recognize its analytic expression using PSLQ, which would require

calculating to prohibitively high ¢ (~1000).



The present work

An example of the complexity we're considering: The 10PN coefficient of AU written in
terms of eulerlogm(R) := y + log(2mR-72), to simplify it, and then the non-log(R) part written |

out in full
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The present work (cont.)

- Using the method we outlined above (and will detail shortly) and a calculation of the ¢, modes of AU
to more than 5000 digits (of which we used at most 1240 digits) for 21 radii R = 10kl\/l, k € {50,...,70}

(of which we used at most 15 radii), we were able to obtain analytic forms for the PN coefficients to
12.5PN, plus the 13.5PN coefficient (including obtaining all the previously known coefficients “from
scratch”).

- We then calculated the full AU to “merely” ~600 digits at somewhat smaller radii (1 0"°t0 9 x 1033I\/I)
and used this, along with the predictions of higher-order terms from the simplification, to obtain the
coefficients to 21.5PN in mixed numerical-analytic form, including all the logarithnmic terms at 13PN.

- Also, while we used the standard method of fitting to obtain the PN coefficients of the full AU in the
second step, to obtain the PN coefficients of the individual modes in the first step we used a different
method that uses PSLQ more centrally, using linear combinations of the values of the modes at

different radii to obtain the value of a given PN coefficient sufficiently accurately to be able to identify
it with PSLQ.

- Before giving more details of this method, we shall first give a brief introduction to experimental
mathematics and integer relation algorithms as well as a simple example of applying PSLQ to obtain
a coefficient of the full AU.



An introduction to experimental mathematics and
PSLQ

- The PSLQ integer relation algorithm is a standard (modern) experimental
mathematics technique, and is implemented in Mathematica (as of Version
8) as FindintegerNullVector]].

- PSLQ), discovered by the sculptor-mathematician Heleman Ferguson and
computational mathematician David Bailey in 1992, takes in a vector of
real numbers and uses Partial Sums-of-squares and the LQ
deoomp08|t|on to return a nonzero integer vector orthogonal to the input
and whose (L ) norm is at most a known factor times those vectors’
minimum norm, or a mMinimum value for the norm of such a relation, in
polynomial time (in the number of elements in the vector).

-+ One can thus apply PSLQ to obtain the rational coefficients of a linear
combination of transcendentals from a sufficiently accurate decimal
expansion, in addition to many other applications.



An introduction to experimental mathematics and
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An introduction to experimental mathematics and
PSLQ

- The PSLQ integer relation algorithm is a standard (modern) experimental
mathematics technique, and is implemented in Mathematica (as of Version
8) as FindintegerNullVector]].

- PSLQ), discovered by the sculptor-mathematician Heleman Ferguson and
computational mathematician David Bailey in 1992, takes in a vector of
real numbers and uses Partial Sums-of-squares and the LQ
deoomp08|t|on to return a nonzero integer vector orthogonal to the input
and whose (L ) norm is at most a known factor times those vectors’
minimum norm, or a mMinimum value for the norm of such a relation, in
polynomial time (in the number of elements in the vector).

-+ One can thus apply PSLQ to obtain the rational coefficients of a linear
combination of transcendentals from a sufficiently accurate decimal
expansion, in addition to many other applications.
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An Introduction to experimental mathematics and
PSLQ
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Notable successes of experimental mathematics
(using PSLQ)

- The Bailey-Borwein-Plouffe formula for 11, which allows one to calculate the nth
digit of its binary hexadecimal expansion without calculating any of the previous
digits, was first discovered using PSLQ:

"—i1<4—2—1—1)
_k:016’< 8+1 8k+4 8k+5 8k+6

- Other notable discoveries with PSLQ include the 240-degree polynomial
satisfied by By, the fourth bifurcation point of the logistic map. This was
obtained by physicist David Broadhurst, who has also used PSLQ to evaluate
various Feynman integrals in terms of multiple zeta values.

-+ There is also a computation by Bernie Nickel (2011) of high-order expansion
coefficients of the ground state energy of H2+ using PSLQ that is similar to what
we do here. (The structures of the expansions are even somewhat similar, and
they can be computed using similar techniques, though the structure of the H2+
expansion is simpler than that of an individual mode of AU.)



An example of applying PSLQ to AU

- Here we show how to obtain the coefficient of Iog(F%)/F%8 in the PN
expansion of AU, as | first did using the numerical expressions from SFW.

- While my later study of the structure of the modes would have allowed
me to only have to determine the purely rational coefficient here, | shall
here show the first way | obtained this, using PSLQ to obtain all the
coefficients.

- Specifically, the transcendentals in the coefficient are given by the
simplification or (pretty much equwalently in this case) by noting that this
order has the first appearance of a log (R) term, which thus only comes
from the 2,2 mode, and therefore comes from the square of eulerlogs(R),
SO one can obtain the coefficients of the transcendentals in the Iog(R)
term at this order from the (purely rational) coefficient of the log (R) term.



An example of applying PSLQ to AU

B = 536.405212471024286871789539475038911270206 . . .
5163722519 109568 219136
= log(2),

~ 5457375 5% | 525
One can obtain the given analytic
expression from the given 42 digits by
applying FindintegerNullVector to the vector

{577 17 s 10g(2)}

Of course, one checks this expression by ON

requiring that it doesn’t change if one uses

more digits. Additionally, one can make a €
stringent test by requiring that the denominators ~ *°

of the rationals do not contain abnormally large primes.




An example of applying PSLQ to AU
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An example of applying PSLQ to AU

Smooth numbers, which only contain small prime
factors (e.g., only primes smaller than the logarithm
of the number) are quite sparsely distributed as the
size of the number increases, which is why this test

IS SO stringent.

For instance, at 12 and 12.5PN, the denominators

of the purely rational terms each have 32 digits, but |on

the largest prime in each is only 19. The probability

of this being the case for a random 32 digit integer | ©
s less than 1027,

OFMeETatoOMarS OoOTTOT COT Tt T oo TOTTTany " rerge " ormmes.




Further consistency checks of the results of PSLQ

+  One often scales the coefficient one is considering by a large smooth
number (e.g., the denominator of the purely rational term at one PN order
lower), as this often allows PSLQ to be able to determine the analytic
form with fewer digits. One can then check that the result is independent
of small changes to the powers of primes in the smooth number.

+ One can also check that the results are independent of whether one
obtains the coefficients of AU itself, or first scales it by, e.g., some power
of U (where the appropriate power can also help in determining the
analytic form with fewer digits).

- Finally, if one knows many digits, one can check that the result is
iIndependent of whether one uses additional transcendentals in the vector
to which one applies PSLQ.



Calculating the infinite ¢-sum

To obtain

the infinite sum, we note that the general ¢-dependence of a given PN

coefficient of a renormalized ¢-mode (for large enough ¢ that it is purely rational)

has a reasonably simple general form as a sum of rational functions (though the
number of rational functions increases with PN order), and solve for the

coefficients of these rational functions. 7,
T &y, Form of the general
T = Jlr ot T —(14:_—11—)1/2)”’ noemeuw, e ¢-dependence through 4PN

Uu; (0) =

V(l) =

. n
1 (=1 T TP TP LU & V2,

G+ U—k+Dn
1

(£+1/2)m Tl & TR & TP o & T & TP & TS & T & T

UL L &UE S &U & UL, &UP & US & UT
&V? &V &V & VE.

...and at 12PN

We then check that the putative expression we obtain indeed reproduces the
coefficients for the ¢s that were not used In the solve, and then perform the ¢-

SUMm analytically a la Bini and Damour (evaluating it in terms of the Riemann zeta function at even
integers, using partial fractions and noting that much of the series telescopes—this can be done automatically by

Mathematica).



Sketch of our method for obtaining the PN coefficients of AU to
12.5PN analytically and 21.5PN Iin mixed analytic-numerical form

Both these calculations use a radiation This fit also provides a sensitive check
of the accuracy of the analytic forms we obtain
gauge code and the MST formalism

Here we use linear combinations of the
values of AU at different radii to obtain
enough digits to correctly identify the
analytic form of a given PN coefficient,
SO we can subtract it off and move on
to the next coefficient.

All these PSLQ determinations are required
to pass stringent tests (e.g., not having large prime factors
in the denominators of the rationals) that give us high
confidence that the expressions we obtain are the true ones




A cautionary example

- Of course, even if one finds an analytic form that reproduces the decimal expansion
to many digits, this doesn’t prove that the analytic form is indeed correct.

For instance,
J cos(2x) | | cos(x/n) dx
0 n=1

— 0.392699081698724154807830422909937860524645434187231595926...

only differs from 11/8 starting at the 43rd digit.

Bailey and Borwein give even more extreme examples in some of their articles in the
notices of the AMS (2005 & 2011), notably one where the discrepancy would never
be seen in any real|st|c numerical computation, since it only occurs after more than a
googolplex (1 0'° ) digits!

However, in our case, the structures we find (and expect to see) in the expansion give
us good confidence that the analytic expressions we find are correct, which is borne
out by agreement with a concurrent completely analytic computation by Kavanagh,
Ottewill, and Wardell (2015).
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Simplifying the (retarded) ¢,mm modes of AU and the
energy flux at infinity

- First, a reminder of the basic simplification of the modes of the
energy flux at infinity that | found last year. This involves the function

Som 1= (QmU)DEm(’U)ewmv3 F[l + Vpm, (’U) _ 21777/03]

/ L1+ 204, (v)]

which one can write as

Stm = exp [ng (v) eulerlogm(v) + mmv® + og,,, (V)]

Z G ”){ v) + 2imv?] " — =20, (v)]" }
using
P(1+2)=exp | =72+ ) CE?) (=)

n=2



Simplifying the (retarded) ¢,m modes of AU and the
energy flux at infinity (cont.)

The S,y factorization turns the ¢,m mode of the energy flux at infinity for

Schwarzschild into a simple integer PN series with rational coefficients
through O ).

We found a similar simplification of the modes of AU, though its full form
seems more complicated than that of S,,, and we have only found it as a

series expansion, except for one exponential that’s the same as in S,

(Unlike for S,m, it does not seem possible to be able to read off the simplification directly from the MST
formalism, though one can see where the exponential part comes from.)
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Simplifying the (retarded) ¢,m modes of AU and the
energy flux at infinity (cont.)

Additionally, the simplification of AU does not act by
division, but rather by subtraction. Here is the simplified

version of the 2,2 mode of AU/U to 12.5PN + 13.5PN
(and a bit of 14PN), as an example:

o1 = a) 26 1 2532 1 234507 1 22191'124343' 1 14931185557 1
Yoo — T35 =

RE TBIRY 5l RIO 3IRl7l RIL 325372 Rz~ 9l3ip3T2 R13] log(2/R)
k=1

216 1og(2/R) eulerlog, (R 291071 1 28311071 1 2101071 1
Og( / )euer Og2( ) + 10g2(2/R)—|— .
3152 RI13 315271 RI12 5271 RI3 325271 RI12
29111132 1 1 , 211 1 21032 1 213 7 212191 & 2101116731«
o 325271 RI3 7T o 51 RI2 o 51 RI3 4(3) o 3152 R11.5 o 325271 R12.5 - 345271  RI13.5

292400136371 +_2171071
335472111 325371
216107" 217 2] m  213107% log®(2/R) ( 1 )

eulerlog, (R)

1
+ {ﬁ and higher terms that we do not yet know all Of} + [—

+ 315371 log(2/R) — 32527 | Rl45 ~ 335372 RI5 RI5:5

Here oY € @



Simplifying the (retarded) ¢,mm modes of AU and the
energy flux at infinity (cont.)

AdQ Here is the unsimplified expression for the 2,2 mode of AU/U, h
only to 10.5PN, for comparison Y
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Simplifying the (retarded) ¢,mm modes of AU and the
energy flux at infinity (cont.)

The general (rather naive) idea of these simplifications is that much of
the complexity —transcendentals and powers of log(v) —of higher-order
terms in the PN expansion is “inessential,” coming from propagation
effects, while the “truly new” information at each order is much simpler
(for the energy flux at infinity, possibly just purely rational).

Indeed, Goldberger and Ross (2010) and Goldberger, Ross, and Rothstein
(2014) find leading logarithms in both the energy flux and binding energy
using the beta function for the multipole moments in the effective field
theory picture, though they just compute the beta function to leading order,
and thus only obtain the very simplest predictions of the simplifications
we consider here.




Simplifying the full AU

»+ One can use the simplifications of the low-order modes,
iIncluding a similar simplification that removes most of the
powers of log(2/R), to simplify the full AU:
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Predicting “leading logarithmic”™ terms to all orders

- In addition to simplifying the full AU, the simplification also
predicts some “leading logarithmic™ coefficients to all orders,
due to the exponential term. (The same is also true for the
energy flux at infinity.)

- Specifically, the simplification predicts the coefficient of the first
five appearances of a given power of log(R) in both the integer
and half-integer PN terms.

- In addition to the complete terms predicted by the
simplification, it also gives the coefficients of various
transcendentals in other terms, which is very helpful in
obtaining the remainder of the term using PSLQ.



Predicting “leading logarithmic”™ terms to all orders
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The expressions used to make the predictions and some example results
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Why can’t we predict more of these coefficients”?
A lesson from the “complete simplification™ of the energy flux at infinity

One can reduce the modes of the point-particle-in-a-circular-
orbit-around-Schwarzschild energy flux at infinity to a form
that has only rationals in the infinite series by a study of the
expressions in the MST formalism, viz.,

These give powers of log(2/R)
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However, this may not be the simplest form, since v and the
Ck, dk, and ek series have large primes in the denominator
which are not seen in the PN series of any invariant.



Explicit expressions for some of these predictions, including first results
for the energy flux at infinity for a circular, equatorial orbit in Kerr

- One can derive explicit expressions for the predictions of the simplification.

Here we show the predictions for the coefficients of the first few appearances of a
given power of log(v) in both the integer and half-integer terms both for AU for a
circular orbit in Schwarzschild, and the energy flux at infinity for a circular equatorial
orbit in Kerr. We write the expansion in terms of v for both, for easy comparison.
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Explicit expressions for some of these predictions, including first results
for the energy flux at infinity for a circular, equatorial orbit in Kerr

nese predictions for the energy flux at in’

from the S,m simplification, w
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y change

necessary for Kerr is to use

the Kerr version of v.

However, there are transcendental functions of the spin that
enter at higher orders and are not accounted for by S,m.
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Explicit expressions for some of these predictions, including first results
for the energy flux at infinity for a circular, equatorial orbit in Kerr

One can derive explicit expressions for the predictions of the simplification.
Example of a newly-obtained spin-dependent piece of a coefficient
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Why such high order PN expansions?

- Why do we bother making such high-order PN expansions? In particular, there is
a fit for AU and other invariants for circular orbits in Schwarzschild that
reproduces the numerical values with quite high accuracy up to the light ring
(Akcay et al., 2012).

- We mostly do this as a warm-up for Kerr, where such fits do not yet exist, so
high-order PN expansions will be quite useful. Additionally, since the PN
expansions of conservative invariants are only known to very low order in Kerr, it
would be useful to be able to compute analytic PN coefficients for them, e.g., to
ald comparable-mass PN calculations.

- Additionally, these perturbative series can often be used to obtain nonperturbative
pieces (the principle of resurgence). One can also frequently make interesting
studies of the structure of the expansion and properties of the coefficients (as is
often done for quantum field theory series); it is already interesting to compare the
structure of the series for AU with that of the energy flux at infinity.
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Conclusions and outlook

- |t is possible to use experimental mathematics technigues,
notably the application of an integer relation algorithm, to obtain
analytic forms of quite complicated high-order PN coefficients
with high confidence.

- To do this efficiently, one looks at the individual modes and
studies their structure, finding a simplification that allows one to
predict various higher-order terms, letting one obtain the
complete coefficient with PSLQ with fewer digits.

- Additionally, one can perform the infinite ¢-sum analytically, rather

than numerically, by obtaining the general form of the ¢-
dependence of a given PN coefficient.



Conclusions and outlook I

- We have currently applied this method to AU for a circular orbit in
Schwarzschild, as an illustration, obtaining the PN coefficients to
12.5PN + 13.5PN completely analytically, and the coefficients to 21PN
iINn mixed numerical-analytic form. Our confidence in these analytic
forms has been validated by the exact agreement with the concurrent
purely analytic calculation by Kavanagh, Ottewill, and Wardell.

- The methods we have developed should be applicable to more
complicated cases without too many changes—we plan on considering
circular equatorial orbits in Kerr next and have started studying the
structure of the energy flux at infinity, since this was a good guide In the
Schwarzschild case. Even at these early stages of this study, we have
already been able to obtain a few new coefficients of logarithmic terms
iNn the energy flux at infinity from Abhay’s pre-existing numerical data.
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Example of our method of using linear combinations of values at
different radii to increase the accuracy of a given PN coefficient

Assume that we are at a point In the expansion where it
looks like:

No log(R) term for simplicity of describing the remainder —this will never occur in practice

ano  ON+1,0+ ant1110g(R)  ani20 _N_3
Sn(R) = PN + PN + N2 + O(R )

Then, if we know Sn(R) at R = 10K, 10xP, and 10%+9, we
can use the following expression to remove the O(RN-1)
pleces and obtain an,o to ~2k digits:

(g — p)Sn(10%) — g1oWV+DP G (10%FP) 4 p1oN+DaGy (10%+9) L 4=P= q107P + p10~7 an 420
q—p— qlOP + plod ¢ —p—qloP +pl0? 102

R
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Convergence

- We find that the additional PN terms we have obtained improve the
accuracy of the PN series for AU, even in the strong-field regime inside the
ISCO. However, the convergence becomes less rapid with increasing field
strength, as expected.

Exponential resummation helps some with the convergence, though not
as much as it does for the energy flux at infinity, where it works very well
when applied mode-by-mode.

- Of course, we primarily calculated these terms as a first application of our
method, not simply to increase the accuracy of the PN series for AU.
These high-order calculations also give useful insight into the structure of
the PN expansion, showing similar structures in both conservative and
dissipative quantities, due to tail effects from wave propagation on curved
spacetime.
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Convergence
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