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(We have left these in terms of eulerlogs, as they are simpler that way.)
We have checked these terms by summing all the renormalized ` modes through ` = 20, subtracting o↵ the

transcendentals, logarithms, and half-integer terms we know already, and then obtaining the (rational, integer PN
order) coe�cients of the resulting quantity through 8PN. We can then subtract o↵ the remaining unknown terms (the
nonlogarithmic 9, 10, 11, and 12PN terms, in addition to the linear logarithmic terms at 11 and 12PN) and obtain
the numerical values of the di↵erent powers of logarithms in the 11.5 and 12.5PN terms, to check—we find exact
agreement to the ⇠ 25 digits we expect, given the radii we used.

We can also obtain the 11PN term using the expressions we have obtained so far, yielding
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If we take the logarithmic terms to be the ones we know (and use our exact values for the terms from 9 to 10.5PN),
and subtract o↵ the contributions of all these terms from the numerical data, the nonlogarithmic term (which is,
numerically, �699927.735823093346184015551 . . .) agrees to 18 digits with Abhay’s numerical data at R = 1020, which
is about the accuracy we expect: Abhay will also obtain a more accurate value using a fit, for a more independent
check.

Additionally we can use the simplification to predict certain higher-order logarithmic and half-integer terms, ex-
tending to arbitrarily high orders, since we assume that the e2⌫̄`m eulerlogm(v) portion of the simplification is true to
all orders (as we expect it to be, since the similar factorization found for the energy flux holds to high orders). In
particular, we can predict the higher coe�cients of �n [i.e., the coe�cient of log3(R)/Rn+1] up to �

13

; we expect
the first appearance of a log3(2/R) term in �

14

, and such a term is not currently accounted for in the simplification.
Similarly, we can predict the coe�cients of the first four appearances of all higher powers of log(R), as well. We
are not able to predict any complete higher half-integer terms in �U using the current simplification, as they start
containing terms that are not dealt with by the simplification at 10.5PN [see Eq. (6)]. However, we can predict the
first five occurrences of all powers of logarithms in the half-integer terms—one starts getting powers of log(2/R) that
are not dealt with by the simplification at higher orders.

Specifically, the higher-order logarithmic and half-integer terms in the full �U that the simplification predicts are 1
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Motivation and history I

• There has recently been considerable interest in very high-order calculations of 
linear-in-mass-ratio post-Newtonian coefficients using self-force techniques. In 
principle, one can carry out these computations to arbitrarily high order, though in 
practice one is limited by the amount of time spent on computation and the 
combinatorial complexity of the high-order coefficients. 

• In particular, there are now analytic calculations of all known gauge invariant 
quantities have been taken to ~20PN in Schwarzschild (by Fujita [fluxes] and 
Kavanagh et al. [everything else]). 

• Calculations in Kerr are more difficult (and the expansion is more involved), and 
only exist for the fluxes so far: Fujita has calculated the fluxes analytically to 11PN 
for circular, equatorial orbits, and Fujita and Sago have calculated them to 4PN and 
6th order in the eccentricity for inclined eccentric orbits. 

• Numerical calculations in Kerr can go to higher orders more easily, and Abhay Shah 
has calculated the fluxes to 20PN for circular, equatorial orbits.



Motivation and history II

• There are no analytic calculations of the other invariants in Kerr, 
so it is possible that numerical calculations (e.g., an extension of 
the recent work by Maarten van de Meent and Abhay Shah) will 
provide the first to provide the currently unknown PN 
coefficients (even at quite lower orders) for these quantities. 

• Additionally, the convergence of the PN series becomes slower 
as one increases the spin (and the ISCO moves closer to the 
horizon, so the small body can reach even larger speeds)—
Fujita estimates that one would need to go to 28PN to obtain a 
relative error of 10-5  in the energy flux at the ISCO for circular, 
equatorial orbits for q = 0.9, as would likely be necessary in 
order to use PN waveforms to detect EMRIs.



Motivation and history III

• The recent interest in using numerical methods to calculate PN coefficients for 
EMRIs starts primarily with the work by Shah, Friedman, and Whiting (SFW) on 
obtaining PN coefficients for Detweiler’s redshift observable ΔU for circular orbits in 
Schwarzschild, where they found the existence of half-integer terms, starting at 
5.5PN. Additionally, they were able to infer analytic forms for some simple 
coefficients (rationals and rationals times π) from a high-accuracy numerical 
calculation. 

• When SFW first appeared on the arXiv, I realized that there was a way to obtain 
analytic forms of more complicated coefficients by using an integer relation 
algorithm (PSLQ), and was able to obtain an analytic form for one coefficient that 
same day using PSLQ, which was then verified by Bini and Damour’s purely 
analytic calculation which appeared the next day. 

• Abhay Shah has also applied similar techniques (including application of PSLQ) to 
the precession and quadrupolar tidal invariants for circular orbits in Schwarzschild, 
in addition to the aforementioned fluxes in Kerr.



The present work
• Such naïve application of PSLQ to the PN coefficients of the full quantity allows one to obtain 

analytic forms for some coefficients of moderate complexity (just a few transcendentals) with not 
too many digits (tens to a few hundred). 

• However, if one wants to obtain analytic forms for more complicated coefficients (e.g., 30+ terms) 
from numerical data of reasonable precision, one has to use a more refined application of PSLQ: 

• 1. We consider the individual (retarded) l,m modes, which have a nice structure that is obscured in 
the sum over all modes. 

• 2. We study this structure and find a simplification of the PN expansion of the modes that allows us 
to predict some (or even all of) certain higher-order coefficients, including some complete leading 
logarithmic terms in the full quantity. 

• 3. We find the general form of the PN coefficients of the renormalized l-modes for large l (and the 
PN orders we consider), which allows us to perform the sum over all modes analytically, keeping us 
from having to find high-order regularization coefficients to obtain the requisite numerical accuracy 
in the infinite l-sum to recognize its analytic expression using PSLQ, which would require 
calculating to prohibitively high l (~1000).
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respectively) for the first, second, fifth, sixth, seventh, and eighth (as ↵
9

, �
9

, ↵
9.5, ↵10

, �
10

, and �
10

; the di↵erence in
the final digit o↵ ↵

10

could be due to rounding), and very close agreement with the (not-very-precisely-determined—4
or 5 digit) numerical result from SFW (as ↵

10.5 and �
10.5) for the last two. Additionally, the log3(R)/R11 term from

the (2, 2) mode agrees exactly with the corresponding coe�cient of the full �U found by SFW, as expected (though
this is not a test of the simplification, since this term was used to obtain that contribution to the simplification).

The 9PN term (including logarithms) is given (in eulerlog form) by


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The analogous expression for the 10PN term is


�238946786344653264799175280203

4522423405833558225000
� 1070208441923650860489683

58656715985387520000
⇡2 +

832229033014028790267991

1662461581197312000
⇡4 +

54067065388369

12884901888
⇡6

� 128695611256

5457375
⇣(3) +

32768

5
⇣(5)� 20416

35
log(2/R)� 157982464536376957

674943865596000
eulerlog

1

(R) +

✓
�1483437716511288604288

14480466347221875

+
46895104

33075
⇡2 +

3506176

525
⇣(3)

◆
eulerlog

2

(R)� 52813127885844357

10492954472000
eulerlog

3

(R) +
8040008069311889408

82745521984125
eulerlog

4

(R)

� 263296063591796875

8742130068672
eulerlog

5

(R)� 13640920722432

1146520375
eulerlog

6

(R) +
6491563697269

1181466000
eulerlog

7

(R)

� 1099511627776

1688511825
eulerlog

8

(R) +
54944178599

7491884400
eulerlog2

1

(R) +
69907855522816

3781960875
eulerlog2

2

(R) +
79338802833

61661600
eulerlog2

3

(R)

� 705049919488

108056025
eulerlog2

4

(R) +
7548828125

4077216
eulerlog2

5

(R)� 187580416

165375
eulerlog3

2

(R)

�
1

R11

(10)

We now give the explicit (no eulerlog) expressions we have obtained for ↵
9

, �
9

, ↵
9.5, ↵10

, �
10

, �
10

, ↵
10.5, and �

10.5:
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where the numerical values of our exact expressions for �
9

, ↵
9.5, �10

, and �
10

are in exact agreement with the values
from SFW to all their 37, 26, 13, and 15 digits, respectively, while the numerical values of ↵

10.5 and �
10.5 are in pretty

good agreement with the values of 6.035⇥ 104 and 5013.2 quoted for these quantities by SFW.

V. OBTAINING EVEN HIGHER-ORDER HALF-INTEGER AND LOGARITHMIC TERMS THAN IN
SHAH, FRIEDMAN, AND WHITING

With the terms we have currently obtained analytically for the (2, 2) and (2, 1) modes, we can obtain the 11.5 and
12.5PN terms in the full �U using the simplification, as long as we are able to obtain su�ciently high-order eulerlog
terms in the other modes that contribute (the first eulerlog term for the even m ` = 8 modes for 11.5PN and the odd
m ` = 9 modes for 12.5PN and one eulerlog term higher for each decrease in ` + [(` + m) mod 2] by 1), which we
have been successful in obtaining. We cannot predict the entire contributions from the (2, 2) and (2, 1) modes using
the simplification, since they start to have (nonlogarithmic) contributions that the simplification does not remove at
these orders. Additionally, we do not know the eulerlog terms to high enough order to predict the nonlogarithmic
coe�cient of ⇡ at 12.5PN for the (3, 3) and (3, 1) modes. [The one in the (3, 1) mode has currently been obtained—it

An example of the complexity we’re considering: The 10PN coefficient of ΔU written in 
terms of eulerlogm(R) := γ + log(2mR-1/2), to simplify it, and then the non-log(R) part written 

out in full



The present work (cont.)
• Using the method we outlined above (and will detail shortly) and a calculation of the l,m modes of ΔU 

to more than 5000 digits (of which we used at most 1240 digits) for 21 radii R = 10kM, k ∈ {50,…,70} 
(of which we used at most 15 radii), we were able to obtain analytic forms for the PN coefficients to 
12.5PN, plus the 13.5PN coefficient (including obtaining all the previously known coefficients “from 
scratch”). 

• We then calculated the full ΔU to “merely” ~600 digits at somewhat smaller radii (1018 to 9 × 1033M) 
and used this, along with the predictions of higher-order terms from the simplification, to obtain the 
coefficients to 21.5PN in mixed numerical-analytic form, including all the logarithmic terms at 13PN. !

• Also, while we used the standard method of fitting to obtain the PN coefficients of the full ΔU in the 
second step, to obtain the PN coefficients of the individual modes in the first step we used a different 
method that uses PSLQ more centrally, using linear combinations of the values of the modes at 
different radii to obtain the value of a given PN coefficient sufficiently accurately to be able to identify 
it with PSLQ. 

• Before giving more details of this method, we shall first give a brief introduction to experimental 
mathematics and integer relation algorithms as well as a simple example of applying PSLQ to obtain 
a coefficient of the full ΔU.



An introduction to experimental mathematics and 
PSLQ

• The PSLQ integer relation algorithm is a standard (modern) experimental 
mathematics technique, and is implemented in Mathematica (as of Version 
8) as FindIntegerNullVector[]. 

• PSLQ, discovered by the sculptor-mathematician Heleman Ferguson and 
computational mathematician David Bailey in 1992, takes in a vector of 
real numbers and uses Partial Sums-of-squares and the LQ 
decomposition to return a nonzero integer vector orthogonal to the input 
and whose (L2) norm is at most a known factor times those vectors’ 
minimum norm, or a minimum value for the norm of such a relation, in 
polynomial time (in the number of elements in the vector). 

• One can thus apply PSLQ to obtain the rational coefficients of a linear 
combination of transcendentals from a sufficiently accurate decimal 
expansion, in addition to many other applications.

9
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coe�cients of the first three appearances of q2 and the first appearance of q4 in a given power of log(v) in the
half-integer terms are also predicted correctly even when the rest of the term is not predicted correctly.

Of course, while the above terms are the only ones where one can predict an entire coe�cient of logn(v) or qk logn(v),
the simplification often correctly predicts the coe�cients of certain transcendentals in a given coe�cient, which allows
one to obtain the remainder of the coe�cient with far fewer digits than one would otherwise need. In particular,
we have been able to obtain analytic forms for the complete coe�cients of q log4(v)vp for p 2 {33, 35} using this
method (where we only need to use PSLQ to obtain the purely rational piece). We also obtained analytic forms for
the remainder of the powers of q—up to q5—at v35/2 by a direct application of PSLQ to Abhay’s data, where the q2

and q4 terms were correctly given by the simplification, as mentioned above; at v33/2, Abhay had already obtained
analytic forms for the coe�cients of the higher powers of q. Specifically, we have


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1093955625
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1058064315063122

38288446875
� +

6348357839344118

114865340625
log(2)

�
q log4(v)v33,

(3a)
⇢

�10864912106535702660692164256789

163569204447664494285056250
� 8415139871298263

137838408750
⇡2 +

787775914908495197

9648688612500
� � 2871797852601011

119119612500
log(2)

+
705518534565

3764768
log(3)

�
q +

222082738923931094910193

1307723708345670000
⇡q2 +

1517957950771316011743041

1961585562518505000
q3 +

357978390331

486202500
⇡q4

� 56001342517411

1458607500
q5
�
log4(v)v35

It should be possible to obtain analytic forms for some other high-order logarithmic coe�cients that Abhay only
obtained numerically using this method. However, one will require a more careful study of the structure to obtain
analytic forms for many of these coe�cients, due to the transcendental functions of q that one finds at higher orders.

~v? \ Zn (4)
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Notable successes of experimental mathematics 
(using PSLQ)

• The Bailey-Borwein-Plouffe formula for π, which allows one to calculate the nth 
digit of its binary hexadecimal expansion without calculating any of the previous 
digits, was first discovered using PSLQ: 
 

• Other notable discoveries with PSLQ include the 240-degree polynomial 
satisfied by B4, the fourth bifurcation point of the logistic map. This was 
obtained by physicist David Broadhurst, who has also used PSLQ to evaluate 
various Feynman integrals in terms of multiple zeta values. 

• There is also a computation by Bernie Nickel (2011) of high-order expansion 
coefficients of the ground state energy of H2

+ using PSLQ that is similar to what 
we do here. (The structures of the expansions are even somewhat similar, and 
they can be computed using similar techniques, though the structure of the H2

+ 

expansion is simpler than that of an individual mode of ΔU.)
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http://www.experimentalmath.info for a more
complete list, with links to their respective websites.

We must of course also give credit to the com-
puter industry. In 1965 Gordon Moore, before he
served as CEO of Intel, observed:

The complexity for minimum compo-
nent costs has increased at a rate of
roughly a factor of two per year. . . . Cer-
tainly over the short term this rate can
be expected to continue, if not to in-
crease. Over the longer term, the rate of
increase is a bit more uncertain, al-
though there is no reason to believe it
will not remain nearly constant for at
least 10 years. [29]

Nearly forty years later, we observe a record of
sustained exponential progress that has no peer in
the history of technology. Hardware progress alone
has transformed mathematical computations that
were once impossible into simple operations that
can be done on any laptop.

Many papers have now been published in the ex-
perimental mathematics arena, and a full-fledged
journal, appropriately titled Experimental Mathe-
matics, has been in operation for twelve years.
Even older is the AMS journal Mathematics of Com-
putation, which has been publishing articles in the
general area of computational mathematics since
1960 (since 1943 if you count its predecessor).
Just as significant are the hundreds of other recent
articles that mention computations but which oth-
erwise are considered entirely mainstream work.
All of this represents a major shift from when the
present authors began their research careers, when
the view that “real mathematicians don’t compute”
was widely held in the field.

In this article, we will summarize some of the
discoveries and research results of recent years, by
ourselves and by others, together with a brief de-
scription of some of the key methods employed.
We will then attempt to ascertain at a more fun-
damental level what these developments mean for
the larger world of mathematical research.

Integer Relation Detection
One of the key techniques used in experimental
mathematics is integer relation detection, which in
effect searches for linear relationships satisfied
by a set of numerical values. To be precise, given
a real or complex vector (x1, x2, · · · , xn), an inte-
ger relation algorithm is a computational scheme
that either finds the n integers (ai) , not all zero,
such that a1x1 + a2x2 + · · ·anxn = 0 (to within
available numerical accuracy) or else establishes
that there is no such integer vector within a ball 
of radius A about the origin, where the metric 
is the Euclidean norm: A = (a2

1 + a2
2 + · · · + a2

n)1/2 .
Integer relation computations require very high

precision in the input vector x to obtain numeri-
cally meaningful results—at least dn-digit precision,
where d = log10A . This is the principal reason for
the interest in very high-precision arithmetic in
experimental mathematics. In one recent integer re-
lation detection computation, 50,000-digit arith-
metic was required to obtain the result [9].

At the present time, the best-known integer 
relation algorithm is the PSLQ algorithm [26] of
mathematician-sculptor Helaman Ferguson, who,
together with his wife, Claire, received the 2002
Communications Award of the Joint Policy Board
for Mathematics (AMS-MAA-SIAM). Simple formu-
lations of the PSLQ algorithm and several variants
are given in [10]. The PSLQ algorithm, together
with related lattice reduction schemes such as LLL,
was recently named one of ten “algorithms of the
century” by the publication Computing in Science
and Engineering [4]. PSLQ or a variant is imple-
mented in current releases of most computer al-
gebra systems.

Arbitrary Digit Calculation Formulas
The best-known application of PSLQ in experi-
mental mathematics is the 1995 discovery, by
means of a PSLQ computation, of the “BBP” formula
for π :

π =
∞
∑

k=0

1
16k

(

4
8k+ 1

− 2
8k+ 4

− 1
8k+ 5

− 1
8k+ 6

)

.

(1)

This formula permits one to directly calculate bi-
nary or hexadecimal digits beginning at the n-th
digit, without needing to calculate any of the first
n− 1 digits [8], using a simple scheme that re-
quires very little memory and no multiple-precision
arithmetic software.

It is easiest to see how this individual digit-
calculating scheme works by illustrating it for a sim-
ilar formula, known at least since Euler, for log 2:

log 2 =
∞
∑

n=1

1
n2n

.

Note that the binary expansion of log 2 beginning
after the first d binary digits is simply {2d log 2} ,
where by {·} we mean fractional part. We can write

(2)

{2d log 2} =
⎧

⎨

⎩

∞
∑

n=1

2d−n

n

⎫

⎬

⎭

=
⎧

⎨

⎩

d
∑

n=1

2d−n

n

⎫

⎬

⎭

+
⎧

⎨

⎩

∞
∑

n=d+1

2d−n

n

⎫

⎬

⎭

=
⎧

⎨

⎩

d
∑

n=1

2d−n mod n
n

⎫

⎬

⎭

+
⎧

⎨

⎩

∞
∑

n=d+1

2d−n

n

⎫

⎬

⎭

,

where we insert “mod n” in the numerator of 
the first term of (2), since we are interested only
in the fractional part after division by n. Now the
expression 2d−n mod n may be evaluated very
rapidly by means of the binary algorithm for ex-
ponentiation, where each multiplication is reduced 



An example of applying PSLQ to ΔU

• Here we show how to obtain the coefficient of log(R)/R8 in the PN 
expansion of ΔU, as I first did using the numerical expressions from SFW. 

• While my later study of the structure of the modes would have allowed 
me to only have to determine the purely rational coefficient here, I shall 
here show the first way I obtained this, using PSLQ to obtain all the 
coefficients. 

• Specifically, the transcendentals in the coefficient are given by the 
simplification or (pretty much equivalently in this case) by noting that this 
order has the first appearance of a log2(R) term, which thus only comes 
from the 2,2 mode, and therefore comes from the square of eulerlog2(R), 
so one can obtain the coefficients of the transcendentals in the log(R) 
term at this order from the (purely rational) coefficient of the log2(R) term.



An example of applying PSLQ to ΔU

• Here we show how to obtain the coefficient of log(R)/R8 in the 
PN expansion of ΔU, as I first did using the numerical 
expressions from SFW. 

• While a study of the expansion would allow one to only have to 
determine the purely rational coefficient here, I shall here show 
the first way I obtained this, using PSLQ to obtain all. 

• Specifically, these transcendentals are given by the simplification 
or (pretty much equivalently in this case) by noting that this is 
the first appearance of a log2(R) term, so it only comes from the 
2,2 mode, and thus from the square of eulerlog2(R), which gives 
the transcendentals in the log(R) term at this order.
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The ICTS logo is the visual proof of the right-angled 
triangle theorem due to Bhaskara II, a 12th century 
Indian mathematician.*

In Lilavati, Bhaskara featured a pictorial proof 
of this theorem. 

:H�DUH�JLYHQ�WKH�ERWWRP�ULJKW�WULDQJOH��D���E�� 
We construct a square by making three copies  
of the triangle, as shown. 

The area of the large square is c².  
The side of the small square is (b – a),  
and its area is (b – a)².  
The area of all four triangles is  4 x ½ ab = 2ab.  
Then the area of all four triangles  
plus the area of the small square is  
c² = (b – a)² + 2ab.  
So c² = b² + a². Bhaskara’s one-word proof was “Behold!”

a
b

c

*See, for example Georges Ifrah,  
The Universal History of Numbers, Volume 2, Penguin, India (2005)
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Abstract

The post-Newtonian (PN) expansion (i.e., an expansion in the orbital
velocity) is the primary analytic tool for studying compact binaries.
There has been considerable recent interest in high-accuracy compu-
tations of post-Newtonian (PN) expansions for compact binaries in
the extreme mass-ratio case, where one can, in principle, compute to
arbitrarily high post-Newtonian order (limited only by computer time
and memory), using linear black hole perturbation theory. Here one
has access not only to the dissipative fluxes to infinity and down the
horizon, but also to conservative e↵ects, through various invariants.
The resulting expressions give the linear order terms in the system’s
mass ratio for a general binary and are thus quite useful in waveform
modelling.

We describe a method for extracting analytic forms for these coe�cients
from high-accuracy numerical data (thousands of digits) using experi-
mental mathematics techniques, notably an integer relation algorithm.
Such methods should be particularly important when calculations
progress to the considerably more di�cult case of perturbations of the
Kerr metric.

As an example, we apply this method to Detweiler’s redshift invariant
for a circular orbit in Schwarzschild, which gives the linear-in-mass-ratio
portion of the system’s binding energy. We are able to obtain the co-
e�cients up to 12.5PN [where nPN corresponds to O(v2n)] completely
analytically, as well as the complete 13.5PN coe�cient and all but the
nonlogarithmic part of the 13PN coe�cient. We also obtain the coef-
ficients up to 21.5PN in a mixed numerical-analytic form. These co-
e�cients can be quite complex (containing more than 30 terms when
written out in full), but by a careful study of the structure of the ex-
pansion allows us to predict many of these terms (and even the entire
coe�cients of some powers of logarithms) from lower-order pieces of the
expansion. We find that the higher-order pieces of the expansion we ob-
tained improve the accuracy of the series, even in the strong-field regime
inside the innermost stable circular orbit.

1. Motivation
Coalescing compact binaries are a promising source of gravitational
waves, and ground-based gravitational wave interferometers will start
operating at sensitivities at which detections can reasonably be expected
as early as later this year. In order to successfully detect these faint sig-
nals in the detector’s noise—and, more importantly, to be able to infer
the properties of the system from the detected signal—it is necessary to
have highly accurate templates that model the gravitational waves from
the inspiralling binaries.

The most accurate models for these waveforms (e.g., the e↵ective-one-
body formalism) use information from the post-Newtonian expansion,
black hole perturbation theory, and full numerical relativity. In particu-
lar, self-force calculations of conservative invariants are used to help cali-
brate the e↵ective one-body (EOB) formalism, giving the linear-in-mass-
ratio portion of the radial potential (from Detweiler’s redshift invariant),
as well as some spin and tidal contributions, from invariants with more
derivatives (see [1] for a tidally-coupled EOB binary neutron star model
that matches quite well with numerical relativity simulations).

Additionally, these black hole perturbation theory results can be used
directly to model extreme mass-ratio systems, consisting of a small com-
pact object orbiting a much larger black hole, with a mass ratio of
& 106, which are prominent sources for space-based GW detectors, such
as eLISA, particularly because they o↵er the opportunity to precisely
measure the multipole moments of the black hole’s spacetime, giving
highly accurate tests of the no-hair theorem.

Previously, Shah, Friedman, and Whiting [2] had computed PN coe�-
cients of Detweiler’s redshift invariant to 10.5PN [i.e., O(v21)] by fitting
to high-accuracy numerical results, finding that there are half-integer
PN terms from tail e↵ects (i.e., backscattering of gravitational waves o↵
the background curvature) starting at 5.5PN, and determined the ana-
lytic forms of certain simple coe�cients, which were then verified by a
completely analytic calculation by Bini and Damour [3, 4, 5]. Our goal
was to find a method for obtaining analytic forms for more complicated
coe�cients, allowing us to push to even higher orders.
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2. Self-force calculation
Detweiler’s redshift invariant for a particle in a circular orbit [6] is given
by �U = �Uhrenab u

aub/2, where U = 1/
p
1� 3v2 is the magnitude

of the time component of the particle’s 4-velocity ua in the background
Schwarzschild spacetime and hrenab is the renormalized metric perturba-
tion, evaluated at the particle. �U gives the change linear-in-mass-ratio
in the particle’s 4-velocity due to its finite mass, which is related to the
redshift due to propagation from the particle to infinity in the perturbed
(renormalized) metric (i.e., after removing the particle’s self-field) by
z = 1/(U + �U). Here the renormalization is carried out by subtract-
ing the contribution of the particle’s self-field to the spherical harmonic
`-modes of �U mode-by-mode.

We calculate in a modified radiation gauge using the Teukolsky equation
and the Chrzanowski-Cohen-Kegeles-Wald metric reconstruction proce-
dure (as described in [7]), and solve the Teukolsky equation using the
Mano, Suzuki, and Takasugi hypergeometric function expansions [8],
which make it easy to calculate to very high precision (more than 5000
digits, of which we use at most 1240 in the present application). Thus,
even though we have specialized to Schwarzschild in this case, our
framework is already set up for Kerr.

3. Applying the PSLQ algorithm

Our general approach to obtaining analytic coe�cients is to apply the
PSLQ integer relation algorithm (see, e.g., [9]) to the numerical data
from the self-force calculation, carried out at very large radii (1050 to
1070 times the central black hole’s mass). The PSLQ algorithm gives
the smallest (in norm) vector of integers that is orthogonal to a given
vector. It thus allows one to determine the analytic form of numbers
from their decimal expansion, if one has a good idea about its general
form. Here we use the implementation of the PSLQ algorithm as the
FindIntegerNullVector function in Mathematica.

However, a direct application of PSLQ to the PN coe�cients of the
full �U is not the best approach: The individual (`,m) modes of �U
have considerable structure, similar to that found for the modes of the
energy flux at infinity in [10], which is obscured in the sum over all
modes. Indeed, this structure allows us to predict the coe�cients of
certain higher-order terms to all orders from lower-order coe�cients in
the individual modes. These predictions for the individual modes lead
to predictions for certain logarithmic terms in the full �U
to all orders. The structure of the PN expansion of the modes of
the energy flux at infinity also gives us important guidance as to the
transcendental numbers we expect to contribute to the individual PN
coe�cients.

A standard approach would be to perform a fit to obtain the PN coe�-
cients of the modes to some (high) accuracy from the numerical data at
a collection of radii and then obtain analytic forms from as many of the
resulting numerical values for the coe�cients as possible, iterating these
back into the fit to increase the accuracy of the determinations of the
numerical values for the remaining coe�cients. However, here we chose
to use the PSLQ algorithm more centrally, and did not perform a fit at
this stage, preferring instead to make linear combinations of the values of
the mode at di↵erent radii to obtain a given coe�cient to enough digits
that we can identify the coe�cient’s analytic form, and then subtract it
o↵. For the low-order coe�cients, which are purely rational, it is even
possible to identify them using PSLQ applied to the value of the mode
at one radius, since its value at, e.g., R = 1070M allows one to obtain
these coe�cients to ⇠ 60 or more digits.

One can help PSLQ identify the analytic form with fewer digits using
appropriate scalings (e.g., multiplying by the denominator of the largest
rational in the previous PN coe�cient, which generally gives a good guide
to most of the prime content of the next order’s largest denominator).

4. Checks on the output of PSLQ

Of course, the PSLQ algorithm will always give one an output for a
given input (e.g., a decimal expansion to some number of digits). One
thus needs a good way (preferably several good ways) of checking that
the output one obtains from PSLQ is actually the correct analytic form.
In addition to the obvious test of making sure that the output is not
dependent upon the number of input digits past the point at which one
first finds the putative correct analytic form, one stringent test is requir-
ing that the denominators of the analytic form are smooth numbers,
with only small prime factors: We find that all known PN coe�cients
have this property, and requiring this allows one to reject many spurious
expressions. For instance, at 12 and 12.5PN, the largest rational num-
bers have a denominator with 32 digits, where the largest prime is 19,
for which the näıve probability is less than 10�21 (just considering all
32-digit numbers).

In addition to such checks as changing the scalings (either of the numer-
ical expression, or scaling the entire �U by powers of U), we also have
the overall check of the analytic form of lower-order coe�cients provided
by our ability to continue to extract coe�cients at higher orders, and
finding that the coe�cients predicted by the structure of the expansion
still agree.

5. An example

The 7PN linear logarithmic coe�cient of �U :

�7 = 536.405212471024286871789539475038911270206 . . .

=
5163722519

5457375
� 109568

525
� � 219136

525
log(2),

where the analytic form can be obtained from the decimal form
(with at least the 42 digits given) by applying PSLQ to the vector
{�7, 1, �, log(2)}, where � is the Euler-Mascheroni gamma constant.

We give this as a simple example: The � and log(2) terms can actually
be predicted from lower-order terms, letting us obtain the remaining
purely rational piece with PSLQ using 22 digits.
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Fig. 1: The largest prime in the denominator of the
PSLQ expression for �7 vs. the number of digits used.
The sudden drop indicates the point at which we first

obtain an accurate analytic form for �7.

6. Summing over all modes

While one can obtain the logarithmic and half-integer terms in the PN
series from a finite sum over modes, one has to perform an infinite sum
over modes to obtain the nonlogarithmic integer-order terms (unlike the
case for the dissipative fluxes, where no infinite sum is required). Unfor-
tunately, this sum converges very slowly, and even standard acceleration
techniques require prohibitively many modes to reach the high accura-
cies we need. Nevertheless, we were able to obtain these terms through
12PN by obtaining the general form of a given PN coe�cient for all `
modes and performing the sum analytically.

7. Final results

We were able to obtain the PN expansion of �U through 12.5PN (as well
as the 13.5PN term) from the analytic results for the PN expansion of the
individual modes obtained via PSLQ. We also performed a less accurate nu-
merical calculation of the full �U at smaller radii (to “merely” 600 digits)
and used these data to obtain the PN coe�cients from a fit, to check. By
iteratively improving the fit using the analytic forms we obtained with PSLQ,
where we used the simplification to predict many terms, we were able to obtain
the coe�cients through 21.5PN in a mixed numerical-analytic form, including
all but the nonlogarithmic piece at 13PN. (This procedure is quite similar to
the one employed for a high-order calculation of the ground state energy of
H+
2 by Nickel [11].) We have made our expressions freely available online.

All the terms we have obtained check through 19PN with the
concurrent purely analytical calculation by Kavanagh, Ottewill,
and Wardell [12], who streamlined the Bini-Damour method. (Note that
all of these analytic calculations use the Regge-Wheeler gauge, and are thus
intrinsically specialized to Schwarzschild.)

8. Convergence

We find that all the higher-order terms we have obtained improve the con-
vergence of the PN expansion for �U , even in the strong-field regime inside
the innermost stable circular orbit (R = 6M), though the series converges
more and more slowly as the field strength increases, as expected. Addition-
ally, exponential resummation (computing the PN expansion of log�U and
then exponentiating with no expansion) improves the convergence of the se-
ries (albeit somewhat erratically), particularly for mid-range PN orders. (It
is much more e↵ective when applied to the individual modes of dissipative
quantities, where—in the case of the energy flux at infinity—it also simplifies
their structure [10].) Factoring out the test particle’s energy (which diverges
at the light ring, R = 3M), as suggested by Akcay et al. [13] also improves
the convergence, though not as much.
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Fig. 2: Convergence of the 21.5PN expression for �U and
various resummations at R = 5M .

9. Conclusions

We have presented a new “experimental mathematics” method for obtain-
ing the analytic forms of the linear-in-mass-ratio portion of coe�cients in the
PN expansion of various quantities for compact binaries from high-accuracy
computation of invariants in the black hole perturbation theory/self-force
framework (including conservative invariants). We applied this method to
Detweiler’s redshift invariant, obtaining analytic forms of the coe�cients up
to 12.5PN, along with the 13.5PN coe�cient by applying PSLQ to individ-
ual modes, and the coe�cients through 21.5PN in mixed numerical-analytic
form, from a fit. These expressions were verified through 19PN by the purely
analytic calculation in [12]. We also found a simplification of the individual
modes, which allows us to predict some logarithmic terms in the PN expansion
to arbitrary orders, and was also useful in predicting portions of the terms in
the determination of analytic forms of higher-order coe�cients from the fit.
We intend to apply these methods to calculations in Kerr in the near future,
where we expect purely analytical calculations to have much more di�culty.
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One can obtain the given analytic 
expression from the given 42 digits by 

applying FindIntegerNullVector to the vector 

Of course, one checks this expression by 
requiring that it doesn’t change if one uses 
more digits. Additionally, one can make a 

stringent test by requiring that the denominators 
of the rationals do not contain abnormally large primes.
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[Recall that "`m is defined in Eq. (20).] In particular, note
that the individual modes are purely rational integer-
order PN series until the first appearance of the loga-
rithm, where they start to have transcendental contri-
butions, as well. The transcendentals and the logarithm
first only appear together in the form of eulerlogm(R)
in the integer-order terms, but then, starting with the
1/R6+`+✏`m term (i.e., the same order at which eulerlog2

terms start to appear), they also get ⇡2 and ⇣(3) terms,
where ⇣ is the Riemann zeta function. Much of the in-
crease of complexity is described by the simplifications
[Eqs. (18) and (23)], though there are a few logarithms,
transcendentals,4 and half-integer terms that the sim-
plifications do not remove, just as found for the en-
ergy flux in [38], which should be expected, from the
form of the expressions used to obtain both quantities.
In particular, the expression in Eq. (25) does not in-
clude the appearance of the eulerlog2(R) log(2/R)/R13

and ⇡ log(2/R)/R14.5 terms that are known in the (2, 2)
mode of �U (which are also not given by either of the
simplifications).

We apply the PSLQ integer relation algorithm [42, 43]
in its implementation as the FindIntegerNullVector func-
tion in Mathematica to obtain analytic forms for the
PN coe�cients of the retarded (`,m) modes of �U .5

Specifically, if one inputs a vector of decimals to the
PSLQ algorithm, it returns the (nonzero) vector with the
smallest (L2) norm whose inner product with the input
vector is zero. One can thus apply PSLQ to identify the
analytic form of a number from a su�ciently accurate
decimal representation, if one knows (or has an educated
guess for) the transcendental numbers [here, for instance,
⇡, log(2), �, ⇣(3), etc.] present in the analytic form. This
is particularly simple when the number one will obtain is
a linear combination of the transcendentals with rational
coe�cients, as is the case here, where the vector in ques-
tion is simply the decimal expansion of the number to be
identified, along with 1, and any transcendentals thought
to be present. Of course, PSLQ will give an output for
any vector, but the outputs that do not correspond to a
true relation are almost always large and “ugly-looking”
for a su�cient number of digits, while the true vector
will have a certain “nice-looking” structure (which we
will discuss further later).

4 Note that � and ⇣ evaluated at odd integers are not known to be
transcendental, or in most cases even irrational. However, they
are all strongly conjectured to be transcendental, so we shall refer
to them as such.

5 Note that we shall often use the name PSLQ as a shorthand for
the FindIntegerNullVector function.

C. An example: Obtaining the analytic form of the
�
7

coe�cient of the full �U from the decimal form
given in SFW

As an example, we consider obtaining the �7 coe�-
cient [i.e., the coe�cient of the log(R)/R8 term in �U ]
from the numerical value given in SFW, as was reported
there (and confirmed by the analytic calculation in [25]).
This is the coe�cient of log(R) at the first order where
there is a log2(R) term, so, by analogy with the transcen-
dentals appearing in the nonlogarithmic term at the first
appearance of log(R), we expect to have � and log(2)
terms here. As we saw in the expression of the structure
of the PN expansion of the modes in terms of eulerlogs
above, this linking of log(R), log(2), and � is a generic
feature, though it is broken at high orders by the ap-
pearance of the log(2/R) terms. Indeed, since this is the
first appearance of log2(R), and thus only comes from
the (2, 2) mode, we can actually subtract o↵ the log(2)
and � terms and only have to obtain the rational piece
using PSLQ. However, we shall first consider the case of
using PSLQ to obtain the full term, since this is how we
initially obtained it.
Starting from

�7 = 536.4052124710242868717895394750389112702062

69552321207927883360240368736326766131833 . . . ,
(26)

which is taken directly from Table I in SFW, we can
apply PSLQ in the form of Mathematica’s FindInte-
gerNullVector function to the vector {�7, 1, �, log(2)} and
obtain the expression of

�7 =
5163722519

5457375
� 109568

525
� � 219136

525
log(2) (27)

with at least 42 digits. (Nota bene: We find that the
final digit given by SFW is incorrect and should be a
6.) We were able to reject the expressions produced by
smaller numbers of digits since they lead to anomalously
large prime factors in the denominator (i.e., the term in
the vector returned by PSLQ corresponding to �7 itself),
except if one only evaluates �7 to a very small number
of digits, of course: See Fig. 1 (cf. Fig. 5 in [50], which
shows an alternative method for detecting a likely true
relation using PSLQ by looking at the size of the smallest
entry in the vector versus the number of iterations of
the algorithm, which is not information available when
usingMathematica’s FindIntegerNullVector). We shall
discuss this method of looking at the prime factorization
further at the end of the section.
Interestingly enough, the minimum number of digits

required to obtain this expression accurately with FInd-
IntegerNullVector is somewhat dependent on the order of
the terms in the vector. For instance, if we consider in-
stead the vector {�7, log(2), 1, �}, we only need 39 digits
to obtain an accurate analytic form. If we scale by the
denominator of �6 (which is 575), i.e., consider the vector



An example of applying PSLQ to ΔU

• Here we show how to obtain the coefficient of log(R)/R8 in the 
PN expansion of ΔU, as I first did using the numerical 
expressions from SFW. 

• While a study of the expansion would allow one to only have to 
determine the purely rational coefficient here, I shall here show 
the first way I obtained this, using PSLQ to obtain all. 

• Specifically, these transcendentals are given by the simplification 
or (pretty much equivalently in this case) by noting that this is 
the first appearance of a log2(R) term, so it only comes from the 
2,2 mode, and thus from the square of eulerlog2(R), which gives 
the transcendentals in the log(R) term at this order.
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The ICTS logo is the visual proof of the right-angled 
triangle theorem due to Bhaskara II, a 12th century 
Indian mathematician.*

In Lilavati, Bhaskara featured a pictorial proof 
of this theorem. 

:H�DUH�JLYHQ�WKH�ERWWRP�ULJKW�WULDQJOH��D���E�� 
We construct a square by making three copies  
of the triangle, as shown. 

The area of the large square is c².  
The side of the small square is (b – a),  
and its area is (b – a)².  
The area of all four triangles is  4 x ½ ab = 2ab.  
Then the area of all four triangles  
plus the area of the small square is  
c² = (b – a)² + 2ab.  
So c² = b² + a². Bhaskara’s one-word proof was “Behold!”

a
b

c

*See, for example Georges Ifrah,  
The Universal History of Numbers, Volume 2, Penguin, India (2005)
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Abstract

The post-Newtonian (PN) expansion (i.e., an expansion in the orbital
velocity) is the primary analytic tool for studying compact binaries.
There has been considerable recent interest in high-accuracy compu-
tations of post-Newtonian (PN) expansions for compact binaries in
the extreme mass-ratio case, where one can, in principle, compute to
arbitrarily high post-Newtonian order (limited only by computer time
and memory), using linear black hole perturbation theory. Here one
has access not only to the dissipative fluxes to infinity and down the
horizon, but also to conservative e↵ects, through various invariants.
The resulting expressions give the linear order terms in the system’s
mass ratio for a general binary and are thus quite useful in waveform
modelling.

We describe a method for extracting analytic forms for these coe�cients
from high-accuracy numerical data (thousands of digits) using experi-
mental mathematics techniques, notably an integer relation algorithm.
Such methods should be particularly important when calculations
progress to the considerably more di�cult case of perturbations of the
Kerr metric.

As an example, we apply this method to Detweiler’s redshift invariant
for a circular orbit in Schwarzschild, which gives the linear-in-mass-ratio
portion of the system’s binding energy. We are able to obtain the co-
e�cients up to 12.5PN [where nPN corresponds to O(v2n)] completely
analytically, as well as the complete 13.5PN coe�cient and all but the
nonlogarithmic part of the 13PN coe�cient. We also obtain the coef-
ficients up to 21.5PN in a mixed numerical-analytic form. These co-
e�cients can be quite complex (containing more than 30 terms when
written out in full), but by a careful study of the structure of the ex-
pansion allows us to predict many of these terms (and even the entire
coe�cients of some powers of logarithms) from lower-order pieces of the
expansion. We find that the higher-order pieces of the expansion we ob-
tained improve the accuracy of the series, even in the strong-field regime
inside the innermost stable circular orbit.

1. Motivation
Coalescing compact binaries are a promising source of gravitational
waves, and ground-based gravitational wave interferometers will start
operating at sensitivities at which detections can reasonably be expected
as early as later this year. In order to successfully detect these faint sig-
nals in the detector’s noise—and, more importantly, to be able to infer
the properties of the system from the detected signal—it is necessary to
have highly accurate templates that model the gravitational waves from
the inspiralling binaries.

The most accurate models for these waveforms (e.g., the e↵ective-one-
body formalism) use information from the post-Newtonian expansion,
black hole perturbation theory, and full numerical relativity. In particu-
lar, self-force calculations of conservative invariants are used to help cali-
brate the e↵ective one-body (EOB) formalism, giving the linear-in-mass-
ratio portion of the radial potential (from Detweiler’s redshift invariant),
as well as some spin and tidal contributions, from invariants with more
derivatives (see [1] for a tidally-coupled EOB binary neutron star model
that matches quite well with numerical relativity simulations).

Additionally, these black hole perturbation theory results can be used
directly to model extreme mass-ratio systems, consisting of a small com-
pact object orbiting a much larger black hole, with a mass ratio of
& 106, which are prominent sources for space-based GW detectors, such
as eLISA, particularly because they o↵er the opportunity to precisely
measure the multipole moments of the black hole’s spacetime, giving
highly accurate tests of the no-hair theorem.

Previously, Shah, Friedman, and Whiting [2] had computed PN coe�-
cients of Detweiler’s redshift invariant to 10.5PN [i.e., O(v21)] by fitting
to high-accuracy numerical results, finding that there are half-integer
PN terms from tail e↵ects (i.e., backscattering of gravitational waves o↵
the background curvature) starting at 5.5PN, and determined the ana-
lytic forms of certain simple coe�cients, which were then verified by a
completely analytic calculation by Bini and Damour [3, 4, 5]. Our goal
was to find a method for obtaining analytic forms for more complicated
coe�cients, allowing us to push to even higher orders.

IAGRG 2015

Raman Research Institute, Bengaluru, India, March 18–20, 2015.

2. Self-force calculation
Detweiler’s redshift invariant for a particle in a circular orbit [6] is given
by �U = �Uhrenab u

aub/2, where U = 1/
p
1� 3v2 is the magnitude

of the time component of the particle’s 4-velocity ua in the background
Schwarzschild spacetime and hrenab is the renormalized metric perturba-
tion, evaluated at the particle. �U gives the change linear-in-mass-ratio
in the particle’s 4-velocity due to its finite mass, which is related to the
redshift due to propagation from the particle to infinity in the perturbed
(renormalized) metric (i.e., after removing the particle’s self-field) by
z = 1/(U + �U). Here the renormalization is carried out by subtract-
ing the contribution of the particle’s self-field to the spherical harmonic
`-modes of �U mode-by-mode.

We calculate in a modified radiation gauge using the Teukolsky equation
and the Chrzanowski-Cohen-Kegeles-Wald metric reconstruction proce-
dure (as described in [7]), and solve the Teukolsky equation using the
Mano, Suzuki, and Takasugi hypergeometric function expansions [8],
which make it easy to calculate to very high precision (more than 5000
digits, of which we use at most 1240 in the present application). Thus,
even though we have specialized to Schwarzschild in this case, our
framework is already set up for Kerr.

3. Applying the PSLQ algorithm

Our general approach to obtaining analytic coe�cients is to apply the
PSLQ integer relation algorithm (see, e.g., [9]) to the numerical data
from the self-force calculation, carried out at very large radii (1050 to
1070 times the central black hole’s mass). The PSLQ algorithm gives
the smallest (in norm) vector of integers that is orthogonal to a given
vector. It thus allows one to determine the analytic form of numbers
from their decimal expansion, if one has a good idea about its general
form. Here we use the implementation of the PSLQ algorithm as the
FindIntegerNullVector function in Mathematica.

However, a direct application of PSLQ to the PN coe�cients of the
full �U is not the best approach: The individual (`,m) modes of �U
have considerable structure, similar to that found for the modes of the
energy flux at infinity in [10], which is obscured in the sum over all
modes. Indeed, this structure allows us to predict the coe�cients of
certain higher-order terms to all orders from lower-order coe�cients in
the individual modes. These predictions for the individual modes lead
to predictions for certain logarithmic terms in the full �U
to all orders. The structure of the PN expansion of the modes of
the energy flux at infinity also gives us important guidance as to the
transcendental numbers we expect to contribute to the individual PN
coe�cients.

A standard approach would be to perform a fit to obtain the PN coe�-
cients of the modes to some (high) accuracy from the numerical data at
a collection of radii and then obtain analytic forms from as many of the
resulting numerical values for the coe�cients as possible, iterating these
back into the fit to increase the accuracy of the determinations of the
numerical values for the remaining coe�cients. However, here we chose
to use the PSLQ algorithm more centrally, and did not perform a fit at
this stage, preferring instead to make linear combinations of the values of
the mode at di↵erent radii to obtain a given coe�cient to enough digits
that we can identify the coe�cient’s analytic form, and then subtract it
o↵. For the low-order coe�cients, which are purely rational, it is even
possible to identify them using PSLQ applied to the value of the mode
at one radius, since its value at, e.g., R = 1070M allows one to obtain
these coe�cients to ⇠ 60 or more digits.

One can help PSLQ identify the analytic form with fewer digits using
appropriate scalings (e.g., multiplying by the denominator of the largest
rational in the previous PN coe�cient, which generally gives a good guide
to most of the prime content of the next order’s largest denominator).

4. Checks on the output of PSLQ

Of course, the PSLQ algorithm will always give one an output for a
given input (e.g., a decimal expansion to some number of digits). One
thus needs a good way (preferably several good ways) of checking that
the output one obtains from PSLQ is actually the correct analytic form.
In addition to the obvious test of making sure that the output is not
dependent upon the number of input digits past the point at which one
first finds the putative correct analytic form, one stringent test is requir-
ing that the denominators of the analytic form are smooth numbers,
with only small prime factors: We find that all known PN coe�cients
have this property, and requiring this allows one to reject many spurious
expressions. For instance, at 12 and 12.5PN, the largest rational num-
bers have a denominator with 32 digits, where the largest prime is 19,
for which the näıve probability is less than 10�21 (just considering all
32-digit numbers).

In addition to such checks as changing the scalings (either of the numer-
ical expression, or scaling the entire �U by powers of U), we also have
the overall check of the analytic form of lower-order coe�cients provided
by our ability to continue to extract coe�cients at higher orders, and
finding that the coe�cients predicted by the structure of the expansion
still agree.

5. An example

The 7PN linear logarithmic coe�cient of �U :

�7 = 536.405212471024286871789539475038911270206 . . .

=
5163722519

5457375
� 109568

525
� � 219136

525
log(2),

where the analytic form can be obtained from the decimal form
(with at least the 42 digits given) by applying PSLQ to the vector
{�7, 1, �, log(2)}, where � is the Euler-Mascheroni gamma constant.

We give this as a simple example: The � and log(2) terms can actually
be predicted from lower-order terms, letting us obtain the remaining
purely rational piece with PSLQ using 22 digits.
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Fig. 1: The largest prime in the denominator of the
PSLQ expression for �7 vs. the number of digits used.
The sudden drop indicates the point at which we first

obtain an accurate analytic form for �7.

6. Summing over all modes

While one can obtain the logarithmic and half-integer terms in the PN
series from a finite sum over modes, one has to perform an infinite sum
over modes to obtain the nonlogarithmic integer-order terms (unlike the
case for the dissipative fluxes, where no infinite sum is required). Unfor-
tunately, this sum converges very slowly, and even standard acceleration
techniques require prohibitively many modes to reach the high accura-
cies we need. Nevertheless, we were able to obtain these terms through
12PN by obtaining the general form of a given PN coe�cient for all `
modes and performing the sum analytically.

7. Final results

We were able to obtain the PN expansion of �U through 12.5PN (as well
as the 13.5PN term) from the analytic results for the PN expansion of the
individual modes obtained via PSLQ. We also performed a less accurate nu-
merical calculation of the full �U at smaller radii (to “merely” 600 digits)
and used these data to obtain the PN coe�cients from a fit, to check. By
iteratively improving the fit using the analytic forms we obtained with PSLQ,
where we used the simplification to predict many terms, we were able to obtain
the coe�cients through 21.5PN in a mixed numerical-analytic form, including
all but the nonlogarithmic piece at 13PN. (This procedure is quite similar to
the one employed for a high-order calculation of the ground state energy of
H+
2 by Nickel [11].) We have made our expressions freely available online.

All the terms we have obtained check through 19PN with the
concurrent purely analytical calculation by Kavanagh, Ottewill,
and Wardell [12], who streamlined the Bini-Damour method. (Note that
all of these analytic calculations use the Regge-Wheeler gauge, and are thus
intrinsically specialized to Schwarzschild.)

8. Convergence

We find that all the higher-order terms we have obtained improve the con-
vergence of the PN expansion for �U , even in the strong-field regime inside
the innermost stable circular orbit (R = 6M), though the series converges
more and more slowly as the field strength increases, as expected. Addition-
ally, exponential resummation (computing the PN expansion of log�U and
then exponentiating with no expansion) improves the convergence of the se-
ries (albeit somewhat erratically), particularly for mid-range PN orders. (It
is much more e↵ective when applied to the individual modes of dissipative
quantities, where—in the case of the energy flux at infinity—it also simplifies
their structure [10].) Factoring out the test particle’s energy (which diverges
at the light ring, R = 3M), as suggested by Akcay et al. [13] also improves
the convergence, though not as much.
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Fig. 2: Convergence of the 21.5PN expression for �U and
various resummations at R = 5M .

9. Conclusions

We have presented a new “experimental mathematics” method for obtain-
ing the analytic forms of the linear-in-mass-ratio portion of coe�cients in the
PN expansion of various quantities for compact binaries from high-accuracy
computation of invariants in the black hole perturbation theory/self-force
framework (including conservative invariants). We applied this method to
Detweiler’s redshift invariant, obtaining analytic forms of the coe�cients up
to 12.5PN, along with the 13.5PN coe�cient by applying PSLQ to individ-
ual modes, and the coe�cients through 21.5PN in mixed numerical-analytic
form, from a fit. These expressions were verified through 19PN by the purely
analytic calculation in [12]. We also found a simplification of the individual
modes, which allows us to predict some logarithmic terms in the PN expansion
to arbitrary orders, and was also useful in predicting portions of the terms in
the determination of analytic forms of higher-order coe�cients from the fit.
We intend to apply these methods to calculations in Kerr in the near future,
where we expect purely analytical calculations to have much more di�culty.
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[Recall that "`m is defined in Eq. (20).] In particular, note
that the individual modes are purely rational integer-
order PN series until the first appearance of the loga-
rithm, where they start to have transcendental contri-
butions, as well. The transcendentals and the logarithm
first only appear together in the form of eulerlogm(R)
in the integer-order terms, but then, starting with the
1/R6+`+✏`m term (i.e., the same order at which eulerlog2

terms start to appear), they also get ⇡2 and ⇣(3) terms,
where ⇣ is the Riemann zeta function. Much of the in-
crease of complexity is described by the simplifications
[Eqs. (18) and (23)], though there are a few logarithms,
transcendentals,4 and half-integer terms that the sim-
plifications do not remove, just as found for the en-
ergy flux in [38], which should be expected, from the
form of the expressions used to obtain both quantities.
In particular, the expression in Eq. (25) does not in-
clude the appearance of the eulerlog2(R) log(2/R)/R13

and ⇡ log(2/R)/R14.5 terms that are known in the (2, 2)
mode of �U (which are also not given by either of the
simplifications).

We apply the PSLQ integer relation algorithm [42, 43]
in its implementation as the FindIntegerNullVector func-
tion in Mathematica to obtain analytic forms for the
PN coe�cients of the retarded (`,m) modes of �U .5

Specifically, if one inputs a vector of decimals to the
PSLQ algorithm, it returns the (nonzero) vector with the
smallest (L2) norm whose inner product with the input
vector is zero. One can thus apply PSLQ to identify the
analytic form of a number from a su�ciently accurate
decimal representation, if one knows (or has an educated
guess for) the transcendental numbers [here, for instance,
⇡, log(2), �, ⇣(3), etc.] present in the analytic form. This
is particularly simple when the number one will obtain is
a linear combination of the transcendentals with rational
coe�cients, as is the case here, where the vector in ques-
tion is simply the decimal expansion of the number to be
identified, along with 1, and any transcendentals thought
to be present. Of course, PSLQ will give an output for
any vector, but the outputs that do not correspond to a
true relation are almost always large and “ugly-looking”
for a su�cient number of digits, while the true vector
will have a certain “nice-looking” structure (which we
will discuss further later).

4 Note that � and ⇣ evaluated at odd integers are not known to be
transcendental, or in most cases even irrational. However, they
are all strongly conjectured to be transcendental, so we shall refer
to them as such.

5 Note that we shall often use the name PSLQ as a shorthand for
the FindIntegerNullVector function.

C. An example: Obtaining the analytic form of the
�
7

coe�cient of the full �U from the decimal form
given in SFW

As an example, we consider obtaining the �7 coe�-
cient [i.e., the coe�cient of the log(R)/R8 term in �U ]
from the numerical value given in SFW, as was reported
there (and confirmed by the analytic calculation in [25]).
This is the coe�cient of log(R) at the first order where
there is a log2(R) term, so, by analogy with the transcen-
dentals appearing in the nonlogarithmic term at the first
appearance of log(R), we expect to have � and log(2)
terms here. As we saw in the expression of the structure
of the PN expansion of the modes in terms of eulerlogs
above, this linking of log(R), log(2), and � is a generic
feature, though it is broken at high orders by the ap-
pearance of the log(2/R) terms. Indeed, since this is the
first appearance of log2(R), and thus only comes from
the (2, 2) mode, we can actually subtract o↵ the log(2)
and � terms and only have to obtain the rational piece
using PSLQ. However, we shall first consider the case of
using PSLQ to obtain the full term, since this is how we
initially obtained it.
Starting from

�7 = 536.4052124710242868717895394750389112702062

69552321207927883360240368736326766131833 . . . ,
(26)

which is taken directly from Table I in SFW, we can
apply PSLQ in the form of Mathematica’s FindInte-
gerNullVector function to the vector {�7, 1, �, log(2)} and
obtain the expression of

�7 =
5163722519

5457375
� 109568

525
� � 219136

525
log(2) (27)

with at least 42 digits. (Nota bene: We find that the
final digit given by SFW is incorrect and should be a
6.) We were able to reject the expressions produced by
smaller numbers of digits since they lead to anomalously
large prime factors in the denominator (i.e., the term in
the vector returned by PSLQ corresponding to �7 itself),
except if one only evaluates �7 to a very small number
of digits, of course: See Fig. 1 (cf. Fig. 5 in [50], which
shows an alternative method for detecting a likely true
relation using PSLQ by looking at the size of the smallest
entry in the vector versus the number of iterations of
the algorithm, which is not information available when
usingMathematica’s FindIntegerNullVector). We shall
discuss this method of looking at the prime factorization
further at the end of the section.
Interestingly enough, the minimum number of digits

required to obtain this expression accurately with FInd-
IntegerNullVector is somewhat dependent on the order of
the terms in the vector. For instance, if we consider in-
stead the vector {�7, log(2), 1, �}, we only need 39 digits
to obtain an accurate analytic form. If we scale by the
denominator of �6 (which is 575), i.e., consider the vector
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FIG. 1: The largest prime in the denominator of the ex-
pression for �

7

returned by Mathematica’s FindIntegerNul-
lVector function applied to the vector {�

7

, 1, �, log(2)} for �
7

evaluated to varying numbers of digits from 10 to 45. The
vertical dotted line marks the point at which this function
returns an accurate analytic expression for �

7

.

{575�7, 1, �, log(2)} we also only need 39 digits; this sort
of scaling is much more e↵ective at higher orders where
the denominators are much larger, and can decrease the
minimum number of digits required to obtain an accu-
rate expression by 27 digits or more. If we subtract o↵
the � and log(2) terms using the expectations from the
eulerlog22(R) form of the log2(R) coe�cient at this order,
then we only need 22 digits to obtain the resulting �̄7

(here we use the vector {�̄7, 1}, of course): While Find-
IntegerNullVector returns the correct result with between
12 and 15 digits in this case, it then returns an erroneous
relation when one uses between 16 and 21 digits before re-
turning to the correct result for 22 digits and above. We
have not observed such unusual behavior in our other
determinations. Here scaling by 575 actually increases

the minimum number of digits required for an accurate
result by 1, which can sometimes be the case when one
is scaling by a relatively small number, as here.

D. Combining together the values at di↵erent radii
to increase the number of digits known

For the low-order coe�cients, which are purely ratio-
nal integer-order PN coe�cients, we can apply PSLQ di-
rectly to an appropriate number of digits at a given radius
(e.g., for R = 1050, one can expect to get at least ⇠ 40
accurate digits at a given order for the leading term).
If one can identify the rational represented using PSLQ
with this number of digits, then one can subtract it o↵
and proceed to the next order. For the higher-` modes,
the purely rational coe�cients persist to high enough or-
ders and are large enough that one needs more than the
number of digits provided by merely evaluating �U at
R = 1070, the largest radius we consider. In such cases,
and also when we need to consider cases with logarithms
and transcendentals at higher orders, we combine to-
gether the values from several radii (up to as many as
15 radii for certain high-order pieces). The expressions
we use for this purpose are long and unilluminating, but
we give a simple example here to illustrate the method.

Let us assume that we are at a point in the computa-
tion where we expect that the first few terms of the PN
expansion of the mode we are considering to look like

SN (R) =
↵N,0

RN
+

↵N+1,0 + ↵N+1,1 log(R)

RN+1
+

↵N+2,0

RN+2

+O(R�N�3)
(28)

(taking the R�N�2 term to have no logarithms, since
we are just interested in its overall scaling, even though
this will never be the case in this sort of situation in
actuality), and we wish to obtain ↵N,0 to ⇠ 2k digits.
Now, since we know the value of SN (R) at R = 10k for a
range of integers k, we can combine together the values
of SN (R) at the radii R = 10k, 10k+p, and 10k+q (with
p, q 2 N such that 10k+p and 10k+q give radii at which
we know the value of SN ), giving

↵N,0 = 10kN
(q � p)SN (10k)� q10(N+1)pSN (10k+p) + p10(N+1)qSN (10k+q)

q � p� q10p + p10q
+

q � p� q10�p + p10�q

q � p� q10p + p10q
↵N+2

102k
| {z }

R

. (29)

Here the remainder R gives a small enough correction
that the first term will give ↵N,0 to ⇠ 2k digits, pro-
vided that ↵N+2,0 is not much larger than ↵N,0, which
will usually be the case. (Note that we have neglected
the rest of the remainder, whose leading term goes as
10�3k. We also have not included half-integer terms in
the remainders for simplicity, though the presence of a

half-integer term before the given remainder term will,
of course, reduce the number of terms one obtains from
the expression.)
We obtained the particular linear combination given

in Eq. (29) by considering SN (10k) + ASN (10k+p) +
BSN (10k+q) and fixing the coe�cients A and B by de-
manding that resulting expression does not contain the



An example of applying PSLQ to ΔU

• Here we show how to obtain the coefficient of log(R)/R8 in the 
PN expansion of ΔU, as I first did using the numerical 
expressions from SFW. 

• While a study of the expansion would allow one to only have to 
determine the purely rational coefficient here, I shall here show 
the first way I obtained this, using PSLQ to obtain all. 

• Specifically, these transcendentals are given by the simplification 
or (pretty much equivalently in this case) by noting that this is 
the first appearance of a log2(R) term, so it only comes from the 
2,2 mode, and thus from the square of eulerlog2(R), which gives 
the transcendentals in the log(R) term at this order.
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The ICTS logo is the visual proof of the right-angled 
triangle theorem due to Bhaskara II, a 12th century 
Indian mathematician.*

In Lilavati, Bhaskara featured a pictorial proof 
of this theorem. 

:H�DUH�JLYHQ�WKH�ERWWRP�ULJKW�WULDQJOH��D���E�� 
We construct a square by making three copies  
of the triangle, as shown. 

The area of the large square is c².  
The side of the small square is (b – a),  
and its area is (b – a)².  
The area of all four triangles is  4 x ½ ab = 2ab.  
Then the area of all four triangles  
plus the area of the small square is  
c² = (b – a)² + 2ab.  
So c² = b² + a². Bhaskara’s one-word proof was “Behold!”

a
b

c

*See, for example Georges Ifrah,  
The Universal History of Numbers, Volume 2, Penguin, India (2005)
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Abstract

The post-Newtonian (PN) expansion (i.e., an expansion in the orbital
velocity) is the primary analytic tool for studying compact binaries.
There has been considerable recent interest in high-accuracy compu-
tations of post-Newtonian (PN) expansions for compact binaries in
the extreme mass-ratio case, where one can, in principle, compute to
arbitrarily high post-Newtonian order (limited only by computer time
and memory), using linear black hole perturbation theory. Here one
has access not only to the dissipative fluxes to infinity and down the
horizon, but also to conservative e↵ects, through various invariants.
The resulting expressions give the linear order terms in the system’s
mass ratio for a general binary and are thus quite useful in waveform
modelling.

We describe a method for extracting analytic forms for these coe�cients
from high-accuracy numerical data (thousands of digits) using experi-
mental mathematics techniques, notably an integer relation algorithm.
Such methods should be particularly important when calculations
progress to the considerably more di�cult case of perturbations of the
Kerr metric.

As an example, we apply this method to Detweiler’s redshift invariant
for a circular orbit in Schwarzschild, which gives the linear-in-mass-ratio
portion of the system’s binding energy. We are able to obtain the co-
e�cients up to 12.5PN [where nPN corresponds to O(v2n)] completely
analytically, as well as the complete 13.5PN coe�cient and all but the
nonlogarithmic part of the 13PN coe�cient. We also obtain the coef-
ficients up to 21.5PN in a mixed numerical-analytic form. These co-
e�cients can be quite complex (containing more than 30 terms when
written out in full), but by a careful study of the structure of the ex-
pansion allows us to predict many of these terms (and even the entire
coe�cients of some powers of logarithms) from lower-order pieces of the
expansion. We find that the higher-order pieces of the expansion we ob-
tained improve the accuracy of the series, even in the strong-field regime
inside the innermost stable circular orbit.

1. Motivation
Coalescing compact binaries are a promising source of gravitational
waves, and ground-based gravitational wave interferometers will start
operating at sensitivities at which detections can reasonably be expected
as early as later this year. In order to successfully detect these faint sig-
nals in the detector’s noise—and, more importantly, to be able to infer
the properties of the system from the detected signal—it is necessary to
have highly accurate templates that model the gravitational waves from
the inspiralling binaries.

The most accurate models for these waveforms (e.g., the e↵ective-one-
body formalism) use information from the post-Newtonian expansion,
black hole perturbation theory, and full numerical relativity. In particu-
lar, self-force calculations of conservative invariants are used to help cali-
brate the e↵ective one-body (EOB) formalism, giving the linear-in-mass-
ratio portion of the radial potential (from Detweiler’s redshift invariant),
as well as some spin and tidal contributions, from invariants with more
derivatives (see [1] for a tidally-coupled EOB binary neutron star model
that matches quite well with numerical relativity simulations).

Additionally, these black hole perturbation theory results can be used
directly to model extreme mass-ratio systems, consisting of a small com-
pact object orbiting a much larger black hole, with a mass ratio of
& 106, which are prominent sources for space-based GW detectors, such
as eLISA, particularly because they o↵er the opportunity to precisely
measure the multipole moments of the black hole’s spacetime, giving
highly accurate tests of the no-hair theorem.

Previously, Shah, Friedman, and Whiting [2] had computed PN coe�-
cients of Detweiler’s redshift invariant to 10.5PN [i.e., O(v21)] by fitting
to high-accuracy numerical results, finding that there are half-integer
PN terms from tail e↵ects (i.e., backscattering of gravitational waves o↵
the background curvature) starting at 5.5PN, and determined the ana-
lytic forms of certain simple coe�cients, which were then verified by a
completely analytic calculation by Bini and Damour [3, 4, 5]. Our goal
was to find a method for obtaining analytic forms for more complicated
coe�cients, allowing us to push to even higher orders.
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2. Self-force calculation
Detweiler’s redshift invariant for a particle in a circular orbit [6] is given
by �U = �Uhrenab u

aub/2, where U = 1/
p
1� 3v2 is the magnitude

of the time component of the particle’s 4-velocity ua in the background
Schwarzschild spacetime and hrenab is the renormalized metric perturba-
tion, evaluated at the particle. �U gives the change linear-in-mass-ratio
in the particle’s 4-velocity due to its finite mass, which is related to the
redshift due to propagation from the particle to infinity in the perturbed
(renormalized) metric (i.e., after removing the particle’s self-field) by
z = 1/(U + �U). Here the renormalization is carried out by subtract-
ing the contribution of the particle’s self-field to the spherical harmonic
`-modes of �U mode-by-mode.

We calculate in a modified radiation gauge using the Teukolsky equation
and the Chrzanowski-Cohen-Kegeles-Wald metric reconstruction proce-
dure (as described in [7]), and solve the Teukolsky equation using the
Mano, Suzuki, and Takasugi hypergeometric function expansions [8],
which make it easy to calculate to very high precision (more than 5000
digits, of which we use at most 1240 in the present application). Thus,
even though we have specialized to Schwarzschild in this case, our
framework is already set up for Kerr.

3. Applying the PSLQ algorithm

Our general approach to obtaining analytic coe�cients is to apply the
PSLQ integer relation algorithm (see, e.g., [9]) to the numerical data
from the self-force calculation, carried out at very large radii (1050 to
1070 times the central black hole’s mass). The PSLQ algorithm gives
the smallest (in norm) vector of integers that is orthogonal to a given
vector. It thus allows one to determine the analytic form of numbers
from their decimal expansion, if one has a good idea about its general
form. Here we use the implementation of the PSLQ algorithm as the
FindIntegerNullVector function in Mathematica.

However, a direct application of PSLQ to the PN coe�cients of the
full �U is not the best approach: The individual (`,m) modes of �U
have considerable structure, similar to that found for the modes of the
energy flux at infinity in [10], which is obscured in the sum over all
modes. Indeed, this structure allows us to predict the coe�cients of
certain higher-order terms to all orders from lower-order coe�cients in
the individual modes. These predictions for the individual modes lead
to predictions for certain logarithmic terms in the full �U
to all orders. The structure of the PN expansion of the modes of
the energy flux at infinity also gives us important guidance as to the
transcendental numbers we expect to contribute to the individual PN
coe�cients.

A standard approach would be to perform a fit to obtain the PN coe�-
cients of the modes to some (high) accuracy from the numerical data at
a collection of radii and then obtain analytic forms from as many of the
resulting numerical values for the coe�cients as possible, iterating these
back into the fit to increase the accuracy of the determinations of the
numerical values for the remaining coe�cients. However, here we chose
to use the PSLQ algorithm more centrally, and did not perform a fit at
this stage, preferring instead to make linear combinations of the values of
the mode at di↵erent radii to obtain a given coe�cient to enough digits
that we can identify the coe�cient’s analytic form, and then subtract it
o↵. For the low-order coe�cients, which are purely rational, it is even
possible to identify them using PSLQ applied to the value of the mode
at one radius, since its value at, e.g., R = 1070M allows one to obtain
these coe�cients to ⇠ 60 or more digits.

One can help PSLQ identify the analytic form with fewer digits using
appropriate scalings (e.g., multiplying by the denominator of the largest
rational in the previous PN coe�cient, which generally gives a good guide
to most of the prime content of the next order’s largest denominator).

4. Checks on the output of PSLQ

Of course, the PSLQ algorithm will always give one an output for a
given input (e.g., a decimal expansion to some number of digits). One
thus needs a good way (preferably several good ways) of checking that
the output one obtains from PSLQ is actually the correct analytic form.
In addition to the obvious test of making sure that the output is not
dependent upon the number of input digits past the point at which one
first finds the putative correct analytic form, one stringent test is requir-
ing that the denominators of the analytic form are smooth numbers,
with only small prime factors: We find that all known PN coe�cients
have this property, and requiring this allows one to reject many spurious
expressions. For instance, at 12 and 12.5PN, the largest rational num-
bers have a denominator with 32 digits, where the largest prime is 19,
for which the näıve probability is less than 10�21 (just considering all
32-digit numbers).

In addition to such checks as changing the scalings (either of the numer-
ical expression, or scaling the entire �U by powers of U), we also have
the overall check of the analytic form of lower-order coe�cients provided
by our ability to continue to extract coe�cients at higher orders, and
finding that the coe�cients predicted by the structure of the expansion
still agree.

5. An example

The 7PN linear logarithmic coe�cient of �U :

�7 = 536.405212471024286871789539475038911270206 . . .

=
5163722519

5457375
� 109568

525
� � 219136

525
log(2),

where the analytic form can be obtained from the decimal form
(with at least the 42 digits given) by applying PSLQ to the vector
{�7, 1, �, log(2)}, where � is the Euler-Mascheroni gamma constant.

We give this as a simple example: The � and log(2) terms can actually
be predicted from lower-order terms, letting us obtain the remaining
purely rational piece with PSLQ using 22 digits.
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Fig. 1: The largest prime in the denominator of the
PSLQ expression for �7 vs. the number of digits used.
The sudden drop indicates the point at which we first

obtain an accurate analytic form for �7.

6. Summing over all modes

While one can obtain the logarithmic and half-integer terms in the PN
series from a finite sum over modes, one has to perform an infinite sum
over modes to obtain the nonlogarithmic integer-order terms (unlike the
case for the dissipative fluxes, where no infinite sum is required). Unfor-
tunately, this sum converges very slowly, and even standard acceleration
techniques require prohibitively many modes to reach the high accura-
cies we need. Nevertheless, we were able to obtain these terms through
12PN by obtaining the general form of a given PN coe�cient for all `
modes and performing the sum analytically.

7. Final results

We were able to obtain the PN expansion of �U through 12.5PN (as well
as the 13.5PN term) from the analytic results for the PN expansion of the
individual modes obtained via PSLQ. We also performed a less accurate nu-
merical calculation of the full �U at smaller radii (to “merely” 600 digits)
and used these data to obtain the PN coe�cients from a fit, to check. By
iteratively improving the fit using the analytic forms we obtained with PSLQ,
where we used the simplification to predict many terms, we were able to obtain
the coe�cients through 21.5PN in a mixed numerical-analytic form, including
all but the nonlogarithmic piece at 13PN. (This procedure is quite similar to
the one employed for a high-order calculation of the ground state energy of
H+
2 by Nickel [11].) We have made our expressions freely available online.

All the terms we have obtained check through 19PN with the
concurrent purely analytical calculation by Kavanagh, Ottewill,
and Wardell [12], who streamlined the Bini-Damour method. (Note that
all of these analytic calculations use the Regge-Wheeler gauge, and are thus
intrinsically specialized to Schwarzschild.)

8. Convergence

We find that all the higher-order terms we have obtained improve the con-
vergence of the PN expansion for �U , even in the strong-field regime inside
the innermost stable circular orbit (R = 6M), though the series converges
more and more slowly as the field strength increases, as expected. Addition-
ally, exponential resummation (computing the PN expansion of log�U and
then exponentiating with no expansion) improves the convergence of the se-
ries (albeit somewhat erratically), particularly for mid-range PN orders. (It
is much more e↵ective when applied to the individual modes of dissipative
quantities, where—in the case of the energy flux at infinity—it also simplifies
their structure [10].) Factoring out the test particle’s energy (which diverges
at the light ring, R = 3M), as suggested by Akcay et al. [13] also improves
the convergence, though not as much.
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Fig. 2: Convergence of the 21.5PN expression for �U and
various resummations at R = 5M .

9. Conclusions

We have presented a new “experimental mathematics” method for obtain-
ing the analytic forms of the linear-in-mass-ratio portion of coe�cients in the
PN expansion of various quantities for compact binaries from high-accuracy
computation of invariants in the black hole perturbation theory/self-force
framework (including conservative invariants). We applied this method to
Detweiler’s redshift invariant, obtaining analytic forms of the coe�cients up
to 12.5PN, along with the 13.5PN coe�cient by applying PSLQ to individ-
ual modes, and the coe�cients through 21.5PN in mixed numerical-analytic
form, from a fit. These expressions were verified through 19PN by the purely
analytic calculation in [12]. We also found a simplification of the individual
modes, which allows us to predict some logarithmic terms in the PN expansion
to arbitrary orders, and was also useful in predicting portions of the terms in
the determination of analytic forms of higher-order coe�cients from the fit.
We intend to apply these methods to calculations in Kerr in the near future,
where we expect purely analytical calculations to have much more di�culty.
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One can obtain the given analytic 
expression from the given 42 digits by 

applying PSLQ to the vector 

Of course, one checks this expression by 
requiring that it doesn’t change if one uses 
more digits. Additionally, one can make a 

stringent test by requiring that the denominators 
of the rationals do not contain abnormally large primes.
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[Recall that "`m is defined in Eq. (20).] In particular, note
that the individual modes are purely rational integer-
order PN series until the first appearance of the loga-
rithm, where they start to have transcendental contri-
butions, as well. The transcendentals and the logarithm
first only appear together in the form of eulerlogm(R)
in the integer-order terms, but then, starting with the
1/R6+`+✏`m term (i.e., the same order at which eulerlog2

terms start to appear), they also get ⇡2 and ⇣(3) terms,
where ⇣ is the Riemann zeta function. Much of the in-
crease of complexity is described by the simplifications
[Eqs. (18) and (23)], though there are a few logarithms,
transcendentals,4 and half-integer terms that the sim-
plifications do not remove, just as found for the en-
ergy flux in [38], which should be expected, from the
form of the expressions used to obtain both quantities.
In particular, the expression in Eq. (25) does not in-
clude the appearance of the eulerlog2(R) log(2/R)/R13

and ⇡ log(2/R)/R14.5 terms that are known in the (2, 2)
mode of �U (which are also not given by either of the
simplifications).

We apply the PSLQ integer relation algorithm [42, 43]
in its implementation as the FindIntegerNullVector func-
tion in Mathematica to obtain analytic forms for the
PN coe�cients of the retarded (`,m) modes of �U .5

Specifically, if one inputs a vector of decimals to the
PSLQ algorithm, it returns the (nonzero) vector with the
smallest (L2) norm whose inner product with the input
vector is zero. One can thus apply PSLQ to identify the
analytic form of a number from a su�ciently accurate
decimal representation, if one knows (or has an educated
guess for) the transcendental numbers [here, for instance,
⇡, log(2), �, ⇣(3), etc.] present in the analytic form. This
is particularly simple when the number one will obtain is
a linear combination of the transcendentals with rational
coe�cients, as is the case here, where the vector in ques-
tion is simply the decimal expansion of the number to be
identified, along with 1, and any transcendentals thought
to be present. Of course, PSLQ will give an output for
any vector, but the outputs that do not correspond to a
true relation are almost always large and “ugly-looking”
for a su�cient number of digits, while the true vector
will have a certain “nice-looking” structure (which we
will discuss further later).

4 Note that � and ⇣ evaluated at odd integers are not known to be
transcendental, or in most cases even irrational. However, they
are all strongly conjectured to be transcendental, so we shall refer
to them as such.

5 Note that we shall often use the name PSLQ as a shorthand for
the FindIntegerNullVector function.

C. An example: Obtaining the analytic form of the
�
7

coe�cient of the full �U from the decimal form
given in SFW

As an example, we consider obtaining the �7 coe�-
cient [i.e., the coe�cient of the log(R)/R8 term in �U ]
from the numerical value given in SFW, as was reported
there (and confirmed by the analytic calculation in [25]).
This is the coe�cient of log(R) at the first order where
there is a log2(R) term, so, by analogy with the transcen-
dentals appearing in the nonlogarithmic term at the first
appearance of log(R), we expect to have � and log(2)
terms here. As we saw in the expression of the structure
of the PN expansion of the modes in terms of eulerlogs
above, this linking of log(R), log(2), and � is a generic
feature, though it is broken at high orders by the ap-
pearance of the log(2/R) terms. Indeed, since this is the
first appearance of log2(R), and thus only comes from
the (2, 2) mode, we can actually subtract o↵ the log(2)
and � terms and only have to obtain the rational piece
using PSLQ. However, we shall first consider the case of
using PSLQ to obtain the full term, since this is how we
initially obtained it.
Starting from

�7 = 536.4052124710242868717895394750389112702062

69552321207927883360240368736326766131833 . . . ,
(26)

which is taken directly from Table I in SFW, we can
apply PSLQ in the form of Mathematica’s FindInte-
gerNullVector function to the vector {�7, 1, �, log(2)} and
obtain the expression of

�7 =
5163722519

5457375
� 109568

525
� � 219136

525
log(2) (27)

with at least 42 digits. (Nota bene: We find that the
final digit given by SFW is incorrect and should be a
6.) We were able to reject the expressions produced by
smaller numbers of digits since they lead to anomalously
large prime factors in the denominator (i.e., the term in
the vector returned by PSLQ corresponding to �7 itself),
except if one only evaluates �7 to a very small number
of digits, of course: See Fig. 1 (cf. Fig. 5 in [50], which
shows an alternative method for detecting a likely true
relation using PSLQ by looking at the size of the smallest
entry in the vector versus the number of iterations of
the algorithm, which is not information available when
usingMathematica’s FindIntegerNullVector). We shall
discuss this method of looking at the prime factorization
further at the end of the section.
Interestingly enough, the minimum number of digits

required to obtain this expression accurately with FInd-
IntegerNullVector is somewhat dependent on the order of
the terms in the vector. For instance, if we consider in-
stead the vector {�7, log(2), 1, �}, we only need 39 digits
to obtain an accurate analytic form. If we scale by the
denominator of �6 (which is 575), i.e., consider the vector

Smooth numbers, which only contain small prime 
factors (e.g., only primes smaller than the logarithm 
of the number) are quite sparsely distributed as the 
size of the number increases, which is why this test 

is so stringent. 
!

For instance, at 12 and 12.5PN, the denominators 
of the purely rational terms each have 32 digits, but 
the largest prime in each is only 19. The probability 
of this being the case for a random 32 digit integer 

is less than 10-21.



Further consistency checks of the results of PSLQ

• One often scales the coefficient one is considering by a large smooth 
number (e.g., the denominator of the purely rational term at one PN order 
lower), as this often allows PSLQ to be able to determine the analytic 
form with fewer digits. One can then check that the result is independent 
of small changes to the powers of primes in the smooth number. 

• One can also check that the results are independent of whether one 
obtains the coefficients of ΔU itself, or first scales it by, e.g., some power 
of U (where the appropriate power can also help in determining the 
analytic form with fewer digits). 

• Finally, if one knows many digits, one can check that the result is 
independent of whether one uses additional transcendentals in the vector 
to which one applies PSLQ.



Calculating the infinite l-sum

• To obtain the infinite sum, we note that the general l-dependence of a given PN 
coefficient of a renormalized l-mode (for large enough l that it is purely rational) 
has a reasonably simple general form as a sum of rational functions (though the 
number of rational functions increases with PN order), and solve for the 
coefficients of these rational functions. 
 
 
 
 

• We then check that the putative expression we obtain indeed reproduces the 
coefficients for the ls that were not used in the solve, and then perform the l-
sum analytically à la Bini and Damour (evaluating it in terms of the Riemann zeta function at even 
integers, using partial fractions and noting that much of the series telescopes—this can be done automatically by 
Mathematica).

11

more complicated than) the form considered for the regularization coe�cients in Sec. V of Shah et al. [20]. The form
we obtain implies that much of the infinite sum telescopes to a finite sum, except for the portion that leads to zeta
function values (at present, just evaluated at even integers).

Specifically, we define the following three rational functions:

T n
k (`) :=

1

(`+ k + 1/2)n
+

(�1)n

(`� k + 1/2)n
, (7a)

Un
k (`) :=

1

(`+ k)n
+

(�1)n

(`� k + 1)n
, (7b)

Vn(`) :=
1

(`+ 1/2)n
. (7c)

[Note that Vn is the only one of these where the superscript n is the same as taking V to the nth power.] Then we
have the following structure for the rational integer-order PN coe�cients of �U (actually �U/U) from 1PN through
10PN:

T 1

1

, (8a)

T 1

1�2

& U1

1

, (8b)

T 1

1�3

& T 2

1

& U1

1�2

& V2, (8c)

T 1

1�4

& T 2

1

& T 3

1

& U1

1�3

& V2, (8d)

T 1

1�5

& T 2

1�2

& T 3

1

& U1

1�3

& U2

1

& U3

1

& V2, (8e)

T 1

1�6

& T 2

1�3

& T 3

1

& T 4

1

& U1

1�5

& U2

1�2

& U3

1

& V2 & V4, (8f)

T 1

1�7

& T 2

1�4

& T 3

1

& T 4

1

& T 5

1

& U1

1�6

& U2

1�3

& U3

1

& V2 & V4, (8g)

T 1

1�8

& T 2

1�5

& T 3

1�2

& T 4

1

& T 5

1

& U1

1�7

& U2

1�4

& U3

1

& U4

1

& U5

1

& V2 & V4, (8h)

T 1

1�9

& T 2

1�6

& T 3

1�3

& T 4

1

& T 5

1

& T 6

1

& U1

1�8

& U2

1�5

& U3

1�2

& U4

1

& U5

1

& V2 & V4 & V6. (8i)

T 1

1�10

& T 2

1�7

& T 3

1�4

& T 4

1

& T 5

1

& T 6

1

& T 7

1

& U1

1�9

& U2

1�6

& U3

1�3

& U4

1

& U5

1

& V2 & V4 & V6. (8j)

Here each of these terms (including, e.g., the ten individual terms in T 1

1�10

) has a rational coe�cient.
We obtain these rational coe�cients by a direct solve of the linear system, using Mathematica, and then check

that the coe�cients look “nice” (e.g., have denominators with nice prime factorizations and are generally not too
complicated, compared to the previous order), and that they correctly predict the higher-` modes that were not used
in the solve. As mentioned above, we only use large enough `s at a given order in the solve that the coe�cients are
purely rational: We add on the lower ` contributions “by hand” at the end. We can also make another check by
seeing whether the purely rational term in the final contribution to �U is su�ciently simple: If there is an incorrect
or missing term that contributes to it in the calculation, it will generally be a much larger rational than it should be.

IV. CHECKS AGAINST THE RESULTS IN SHAH, FRIEDMAN, AND WHITING

We can also check the simplification against the higher-order terms determined by Shah, Friedman, and Whiting
(SFW) [9], specifically the coe�cients of 1/R10, log(R)/R10, log2(R)/R10, log(R)/R10.5, 1/R10.5, 1/R11, log(R)/R11,
log2(R)/R11, 1/R11.5, and log(R)/R11.5. Here we find exact agreement, as expected, for the third and fourth, where
SFW obtained analytic forms for the coe�cients, agreement to all the digits SFW computed (36, 37, 26, 14, 13, and 15,
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Form of the general 
l-dependence through 4PN
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logarithmic-type terms to arbitrarily high orders for the
ground state energy of H+

2 , and is able to derive some
of them. Finally, these sorts of predictions of leading
logarithms to arbitrarily high orders are likely related to
the multipole moment beta functions discussed by Gold-
berger et al. [66, 67], where they predict the coe�cient
of the first occurrence of a given power of a logarithm in
both the energy flux and the binding energy using the
beta function for the dominant (2, 2) mode.

V. COMPUTING THE INFINITE SUM OVER
RENORMALIZED ` MODES TO OBTAIN THE

FINAL RESULT FOR �U

�U , being a conservative invariant (and thus coming
from the half-retarded plus half-advanced field, as dis-
cussed in Sec. 5 of [6]), requires a renormalization pro-
cedure where a noncontributing singular part of the re-
tarded�U calculated at the position of the particle needs
to be subtracted. This is done by using a mode-sum reg-
ularization technique where the retarded part is written
as a sum over angular harmonics and the singular part
is written as a sum over angular harmonics by extending
it on the coordinate 2-sphere passing through the par-
ticle (i.e., at r = r0). The explicit equations used in
renormalization are given in [52]. The sum over ` modes
converges quite slowly (the summand goes as `�2), so it is
customary to improve the convergence by finding higher-
order regularization coe�cients numerically, as in [52].
However, to obtain an accuracy of N digits in the fi-
nal result of the renormalized �U , one has to obtaining
these higher-order regularization coe�cients to N digits
as well, which would necessitate going to prohibitively
large ` (e.g., `max ⇠ 103 for an accuracy of 5000 digits).
(The Wentzel-Kramers-Brillouin method detailed in [68]
could be useful here in future work.)

Nevertheless, it is possible to obtain the analytic form
for a given nonlogarithmic integer order PN term by ob-
taining the general form of the PN coe�cient of a renor-
malized ` mode and performing the sum analytically, as
in Bini and Damour [24–26]. We thus note that the
nPN coe�cients of all the renormalized ` modes with
` � n � 1 are purely rational (with no transcendentals
or logarithms). (Here we only consider n 2 N, since the
half-integer terms only have a finite number of ` modes
contributing.) One can thus easily obtain analytic forms
for these coe�cients using PSLQ. (Here one scales with
the denominator of the previous ` mode, to help with the
determination, and needs at most the values at four radii
to obtain enough digits at 12PN.) We then find that the
general form of these coe�cients as a function of ` can be
expressed as linear combinations of members of a small

family of functions, namely

T n
k (`) :=

1

(`+ k + 1/2)n
+

(�1)n

(`� k + 1/2)n
, (34a)

Un
k (`) :=

1

(`+ k)n
+

(�1)n

(`� k + 1)n
, (34b)

Vn(`) :=
1

(`+ 1/2)n
. (34c)

[Note that Vn is the only one of these where the e↵ect
of the superscript n is the same as taking V to the nth
power.] These functions are similar to, though slightly
more complicated than, the form considered for the reg-
ularization coe�cients in Sec. V of Shah et al. [52]. We
solve the linear system to obtain the coe�cients (noting
that one obtains excessively large rationals for the coe�-
cients if one has not included the correct functions in the
solve) and check that the expression successfully repro-
duces the values of the coe�cients that were not used in
the solve. We need to go to ` = 87 (starting from ` = 16,
to avoid logarithmic terms at higher orders) for 12PN,
the most complicated case we consider, for a total of 72
`-modes.
The general expressions for the first six PN coe�cients

have the form

T 1
1 ,

T 1
1�2 & U1

1 ,

T 1
1�3 & T 2

1 & U1
1�2 & V2,

T 1
1�4 & T 2

1 & T 3
1 & U1

1�3 & V2, (35)

T 1
1�5 & T 2

1�2 & T 3
1 & U1

1�4 & U2
1 & U3

1 & V2,

T 1
1�6 & T 2

1�3 & T 3
1 & T 4

1 & U1
1�5 & U2

1�2 & U3
1 & V2 & V4,

where we just give the functions present, not the coe�-
cients, and a range in a subscript indicates that all the
functions in that range are present. We give the explicit
expressions up to 12PN in the electronic Supplemental
Material [60], and only note here that the specifics of the
functions present grows in about the way one would ex-
pect: At nPN, one has T k

1�(n�3k+3), Uk
1�(n�3k+2) terms

present, for ks with n � 3k + 3 � 1 and n � 3k + 2 � 1,
respectively, as well as T 1

p , U1
p terms for larger p (where

the specifics of the terms present at a given PN order
has a somewhat more complicated structure). One also
has Vk present for all even k  (2/3)n. For instance, at
12PN, we have

T 1
1�12 & T 2

1�9 & T 3
1�6 & T 4

1�3 & T 5
1 & T 6

1 & T 7
1 & T 8

1

& U1
1�11 & U2

1�8 & U3
1�5 & U4

1�2 & U5
1 & U6

1 & U7
1

& V2 & V4 & V6 & V8.
(36)

Also note that these general expressions diverge at the
`s for which the PN coe�cient is no longer purely ra-
tional, due to the U1

n�1 term (cf. the discussion of the
appearance of the logarithms at places where there are

…and at 12PN



Sketch of our method for obtaining the PN coefficients of ΔU to 
12.5PN analytically and 21.5PN in mixed analytic-numerical form

Calculate the retarded (l, m) modes to very 
high accuracy (> 5000 digits; we used ~1240 digits here) 

for large radii [(1050–1070)M]

Both these calculations use a radiation 
gauge code and the MST formalism

Calculate the full ΔU to “merely high” 
accuracy (~600 digits) for somewhat smaller radii 

[(1018–1034)M]

Obtain the analytic PN coefficients of 
the low-order (l, m) modes using PSLQ 
(we go to l = 10 for 12.5PN and could automate the process for higher l)

Here we use linear combinations of the 
values of ΔU at different radii to obtain 
enough digits to correctly identify the 

analytic form of a given PN coefficient, 
so we can subtract it off and move on 

to the next coefficient.

Obtain the analytic PN coefficients of 
the general renormalized l-modes 
using PSLQ and a linear solve and 

sum them analytically

Notice patterns in the PN coefficients 
and obtain a simplification that allows 

one to predict certain higher-order 
coefficients

Result I: The analytic PN coefficients of ΔU through 12.5PN + 
the 13.5PN coefficient, and some leading logarithmic terms 

to all orders

Fit to obtain the PN coefficients 
of the full ΔU, after subtracting 
off the known analytic terms

Obtain analytic forms for as many PN 
coefficients as possible, with help from the 
simplification, and use these to improve the 

accuracy of the fit

Result II: The PN coefficients of ΔU through 21.5PN in mixed 
numerical-analytic form, including analytic forms for all but the 

non-log(R) term at 13PN 

All these PSLQ determinations are required 
to pass stringent tests (e.g., not having large prime factors 

in the denominators of the rationals) that give us high 
confidence that the expressions we obtain are the true ones

This fit also provides a sensitive check 
of the accuracy of the analytic forms we obtain



A cautionary example

• Of course, even if one finds an analytic form that reproduces the decimal expansion 
to many digits, this doesn’t prove that the analytic form is indeed correct. 

• For instance,  
 
 
 
only differs from π/8 starting at the 43rd digit. 

• Bailey and Borwein give even more extreme examples in some of their articles in the 
notices of the AMS (2005 & 2011), notably one where the discrepancy would never 
be seen in any realistic numerical computation, since it only occurs after more than a 
googolplex (1010100) digits! 

• However, in our case, the structures we find (and expect to see) in the expansion give 
us good confidence that the analytic expressions we find are correct, which is borne 
out by agreement with a concurrent completely analytic computation by Kavanagh, 
Ottewill, and Wardell (2015).

21

Hales [20] has now embarked on a multiyear
program to certify the proof by means of computer-
based formal methods, a project he has named the
“Flyspeck” project. As these techniques become
better understood, we can envision a large number
of mathematical results eventually being confirmed
by computer, as instanced by other articles in the
same issue of the Notices as Hales’s article.

Limits of Computation
A remarkable example is the following:

Z1

0
cos(2x)

1Y

n=1

cos(x/n)dx

(20)

= 0.392699081698724154807830422909937860524645434187231595926...

The computation of this integral to high precision
can be performed using a scheme described in [5].
When we first did this computation, we thought
that the result was ⇡/8, but upon careful checking
with the numerical value

0.392699081698724154807830422909937860524646174921888227621...,

it is clear that the two values disagree beginning
with the forty-third digit!

Richard Crandall [15, §7.3] later explained this
mystery. Via a physically motivated analysis of
running out of fuel random walks, he showed
that ⇡/8 is given by the following very rapidly
convergent series expansion, of which formula (20)
above is merely the first term:

(21)
⇡

8
=

1X

m=0

Z1

0
cos[2(2m+1)x]

1Y

n=1

cos(x/n)dx.

Two terms of the series above suffice for 500-digit
agreement.

As a final sobering example, we offer the
following “sophomore’s dream” identity

�29 :=
1X

n=�1
sinc(n) sinc(n/3) sinc(n/5)(22)

· · · sinc(n/23) sinc(n/29)

=
Z1

�1
sinc(x) sinc(x/3) sinc(x/5)

· · · sinc(x/23) sinc(x/29) dx,

(23)

where the denominators range over the odd
primes, which was first discovered empirically.
More generally, consider

�

p

:=
1X

n=�1
sinc(n) sinc(n/3) sinc(n/5) sinc(n/7)

(24)

· · · sinc(n/p)

?=
Z1

�1
sinc(x) sinc(x/3) sinc(x/5) sinc(x/7)

· · · sinc(x/p)dx.

Provably, the following is true: The “sum equals
integral” identity for �

p

remains valid at least
for p among the first 10176 primes but stops
holding after some larger prime, and thereafter
the “sum less the integral” is strictly positive, but
they always differ by much less than one part in
a googolplex = 10100. An even stronger estimate
is possible assuming the generalized Riemann
hypothesis (see [15, §7] and [8]).

Concluding Remarks
The central issues of how to view experimentally
discovered results have been discussed before. In
1993 Arthur Jaffe and Frank Quinn warned of the
proliferation of not-fully-rigorous mathematical re-
sults and proposed a framework for a “healthy and
positive” role for “speculative” mathematics [21].
Numerous well-known mathematicians responded
[1]. Morris Hirsch, for instance, countered that even
Gauss published incomplete proofs, and the fifteen
thousand combined pages of the proof of the
classification of finite groups raises questions as to
when we should certify a result. He suggested that
we attach a label to each proof—e.g., “computer-
aided”, “mass collaboration”, “constructive”, etc.
Saunders Mac Lane quipped that “we are not saved
by faith alone, but by faith and works,” meaning
that we need both intuitive work and precision.

At the same time, computational tools now
offer remarkable facilities to confirm analytically
established results, as in the tools in development
to check identities in equation-rich manuscripts,
and in Hales’s project to establish the Kepler
conjecture by formal methods.

The flood of information and tools in our
information-soaked world is unlikely to abate.
We have to learn and teach judgment when it
comes to using what is possible digitally. This
means mastering the sorts of techniques we have
illustrated and having some idea why a software
system does what it does. It requires knowing when
a computation is or can—in principle or practice—
be made into a rigorous proof and when it is
only compelling evidence or is entirely misleading.
For instance, even the best commercial linear
programming packages of the sort used by Hales
will not certify any solution, though the codes are
almost assuredly correct. It requires rearranging
hierarchies of what we view as hard and as easy.

It also requires developing a curricu-
lum that carefully teaches experimental
computer-assisted mathematics. Some ef-
forts along this line are already under way
by individuals including Marc Chamberland at Grin-
nell (http://www.math.grin.edu/~chamberl/
courses/MAT444/syllabus.html), Victor Moll at
Tulane, Jan de Gier in Melbourne, and Ole Warnaar
at the University of Queensland.
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Simplifying the (retarded) l,m modes of ΔU and the 
energy flux at infinity

• First, a reminder of the basic simplification of the modes of the 
energy flux at infinity that I found last year. This involves the function 
 
 
 
 
which one can write as 
 
 
 
using 
 

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
(14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational, but are strongly conjectured to be
transcendental, so we shall refer to them all as such.)
This means that for ` � 7, this factorization turns the
22PN total energy flux results for ⌘`m into such purely
rational integer order PN series. Moreover, even higher-
order terms that still contain transcendentals and log v
terms are significantly simplified by this factorization, as
illustrated in Sec. V. One obtains the same simplification
upon factoring out |S`m| from |h̄`m| (i.e., the amplitude
of the gravitational wave modes, again all scaled to have a
leading term of unity), as one would expect from Eqs. (1)
and (2).
We can write S`m in a form that better illustrates some

of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)

Fractional part of the MST 
renormalized angular momentum ν

4

have modified their definition slightly since we are using
a di↵erent expansion parameter; cf. Fujita and Iyer [13],
who refer to this as eulerlog(m, v). We also find that the
logarithms remaining after the eulerlogm(v) substitution
can all be written in terms of log(2v2). Specifically, one
performs the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log 2 ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

↵kv
2k +O(v8+4`), (15)

where ↵k 2 Q. Thus, through O(v7+4`), factoring out
|S`m|2 removes all the transcendentals, as well as the
odd powers and logarithms of v, and leaves a pure in-
teger order PN series with rational coe�cients. (N.B.:
These expressions contain the Euler-Mascheroni gamma
constant � and the Riemann zeta function evaluated at
odd integers. These numbers are not known to be tran-
scendental, or in many cases even irrational. However,
they are all strongly conjectured to be transcendental,
so we shall refer to them all as such.) This means that
for ` � 7, this factorization turns the 22PN total energy
flux results for ⌘`m into such purely rational integer order
PN series. Moreover, even higher-order terms that still
contain transcendentals and log v terms are significantly
simplified by this factorization, as illustrated in Sec. V.
One obtains the same simplification upon factoring out
|S`m| from |h`m| (i.e., the amplitude of the gravitational
wave modes), as one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

⌫̄`m(v) eulerlogm(v) + ⇡mv3 + �S`m(v)
⇤

,

�S`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17a)

B. The V`m factorization

One can remove some more transcendentals and log-
arithms from ⌘̄`m/|S`m|2 by additionally factoring out
|V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

4

have modified their definition slightly since we are using
a di↵erent expansion parameter; cf. Fujita and Iyer [13],
who refer to this as eulerlog(m, v). We also find that the
logarithms remaining after the eulerlogm(v) substitution
can all be written in terms of log(2v2). Specifically, one
performs the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log 2 ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

↵kv
2k +O(v8+4`), (15)

where ↵k 2 Q. Thus, through O(v7+4`), factoring out
|S`m|2 removes all the transcendentals, as well as the
odd powers and logarithms of v, and leaves a pure in-
teger order PN series with rational coe�cients. (N.B.:
These expressions contain the Euler-Mascheroni gamma
constant � and the Riemann zeta function evaluated at
odd integers. These numbers are not known to be tran-
scendental, or in many cases even irrational. However,
they are all strongly conjectured to be transcendental,
so we shall refer to them all as such.) This means that
for ` � 7, this factorization turns the 22PN total energy
flux results for ⌘`m into such purely rational integer order
PN series. Moreover, even higher-order terms that still
contain transcendentals and log v terms are significantly
simplified by this factorization, as illustrated in Sec. V.
One obtains the same simplification upon factoring out
|S`m| from |h`m| (i.e., the amplitude of the gravitational
wave modes), as one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

⌫̄`m(v) eulerlogm(v) + ⇡mv3 + �S`m(v)
⇤

,

�S`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17a)

B. The V`m factorization

One can remove some more transcendentals and log-
arithms from ⌘̄`m/|S`m|2 by additionally factoring out
|V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

4

modified their definition slightly since we are using a dif-
ferent expansion parameter; cf. Fujita and Iyer [13], who
refer to this as eulerlog(m, v). Specifically, one performs
the substitutions

� ! eulerlogm(v)� log 2� logm� log v, (11a)

log(2) ! log(2v2)� 2 log v (11b)

(in this order).
Another way of simplifying these results is related to

the work of Isoyama et al. [8], who advocated PN ex-
panding log hdE/dri1 and then exponentiating (with no
expansion) as a way to improve the convergence of the
series, and ensure its positivity in the Kerr case. Here we
note that PN expanding log ⌘̄`m produces a considerable
simplification of its analytic form.

We also consider the leading logarithm tail factoriza-
tion introduced by Damour and Nagar [7], which is given
by ⌘̄`m/|T`m|2, where

|T`m| = e⇡mv3 |�(1 + `� 2imv3)|
�(1 + `)

. (12)

The full version of the factorization [given in, e.g.,
Eq. (16) of Damour and Nagar [7]] also includes a phase
factor that is not relevant to the present discussion and
was introduced with slightly di↵erent notation—T`m is
now common in the literature. Note that we can use
the standard gamma function identity (from the reflec-
tion formula) |�(1 + iz)|2 = ⇡z/ sinh⇡z [(6.1.31) in
Abramowitz and Stegun [14]] along with the gamma func-
tion’s recurrence relation to write

|T`m|2 =
4⇡mv3

1� e�4⇡mv3

Ỳ

k=1

"

1 +

✓

2mv3

k

◆

2

#

(13)

[cf. Eq. (59) of Damour, Iyer, and Nagar [9], which
presents this expression in a slightly di↵erent form].

A. The S`m factorization

The first simplifying factorization we introduce is given
using

S`m := (2mv)⌫̄`m(v)e⇡mv3 �[1 + ⌫̄`m(v)� 2imv3]

�[1 + 2⌫̄`m(v)]
, (14)

where ⌫̄`m(v) := ⌫ � `. [We show the dependence of
⌫̄`m(v) on `, m, and v explicitly, for clarity, even though
it is not customary in the literature to do this for ⌫.]

Specifically, we have

⌘̄`m
|S`m|2 = 1 +

3+2`
X

k=1

h

⌘̄
(S)

`m

i

k
v2k +O(v8+4`), (15)

where
h

⌘̄
(S)

`m

i

k
2 Q. Thus, through O(v7+4`), factoring

out |S`m|2 removes all the transcendentals and odd pow-
ers and logarithms of v and leaves a pure integer order PN
series with rational coe�cients. (N.B.: These expressions
contain the Euler-Mascheroni gamma constant � and the
Riemann zeta function evaluated at odd integers. These
numbers are not known to be transcendental, or in many
cases even irrational. However, they are strongly con-
jectured to be transcendental, so we shall refer to them
all as such.) This means that for ` � 7, this factoriza-
tion turns the 22PN total energy flux results for ⌘`m into
such purely rational integer order PN series. Moreover,
even higher-order terms that still contain transcenden-
tals and log v terms are significantly simplified by this
factorization, as illustrated in Sec. V. One obtains the
same simplification upon factoring out |S`m| from |h`m|
(i.e., the amplitude of the gravitational wave modes), as
one would expect from Eqs. (1) and (2).

We can write S`m in a form that better illustrates some
of its structure, and makes for faster computations in
Mathematica using the expansion

�(1 + z) = exp

"

��z +
1
X

n=2

⇣(n)

n
(�z)n

#

, (16)

which gives

S`m = exp
⇥

2⌫̄`m(v) eulerlogm(v) + 2⇡mv3 + SS`m(v)
⇤

,
(17a)

SS`m(v) :=
1
X

n=2

⇣(n)

n

�⇥

�⌫̄`m(v) + 2imv3
⇤n�[�2⌫̄`m(v)]n

 

.

(17b)

B. The V`m factorization

One can remove some more transcendentals and loga-
rithms by additionally factoring out |V`m|2, where

V`m :=
V num

`m

V denom

`m

, (18)

V num

`m := 1 + q`m(2v2)1+2`+2⌫̄`m(v)�[1� 2⌫̄`m(v)]

�[1 + 2⌫̄`m(v)]

⇢

�[1 + ⌫̄`m(v)� 2imv3]

�[1� ⌫̄`m(v)� 2imv3]

�

2

= 1 + q`m(2v2)1+2` exp
⇥

2⌫̄`m(v) log(2v2) + SV num

`m
(v)

⇤

,

(19a)



Simplifying the (retarded) l,m modes of ΔU and the 
energy flux at infinity (cont.)

• The Slm factorization turns the l,m mode of the energy flux at infinity for 
Schwarzschild into a simple integer PN series with rational coefficients 
through O(v7+4l). 

• We found a similar simplification of the modes of ΔU, though its full form 
seems more complicated than that of Slm, and we have only found it as a 
series expansion, except for one exponential that’s the same as in Slm. 
(Unlike for Slm, it does not seem possible to be able to read off the simplification directly from the MST 
formalism, though one can see where the exponential part comes from.)  
 
 
 
 
 

7

� 22472300973148199671

375475131
eulerlog22(R) +

211107268991

365374
eulerlog32(R)

�

1

R13
+



5623204122099819885533688671

243105576112132171191

+
24802849557341891

385373111131
⇡2 � 21410711511

345372
⇡4 � 21410721511

335373
⇣(3) +

✓

�241071121311916311357042731

385575111131

� 21410721511

345373
⇡2

◆

eulerlog2(R) +
21310731511

345474
eulerlog22(R)

�

⇡

R13.5
+O

✓

1

R14

◆

.

(16)

Here

eulerlogm(R) := � + log(2m/R1/2), (17)

where � is the Euler-Mascheroni gamma constant, is the
function associated with many higher-order tail terms in
the PN expansion, first introduced in general by Damour,
Iyer, and Nagar [61], with a slightly di↵erent definition,
since they use a di↵erent variable. Additionally, ⇣ de-
notes the Riemann zeta function.

The PN expansion of the (2, 2) mode for �U has quite
a bit of structure that is readily apparent in its prime
factorization, and the PN expansions of the other modes
display similar structure. In particular, we can write
most of the eulerlognm(R), half-integer, and zeta func-
tion terms in ⌥`m (including the even powers of ⇡) to
the orders currently known in the following form (“C” is
for “complications”)
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Here we have given two forms for ⌥C1
`m to better illustrate

its structure;3 recall that ⇣(2) = ⇡2/6 and ⇣(4) = ⇡4/90.
Additionally,

⌫̄`m := ⌫ � ` =
1
X

k=1

[⌫`]k
(2m)2k

R3k
, (19)

3 Note that we only need to use ⌥C1

`m simplify the m 6= 0 modes.
The m = 0 modes are nonradiative, and thus already have purely
rational simple integer-order PN series, with no simplification
necessary. Therefore, even though ⌫̄`m = 0 for m = 0, one does
not need to be concerned about potential division by zero [or
logarithms of zero in eulerlogm(R)] in Eq. (18).

where ⌫ is the renormalized angular momentum intro-
duced in the MST formalism [54, 56]. (Here we denote
its dependence on ` and m explicitly, which is usually
not done in the literature, though we suppress its de-
pendence on R, even though we displayed the analo-
gous dependence on v in [38].) See the Appendix of
Bini and Damour [24] for explicit expressions for [⌫`]k,
k 2 {1, 2, 3}, where these are referred to as ⌫2k(`). Note
also that [⌫2]1 = �1071/21315171, which explains the ap-
pearance of factors of 107 in many places in the prime
factorization of ⌥22 in Eq. (16). In fact, ⌫ (along with
its analogue for ` ! �` � 1) gives many of the leading
logarithms in the homogeneous solutions of the Regge-
Wheeler equation, as noted in Sec. II B of [27] (some sim-
ilar results for the Teukolsky equation are also implicit
in the results of [38]). Additionally, ⌫ is (up to a factor

same as in |Slm|2



Simplifying the (retarded) l,m modes of ΔU and the 
energy flux at infinity (cont.)

• Additionally, the simplification of ΔU does not act by 
division, but rather by subtraction. Here is the simplified 
version of the 2,2 mode of ΔU/U to 12.5PN + 13.5PN 
(and a bit of 14PN), as an example:

8

of i) the monodromy of the radial Teukolsky equation
about the irregular singular point at infinity, as is men-
tioned in [62]. One also sees [⌫`]1, multiplied by a rational
with small prime factors, appearing in the coe�cients of
integrals involving an ` multipole in the standard PN cal-
culation of the next-to-leading two half-integer terms in
�U in [23]; cf. their Eqs. (3.14)–(3.18) and (4.7)–(4.11)
with the values for [⌫`]1, ` 2 {2, 3, 4} given in Table I
in [38]. Finally, the general form of [⌫`]1 appears in the
coe�cient of log ⌧0 (where ⌧0 is the constant associated
with the regularization parameter r0, not to be confused
with the r0 in this paper) in post-Newtonian expressions
for all the mass-type radiative multipole moments; cf.
Eq. (3.9) in [63] and Eq. (A2) in [24]. This coe�cient
was derived by Blanchet and Damour in the Appendix
of [64] using methods that di↵er from both the contin-
ued fraction method of MST [54] and the monodromy
method of Castro et al. [62]. We also define

"`m :=

(

0 if `+m is even,

1 if `+m is odd.
(20)

The A(k)
`m coe�cients are rational and are given by the

coe�cients of the eulerlogm(R) terms. While we might
expect there to be contributions to the eulerlog terms
that are not part of this simplification starting at 9PN,
by analogy with the remainder of the S`m factorization
of the modes of the energy flux from [38], it appears that
this is not the case, since we see the same structure in

the remainder with this choice for the A(k)
`m coe�cients as

for the S`m factorization of the modes of the energy flux
to all the orders we have considered.

If we apply this simplification to the (2, 2) mode, then
we have
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where ↵(k)
22 2 Q. Here, to simplify the remainder, we

have not used [⌫]3 in ⌥C1
22 , but rather the expression for

the 1/R9 piece of the 1/R expansion of ⌫ that is valid
for all ` > 2, without the additional piece that only con-
tributes for ` = 2 (for positive `). Specifically, this is the
expression for ⌫6(`) given in the Appendix of Bini and

Damour [24] with the final c6 term omitted. We omit
this term because c6 = 2171/31511071, and we do not ac-
tually see such factors of 107 (or any other anomalously
large primes) in the denominators of the PN expansion
of fluxes or gauge-invariant self-force quantities available
to date. For instance, if we had used [⌫]3 instead of the

Here
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of i) the monodromy of the radial Teukolsky equation
about the irregular singular point at infinity, as is men-
tioned in [62]. One also sees [⌫`]1, multiplied by a rational
with small prime factors, appearing in the coe�cients of
integrals involving an ` multipole in the standard PN cal-
culation of the next-to-leading two half-integer terms in
�U in [23]; cf. their Eqs. (3.14)–(3.18) and (4.7)–(4.11)
with the values for [⌫`]1, ` 2 {2, 3, 4} given in Table I
in [38]. Finally, the general form of [⌫`]1 appears in the
coe�cient of log ⌧0 (where ⌧0 is the constant associated
with the regularization parameter r0, not to be confused
with the r0 in this paper) in post-Newtonian expressions
for all the mass-type radiative multipole moments; cf.
Eq. (3.9) in [63] and Eq. (A2) in [24]. This coe�cient
was derived by Blanchet and Damour in the Appendix
of [64] using methods that di↵er from both the contin-
ued fraction method of MST [54] and the monodromy
method of Castro et al. [62]. We also define

"`m :=

(

0 if `+m is even,

1 if `+m is odd.
(20)

The A(k)
`m coe�cients are rational and are given by the

coe�cients of the eulerlogm(R) terms. While we might
expect there to be contributions to the eulerlog terms
that are not part of this simplification starting at 9PN,
by analogy with the remainder of the S`m factorization
of the modes of the energy flux from [38], it appears that
this is not the case, since we see the same structure in

the remainder with this choice for the A(k)
`m coe�cients as

for the S`m factorization of the modes of the energy flux
to all the orders we have considered.

If we apply this simplification to the (2, 2) mode, then
we have
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where ↵(k)
22 2 Q. Here, to simplify the remainder, we

have not used [⌫]3 in ⌥C1
22 , but rather the expression for

the 1/R9 piece of the 1/R expansion of ⌫ that is valid
for all ` > 2, without the additional piece that only con-
tributes for ` = 2 (for positive `). Specifically, this is the
expression for ⌫6(`) given in the Appendix of Bini and

Damour [24] with the final c6 term omitted. We omit
this term because c6 = 2171/31511071, and we do not ac-
tually see such factors of 107 (or any other anomalously
large primes) in the denominators of the PN expansion
of fluxes or gauge-invariant self-force quantities available
to date. For instance, if we had used [⌫]3 instead of the



Simplifying the (retarded) l,m modes of ΔU and the 
energy flux at infinity (cont.)

• Additionally, the simplification of ΔU does not act by 
division, but rather by subtraction. Here is the simplified 
version of the 2,2 mode of ΔU/U to 12.5PN + 13.5PN 
(and a bit of 14PN), as an example:

8

of i) the monodromy of the radial Teukolsky equation
about the irregular singular point at infinity, as is men-
tioned in [62]. One also sees [⌫`]1, multiplied by a rational
with small prime factors, appearing in the coe�cients of
integrals involving an ` multipole in the standard PN cal-
culation of the next-to-leading two half-integer terms in
�U in [23]; cf. their Eqs. (3.14)–(3.18) and (4.7)–(4.11)
with the values for [⌫`]1, ` 2 {2, 3, 4} given in Table I
in [38]. Finally, the general form of [⌫`]1 appears in the
coe�cient of log ⌧0 (where ⌧0 is the constant associated
with the regularization parameter r0, not to be confused
with the r0 in this paper) in post-Newtonian expressions
for all the mass-type radiative multipole moments; cf.
Eq. (3.9) in [63] and Eq. (A2) in [24]. This coe�cient
was derived by Blanchet and Damour in the Appendix
of [64] using methods that di↵er from both the contin-
ued fraction method of MST [54] and the monodromy
method of Castro et al. [62]. We also define

"`m :=

(

0 if `+m is even,

1 if `+m is odd.
(20)

The A(k)
`m coe�cients are rational and are given by the

coe�cients of the eulerlogm(R) terms. While we might
expect there to be contributions to the eulerlog terms
that are not part of this simplification starting at 9PN,
by analogy with the remainder of the S`m factorization
of the modes of the energy flux from [38], it appears that
this is not the case, since we see the same structure in

the remainder with this choice for the A(k)
`m coe�cients as

for the S`m factorization of the modes of the energy flux
to all the orders we have considered.

If we apply this simplification to the (2, 2) mode, then
we have

1
X

k=0

A(k)
22

Rk
= �27

51
+

261511

315171
1

R
+

2468991

335172
1

R2
� 2315291219111

345372111
1

R3
+

5314670036811611

365373111131
1

R4
+

1571374566160091

21365274131
1

R5

� 23137117911871179071580078671

23365574112131171
1

R6
+

17911229384882345812630174071

24395575112132171191
1

R7

+
1913712271401192033172758215409831

28395476112132171
1

R8
+ · · ·

(21)

which yields

⌥22 �⌥C1
22 =

13
X

k=1

↵(k)
22

Rk
+



�26

51
1

R9
� 2532

51
1

R10
� 2345071

315171
1

R11
� 2219111243431

325372
1

R12
� 149311855571

21315372
1

R13

�

log(2/R)

+
216

3152
log(2/R) eulerlog2(R)

R13
+



291071

315271
1

R12
+

28311071

5271
1

R13

�

log2(2/R) +



�2101071

325271
1

R12

� 29111132

325271
1

R13

�

⇡2 +



�211

51
1

R12
� 21032

51
1

R13

�

⇣(3)� 213

3152
⇡

R11.5
� 212191

325271
⇡

R12.5
� 2101116731

345271
⇡

R13.5

+

⇢

1

R14
and higher terms that we do not yet know all of

�

+



�292400136371

335472111
+

2171071

325371
eulerlog2(R)

+
2161071

315371
log(2/R)� 217

3252
⇡2

�

⇡

R14.5
� 2131072

335372
log3(2/R)

R15
+O

✓

1

R15.5

◆

,

(22)

where ↵(k)
22 2 Q. Here, to simplify the remainder, we

have not used [⌫]3 in ⌥C1
22 , but rather the expression for

the 1/R9 piece of the 1/R expansion of ⌫ that is valid
for all ` > 2, without the additional piece that only con-
tributes for ` = 2 (for positive `). Specifically, this is the
expression for ⌫6(`) given in the Appendix of Bini and

Damour [24] with the final c6 term omitted. We omit
this term because c6 = 2171/31511071, and we do not ac-
tually see such factors of 107 (or any other anomalously
large primes) in the denominators of the PN expansion
of fluxes or gauge-invariant self-force quantities available
to date. For instance, if we had used [⌫]3 instead of the

Here
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of i) the monodromy of the radial Teukolsky equation
about the irregular singular point at infinity, as is men-
tioned in [62]. One also sees [⌫`]1, multiplied by a rational
with small prime factors, appearing in the coe�cients of
integrals involving an ` multipole in the standard PN cal-
culation of the next-to-leading two half-integer terms in
�U in [23]; cf. their Eqs. (3.14)–(3.18) and (4.7)–(4.11)
with the values for [⌫`]1, ` 2 {2, 3, 4} given in Table I
in [38]. Finally, the general form of [⌫`]1 appears in the
coe�cient of log ⌧0 (where ⌧0 is the constant associated
with the regularization parameter r0, not to be confused
with the r0 in this paper) in post-Newtonian expressions
for all the mass-type radiative multipole moments; cf.
Eq. (3.9) in [63] and Eq. (A2) in [24]. This coe�cient
was derived by Blanchet and Damour in the Appendix
of [64] using methods that di↵er from both the contin-
ued fraction method of MST [54] and the monodromy
method of Castro et al. [62]. We also define

"`m :=

(

0 if `+m is even,

1 if `+m is odd.
(20)

The A(k)
`m coe�cients are rational and are given by the

coe�cients of the eulerlogm(R) terms. While we might
expect there to be contributions to the eulerlog terms
that are not part of this simplification starting at 9PN,
by analogy with the remainder of the S`m factorization
of the modes of the energy flux from [38], it appears that
this is not the case, since we see the same structure in

the remainder with this choice for the A(k)
`m coe�cients as

for the S`m factorization of the modes of the energy flux
to all the orders we have considered.

If we apply this simplification to the (2, 2) mode, then
we have
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where ↵(k)
22 2 Q. Here, to simplify the remainder, we

have not used [⌫]3 in ⌥C1
22 , but rather the expression for

the 1/R9 piece of the 1/R expansion of ⌫ that is valid
for all ` > 2, without the additional piece that only con-
tributes for ` = 2 (for positive `). Specifically, this is the
expression for ⌫6(`) given in the Appendix of Bini and

Damour [24] with the final c6 term omitted. We omit
this term because c6 = 2171/31511071, and we do not ac-
tually see such factors of 107 (or any other anomalously
large primes) in the denominators of the PN expansion
of fluxes or gauge-invariant self-force quantities available
to date. For instance, if we had used [⌫]3 instead of the

Here is the unsimplified expression for the 2,2 mode of ΔU/U, 
only to 10.5PN, for comparison

6

only know analytic forms for some of the terms, and
the 13.5PN piece we do know all of.] Here we consider
�U/U instead of just �U as this is the quantity that we
worked with on the level of the individual modes [note

that �U/U = �Hren; cf. Eq. (13)]. We present the ex-
pansion in terms of the same dimensionless radius vari-
able used in SFW, viz., R := (M⌦)�2/3 = r0/M :
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Simplifying the (retarded) l,m modes of ΔU and the 
energy flux at infinity (cont.)

• Additionally, the simplification of ΔU does not act by 
division, but rather by subtraction. Here is the simplified 
version of the 2,2 mode of ΔU/U to 12.5PN + 13.5PN 
(and a bit of 14PN), as an example:
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of i) the monodromy of the radial Teukolsky equation
about the irregular singular point at infinity, as is men-
tioned in [62]. One also sees [⌫`]1, multiplied by a rational
with small prime factors, appearing in the coe�cients of
integrals involving an ` multipole in the standard PN cal-
culation of the next-to-leading two half-integer terms in
�U in [23]; cf. their Eqs. (3.14)–(3.18) and (4.7)–(4.11)
with the values for [⌫`]1, ` 2 {2, 3, 4} given in Table I
in [38]. Finally, the general form of [⌫`]1 appears in the
coe�cient of log ⌧0 (where ⌧0 is the constant associated
with the regularization parameter r0, not to be confused
with the r0 in this paper) in post-Newtonian expressions
for all the mass-type radiative multipole moments; cf.
Eq. (3.9) in [63] and Eq. (A2) in [24]. This coe�cient
was derived by Blanchet and Damour in the Appendix
of [64] using methods that di↵er from both the contin-
ued fraction method of MST [54] and the monodromy
method of Castro et al. [62]. We also define

"`m :=

(

0 if `+m is even,

1 if `+m is odd.
(20)

The A(k)
`m coe�cients are rational and are given by the

coe�cients of the eulerlogm(R) terms. While we might
expect there to be contributions to the eulerlog terms
that are not part of this simplification starting at 9PN,
by analogy with the remainder of the S`m factorization
of the modes of the energy flux from [38], it appears that
this is not the case, since we see the same structure in

the remainder with this choice for the A(k)
`m coe�cients as

for the S`m factorization of the modes of the energy flux
to all the orders we have considered.

If we apply this simplification to the (2, 2) mode, then
we have
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where ↵(k)
22 2 Q. Here, to simplify the remainder, we

have not used [⌫]3 in ⌥C1
22 , but rather the expression for

the 1/R9 piece of the 1/R expansion of ⌫ that is valid
for all ` > 2, without the additional piece that only con-
tributes for ` = 2 (for positive `). Specifically, this is the
expression for ⌫6(`) given in the Appendix of Bini and

Damour [24] with the final c6 term omitted. We omit
this term because c6 = 2171/31511071, and we do not ac-
tually see such factors of 107 (or any other anomalously
large primes) in the denominators of the PN expansion
of fluxes or gauge-invariant self-force quantities available
to date. For instance, if we had used [⌫]3 instead of the

Here
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where ↵(k)
22 2 Q. Here, to simplify the remainder, we

have not used [⌫]3 in ⌥C1
22 , but rather the expression for

the 1/R9 piece of the 1/R expansion of ⌫ that is valid
for all ` > 2, without the additional piece that only con-
tributes for ` = 2 (for positive `). Specifically, this is the
expression for ⌫6(`) given in the Appendix of Bini and

Damour [24] with the final c6 term omitted. We omit
this term because c6 = 2171/31511071, and we do not ac-
tually see such factors of 107 (or any other anomalously
large primes) in the denominators of the PN expansion
of fluxes or gauge-invariant self-force quantities available
to date. For instance, if we had used [⌫]3 instead of the

The general (rather naïve) idea of these simplifications is that much of 
the complexity—transcendentals and powers of log(v)—of higher-order 

terms in the PN expansion is “inessential,” coming from propagation 
effects, while the “truly new” information at each order is much simpler 

(for the energy flux at infinity, possibly just purely rational).  
!

Indeed, Goldberger and Ross (2010) and Goldberger, Ross, and Rothstein 
(2014) find leading logarithms in both the energy flux and binding energy 

using the beta function for the multipole moments in the effective field 
theory picture, though they just compute the beta function to leading order, 

and thus only obtain the very simplest predictions of the simplifications 
we consider here.



Simplifying the full ΔU

• One can use the simplifications of the low-order modes, 
including a similar simplification that removes most of the 
powers of log(2/R), to simplify the full ΔU:
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If we write �U as a remainder plus the terms given by the two simplifications, we have, now going all the way to
12.5PN,

�U

u
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(38)

where ⌥S1
`m and ⌥S2

`m are integer order power series in
u with rational coe�cients, which we give (to the order
known) in the electronic Supplemental Material [60] [see
Eqs. (21) and (24) for the expressions for the (2, 2) mode
of �U/U ]. (Note that the odd m terms for the ` = 10
⌥S1

`ms and the ` = 4 ⌥S2
`ms do not contribute until 13PN.)

We find that the 13.5PN piece of �U has more terms
that are not removed by the simplification than do the
previous half-integer PN terms, just as occurs at this or-
der in the energy flux (see the expression for the S`m

factorisation of ⌘22 in the electronic Supplemental Mate-
rial for [38]), and, as in the energy flux, the additional
terms all come from the dominant (2, 2) mode at this or-
der. Specifically, the 13.5PN piece of �U/u remaining
after subtracting o↵ the parts given by the simplification
is


�2096793662144

139033125
� 131072

225
⇡2 +

14024704

7875
eulerlog2(u)

+
7012352

2625
log(2u)

�

⇡u13.5.

(39)

However, the portion remaining in other PN coe�cients
of�U after using the simplification does not have exactly

the same structure as that in ⌘22/|S22|2. For instance,
⌘22/|S22|2 also has eulerlog2 and eulerlog22 terms in the
12PN coe�cient.

A. Checking the results for �U by making an
independent fit

We performed an independent check of these results
by making a fit for the PN coe�cients of �U using data
at smaller radii and the fit procedure described in SFW.
In addition to checking the decimal expansions of the
terms we have already obtained analytically, we also im-
plicitly check all the coe�cients we have obtained in the
fit by verifying that the higher-order coe�cients are not
too large, as described below. We perform these fits it-
eratively, obtaining analytic forms for as many terms as
possible from the accuracy obtained from a given fit, sub-
tracting these o↵, and fitting again. In this case, we
proceeded through six iterations, where the first fit only
went to 20PN, and these coe�cients were obtained with
just a few digits accuracy, while at the fifth and final
iteration, after we had subtracted o↵ 48 coe�cients, we
obtained the 20PN coe�cients that we did not obtain an-
alytically to ⇠ 41 digits, and were able to go all the way

rational coefficients

The even powers  
of π here come 
from the infinite 

 l-sum



Predicting “leading logarithmic” terms to all orders

• In addition to simplifying the full ΔU, the simplification also 
predicts some “leading logarithmic” coefficients to all orders, 
due to the exponential term. (The same is also true for the 
energy flux at infinity.) 

• Specifically, the simplification predicts the coefficient of the first 
five appearances of a given power of log(R) in both the integer 
and half-integer PN terms. 

• In addition to the complete terms predicted by the 
simplification, it also gives the coefficients of various 
transcendentals in other terms, which is very helpful in 
obtaining the remainder of the term using PSLQ.
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plus the overall consistency check that we continue to
obtain expressions of the expected form for the vari-
ous modes (given the simplification and the form of the
modes of the energy flux) as we continue to high orders,
give us high confidence that our analytic results for the
modes (and, as described later, the full �U) are indeed
the true ones. This confidence was recently confirmed by
the exact agreement of our results with the 20.5PN re-
sults of Kavanagh, Ottewill, and Wardell [27], obtained
completely analytically.

IV. TERMS PREDICTED BY THE
SIMPLIFYING FACTORIZATION TO

ARBITRARILY HIGH ORDERS

The two simplifications we have found also predict cer-
tain higher-order logarithmic and half-integer terms, ex-
tending to arbitrarily high orders, since we assume that

the e2⌫̄`m eulerlogm(R) and e2⌫̄`m log(2/R) portions of the
simplifications hold to all orders, as we expect them to,
since the similar S`m and V`m factorizations found for the
energy flux in [38] hold to high orders (presumably to all
orders) and contain the same exponential terms. More-
over, we can see where these factors arise in the calcula-
tion from a study of the structure of the MST solution
used to compute�U ; see the Appendix. In particular, we
can predict the coe�cients of the first five appearances
of a given power of log(R) in both the integer-order and
half-integer terms. The only thing that prevents us from
being able to predict further terms is the appearance of
pieces that are not given by these simplifications at higher
orders.

Specifically, the higher-order logarithmic and half-
integer terms in the full �U that the simplification pre-
dicts are given by the appropriate terms from
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coe�cients of the first three appearances of q2 and the first appearance of q4 in a given power of log(v) in the
half-integer terms are also predicted correctly even when the rest of the term is not predicted correctly.

Of course, while the above terms are the only ones where one can predict an entire coe�cient of logn(v) or qk logn(v),
the simplification often correctly predicts the coe�cients of certain transcendentals in a given coe�cient, which allows
one to obtain the remainder of the coe�cient with far fewer digits than one would otherwise need. In particular,
we have been able to obtain analytic forms for the complete coe�cients of q log4(v)vp for p 2 {33, 35} using this
method (where we only need to use PSLQ to obtain the purely rational piece). We also obtained analytic forms for
the remainder of the powers of q—up to q5—at v35/2 by a direct application of PSLQ to Abhay’s data, where the q2

and q4 terms were correctly given by the simplification, as mentioned above; at v33/2, Abhay had already obtained
analytic forms for the coe�cients of the higher powers of q. Specifically, we have
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It should be possible to obtain analytic forms for some other high-order logarithmic coe�cients that Abhay only
obtained numerically using this method. However, one will require a more careful study of the structure to obtain
analytic forms for many of these coe�cients, due to the transcendental functions of q that one finds at higher orders.
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Why can’t we predict more of these coefficients? 
A lesson from the “complete simplification” of the energy flux at infinity

• One can reduce the modes of the point-particle-in-a-circular-
orbit-around-Schwarzschild energy flux at infinity to a form 
that has only rationals in the infinite series by a study of the 
expressions in the MST formalism, viz.,  

!

!

• However, this may not be the simplest form, since ν and the 
ck, dk, and ek series have large primes in the denominator 
which are not seen in the PN series of any invariant. 

Vnum
lm ≔ 1þ qlmð2v2Þ1þ2lþ2ν̄lmðvÞ Γ½1 − 2ν̄lmðvÞ%

Γ½1þ 2ν̄lmðvÞ%

!
Γ½1þ ν̄lmðvÞ − 2imv3%
Γ½1 − ν̄lmðvÞ − 2imv3%

"
2

¼ 1þ qlmð2v2Þ1þ2l exp ½2ν̄lmðvÞ logð2v2Þ þ σVnum
lm
ðvÞ%; ð19aÞ

Vdenom
lm ≔ 1þ islð4mv3Þ1þ2lþ2ν̄lmðvÞe−iπν̄lmðvÞ

ν̄lmðvÞ þ 2imv3

ν̄lmðvÞ − 2imv3

!
Γ½1 − 2ν̄lmðvÞ%
Γ½1þ 2ν̄lmðvÞ%

"
2
!
Γ½1þ ν̄lmðvÞ − 2imv3%
Γ½1 − ν̄lmðvÞ − 2imv3%

"
3

¼ 1þ islð4mv3Þ1þ2l ν̄lmðvÞ þ 2imv3

ν̄lmðvÞ − 2imv3
exp fν̄lmðvÞ½2eulerlogmðvÞ þ 2 logð2v2Þ − iπ% þ σVdenom

lm
ðvÞg; ð19bÞ

σV•
lm
ðvÞ ≔

X∞

n¼2

ζðnÞ
n

ðA•f½2ν̄lmðvÞ%n − ½−2ν̄lmðvÞ%ngþ B•f½−ν̄lmðvÞ þ 2imv3%n − ½ν̄lmðvÞ þ 2imv3%ngÞ;

½Anum ¼ 1; Bnum ¼ 2;Adenom ¼ 2; Bdenom ¼ 3%; ð19cÞ

with qlm; sl ∈ Q constants that are determined by
requiring that the factorization removes certain terms.
The values for these constants that it is possible to
determine from the 22PN energy flux expressions for the
modes are given in Table I, where we write qlm ¼ βlmq̄l,
with

βlm ≔
!
1 if lþm is even;

− lþ1
l if lþm is odd:

ð20Þ

We have also given alternative forms of Vnum;denom
lm in

terms of eulerlogmðvÞ and logð2v2Þ that display their
structure somewhat differently (and that we actually use
for computing their expansions).
We obtain the constants qlm and sl by demanding that

factoring out jVlmj2 from η̄lm removes the logð2v2Þv8þ4l

and the v9þ6l term, respectively. We thus are unable to
determine qlm for l ≥ 7 and sl for l ≥ 5 from the 22PN
energy flux expressions: For q77, we would need to know
the v36 term in η̄77, but only know this through v34.
Similarly, for s5, we would need to know, e.g., the v39

term of η̄55 but only know this through v38. Thus, while it
appears that qlm and sl are simply related to 1=½νl%1, as
illustrated in Table I, we do not know them for sufficiently
many values of l to be able to deduce the specific relation
with any confidence.

The additional simplification from factoring out jVlmj2
from η̄lm=jSlmj2 is not nearly as dramatic as that from
factoring out jSlmj2 from η̄lm. Nevertheless, it is possible
that a slightly different combination of gamma functions in
Vlm could remove further terms, since there is still a fair
amount of structure in the remaining transcendentals, as is
illustrated in Sec. V.

C. The Slm V0
lm factorization

Moreover, one can remove the remaining odd powers of
v by making the substitution

sl → sl

#
1þ

X∞

k¼1

½s̄l%kð2mv3Þ2k
$
; ð21Þ

in Vlm, where one fixes ½s̄l%k by demanding that the
factorization remove the v9þ6ðlþkÞ term from η̄lm. We will
use V 0

lm to denote Vlm with the substitution in Eq. (21).
Here one can only fix the lowest few of these coefficients
using the 22PN energy flux expressions, obtaining

½s̄2%1 ¼
416607433

56624400
þ 1

3
π2; ð22aÞ

½s̄2%2 ¼
46804742792313761

1469564559540000
þ 155203051

56624400
π2 − 1

45
π4;

ð22bÞ

TABLE I. The values of −½νl%1 (−ν2ðlÞ in Bini and Damour [12]), q̄l, −ðq̄l½νl%1Þ−1, sl, and −ðsl½νl%1Þ−1 for l ≤ 6. For l ∈ f5; 6g
we do not give values for the last two quantities, since they cannot be determined from the 22PN energy flux expressions. We give the
prime factorizations of −½νl%1, −ðq̄l½νl%1Þ−1, and −ðsl½νl%1Þ−1 in order to illustrate their structure.

l −½νl%1 q̄l −ðq̄l½νl%1Þ−1 sl −ðsl½νl%1Þ−1

2 107
210 ¼

1071

21315171
7

214 223151 7
17120 263152

3 13
42 ¼

131

213171
1

520 24315171 1
10483200 210335272

4 1571
6930 ¼

15711

21325171111
11

87976 24325172 11
595928309760 214355274

5 773
4290 ¼

7731

213151111131
13

1558368 26335171111 ' ' ' ' ' '
6 901

6006 ¼
171531

213171111131
1

1783980 23335171112131 ' ' ' ' ' '
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Notes on putting the PN expansion of the modes of the gravitational wave energy flux

(or, more generally, the modes of the gravitational waveform) from a point particle in

a circular orbit around a Schwarzschild black hole in a form where the infinite series

only have rational terms.

Nathan K. Johnson-McDaniel
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743 Jena, Germany and

International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560012, India

(Dated: October 28, 2014)

I. GIVING THE FORM WITH ONLY RATIONALS IN THE INFINITE SERIES

One can write the |Z`m!|2 that one uses to obtain the GW energy flux in a form in which there are no transcendentals
in the infinite series as (see [1] for the original versions of and further details about the expressions given in the
following)

|Z`m!|2 =

���L`m!R
⌫
C + K�⌫�1

K⌫
L`m!R

�⌫�1
C

���
2

���1� ie�i⇡⌫ sin⇡(⌫+i✏)
sin⇡(⌫�i✏)

K�⌫�1

K⌫

���
2 ��A⌫

+

��2

= (2z)2⌫̄`me�⇡✏ |�(1 + ⌫̄`m + i✏)|2

�2(1 + 2⌫̄`m)

�����

1X

k=0

c`mk vk +
�
2v2

�2⌫̄`m �(1� 2⌫̄`m)

�(1 + 2⌫̄`m)


�(1 + ⌫̄`m � i✏)

�(1� ⌫̄`m � i✏)

�2 1X

k=0

d`mk vk

�����

2

⇥

�����1� e�i⇡⌫̄`m
sin⇡(⌫̄`m + i✏)

sin⇡(⌫̄`m � i✏)
(2✏)2⌫̄`m


�(1� 2⌫̄`m)

�(1 + 2⌫̄`m)

�(1 + ⌫̄`m � i✏)

�(1� ⌫̄`m � i✏)

�2 �(1 + ⌫̄`m + i✏)

�(1� ⌫̄`m + i✏)

1X

k=0

e`mk vk

�����

�2

,

(1)

where ⌫̄`m := ⌫ � ` [this is denoted ⌫̄`m(v) in [2]; we have not included the dependence on v here, to avoid clutter]
and c`mk , d`mk , e`mk 2 Q. (This is the simplest form, in that it requires the fewest infinite series. However, alternate
forms, where one leaves, e.g., A⌫

+ and/or K�⌫�1/K⌫ as separate series, may be preferable for convergence or for
illustrating the structure. Additionally, to obtain the optimal convergence, it will likely be advantageous to include

the appropriate integers in the arguments of the gamma functions, as was done for S̃`m and ˜̃S`m in [2]. Applying the
exponential resummation to some of the pieces of this expression should also aid convergence.)

Here L`m!, given by

(L`m!X)(r0) =
⇡µ

i(r0/M)2

⇢
� b0 `m � 2i b�1 `m

✓
1 +

i!r20
2r0 � 4M

◆
+ i b�2 `m

!r0
(1� 2Mr0)2

✓
1� M

r0
+

i!r0
2

◆�
X(r0)

+


i b�1 `m � b�2 `m

✓
1 +

i!r20
r0 � 2M

◆�
r0X

0(r0) +
1

2
b�2 `mr20X

00(r0)

�
,

(2)

is the linear second-order di↵erential operator that is present in the expression for Z`m!; we have suppressed its
explicit dependence on r0 in Eq. (1). [N.B.: The version of L`m! defined in [2] is very slightly di↵erent, since it
includes the factor of 1/! that cancels against the one from Binc

`m!, which we do not include here.] We have

0b`m =
1

2
[(`� 1)`(`+ 1)(`+ 2)]1/20Y`m

⇣⇡
2
, 0
⌘ 1p

1� 3M/r0
, (3a)

�1b`m = [(`� 1)(`+ 2)]1/2�1Y`m

⇣⇡
2
, 0
⌘r

M

r0

1p
1� 3M/r0

, (3b)

�2b`m = �2Y`m

⇣⇡
2
, 0
⌘ M

r0

1p
1� 3M/r0

, (3c)

where sY`m(✓,�) denotes the spin-s-weighted spherical harmonic—a useful expressions for these is given in Eq. (2.5)
in [3]. Additionally, we have

R⌫
C = (!r0)

2

✓
1� ✏

!r0

◆2�i✏

e�i!r0

1X

n=�1
(�i)n(2!r0)

n+⌫(⌫�1�i✏)n
�(⌫ + 3 + i✏)

�(2n+ 2⌫ + 2)
a⌫n�(n+⌫+3+i✏, 2n+2⌫+2; 2i!r0),

(4)

Here the ck and dk series have both even and odd powers. 
The dk and ek terms only enter at higher orders, and parts of them correspond to Vʹlm

These give powers of log(2/R)



Explicit expressions for some of these predictions, including first results 
for the energy flux at infinity for a circular, equatorial orbit in Kerr

• One can derive explicit expressions for the predictions of the simplification. 

• Here we show the predictions for the coefficients of the first few appearances of a 
given power of log(v) in both the integer and half-integer terms both for ΔU for a 
circular orbit in Schwarzschild, and the energy flux at infinity for a circular equatorial 
orbit in Kerr. We write the expansion in terms of v for both, for easy comparison. 
 
 
 
 
 
 
 
 
 

Explicit predictions for certain of the leading logarithmic coe�cients of �U and

(dE/dt)1

Nathan K. Johnson-McDaniel
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560012, India

(Dated: June 28, 2015)

Here we give the explicit predictions for leading logarithmic coe�cients of �U and (dE/dt)1 to all orders. In both
cases we consider a circular orbit, around Schwarzschild for �U , and an equatorial orbit around a Kerr black hole for
(dE/dt)1. For the moment we just give the results for the coe�cients predicted for the first two appearances of a
given power of log(v) given in [1]; note that the predictions for the coe�cients of odd powers of v with no logarithms
(i.e., n = 0) are correct, while the analogous predictions for the even terms are not (i.e., they should only be considered
for n � 1):
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For comparison, we also look at the similar terms predicted in the energy flux at infinity by the S`m factorization
from [2], where here we also are able to obtain certain of the spin-dependent terms. The only change necessary to
to allow the S`m factorization to treat these spin-dependent terms is to use the Kerr version of ⌫, where the spin-
dependent terms contain v3k coe�cients (k 2 N) and dependence on m in the coe�cients of 2mv3; see Eqs. (C.37)
in [3], recalling that the monodromy calculated there is the same as ⌫ up to an overall factor of i. Of course, we also
obtain spin-dependent terms in the remainder after factorization, so S`m no longer removes all the half-integer terms,
even at low orders, when one considers spin. (This is not surprising, since the contributions to the multipole moments
from spin enter at half-integer orders—see, e.g., [4]—and one does not expect this simplification to remove those.)
Additionally, the order to which S`m removes all the logarithms is also lower, only going to v12 for ` = 2, instead of
v14, as for Schwarzschild; at higher ` we need to calculate higher PN corrections to ⌫ to check the simplification at
higher orders in v.

If we denote the dimensionless spin of the large black hole by q, then the leading logarithmic coe�cients predicted
by the simplification (here valid for n � 0 in all coe�cients) are
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We also can compute the v5 correction in the large brackets from the implicit version of the predictions, but have
not computed it explicitly yet (though it should just be messy, not particularly di�cult). This is the highest-order
complete logarithmic coe�cient that we can predict with the present simplification. However, it appears that the

Explicit predictions for certain of the leading logarithmic coe�cients of �U and

(dE/dt)1

Nathan K. Johnson-McDaniel
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560012, India

(Dated: June 28, 2015)

Here we give the explicit predictions for leading logarithmic coe�cients of �U and (dE/dt)1 to all orders. In both
cases we consider a circular orbit, around Schwarzschild for �U , and an equatorial orbit around a Kerr black hole for
(dE/dt)1. For the moment we just give the results for the coe�cients predicted for the first two appearances of a
given power of log(v) given in [1]; note that the predictions for the coe�cients of odd powers of v with no logarithms
(i.e., n = 0) are correct, while the analogous predictions for the even terms are not (i.e., they should only be considered
for n � 1):
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For comparison, we also look at the similar terms predicted in the energy flux at infinity by the S`m factorization
from [2], where here we also are able to obtain certain of the spin-dependent terms. The only change necessary to
to allow the S`m factorization to treat these spin-dependent terms is to use the Kerr version of ⌫, where the spin-
dependent terms contain v3k coe�cients (k 2 N) and dependence on m in the coe�cients of 2mv3; see Eqs. (C.37)
in [3], recalling that the monodromy calculated there is the same as ⌫ up to an overall factor of i. Of course, we also
obtain spin-dependent terms in the remainder after factorization, so S`m no longer removes all the half-integer terms,
even at low orders, when one considers spin. (This is not surprising, since the contributions to the multipole moments
from spin enter at half-integer orders—see, e.g., [4]—and one does not expect this simplification to remove those.)
Additionally, the order to which S`m removes all the logarithms is also lower, only going to v12 for ` = 2, instead of
v14, as for Schwarzschild; at higher ` we need to calculate higher PN corrections to ⌫ to check the simplification at
higher orders in v.

If we denote the dimensionless spin of the large black hole by q, then the leading logarithmic coe�cients predicted
by the simplification (here valid for n � 0 in all coe�cients) are
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We also can compute the v5 correction in the large brackets from the implicit version of the predictions, but have
not computed it explicitly yet (though it should just be messy, not particularly di�cult). This is the highest-order
complete logarithmic coe�cient that we can predict with the present simplification. However, it appears that the
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Explicit expressions for some of these predictions, including first results 
for the energy flux at infinity for a circular, equatorial orbit in Kerr

• One can derive explicit expressions for the predictions of the simplification. 

• Here we show the predictions for the coefficients of the first few appearances of a 
given power of log(v) in both the integer and half-integer terms both for ΔU for a 
circular orbit in Schwarzschild, and the energy flux at infinity for a circular equatorial 
orbit in Kerr. We write the expansion in terms of v for both, for easy comparison. 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Here we give the explicit predictions for leading logarithmic coe�cients of �U and (dE/dt)1 to all orders. In both
cases we consider a circular orbit, around Schwarzschild for �U , and an equatorial orbit around a Kerr black hole for
(dE/dt)1. For the moment we just give the results for the coe�cients predicted for the first two appearances of a
given power of log(v) given in [1]; note that the predictions for the coe�cients of odd powers of v with no logarithms
(i.e., n = 0) are correct, while the analogous predictions for the even terms are not (i.e., they should only be considered
for n � 1):
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For comparison, we also look at the similar terms predicted in the energy flux at infinity by the S`m factorization
from [2], where here we also are able to obtain certain of the spin-dependent terms. The only change necessary to
to allow the S`m factorization to treat these spin-dependent terms is to use the Kerr version of ⌫, where the spin-
dependent terms contain v3k coe�cients (k 2 N) and dependence on m in the coe�cients of 2mv3; see Eqs. (C.37)
in [3], recalling that the monodromy calculated there is the same as ⌫ up to an overall factor of i. Of course, we also
obtain spin-dependent terms in the remainder after factorization, so S`m no longer removes all the half-integer terms,
even at low orders, when one considers spin. (This is not surprising, since the contributions to the multipole moments
from spin enter at half-integer orders—see, e.g., [4]—and one does not expect this simplification to remove those.)
Additionally, the order to which S`m removes all the logarithms is also lower, only going to v12 for ` = 2, instead of
v14, as for Schwarzschild; at higher ` we need to calculate higher PN corrections to ⌫ to check the simplification at
higher orders in v.

If we denote the dimensionless spin of the large black hole by q, then the leading logarithmic coe�cients predicted
by the simplification (here valid for n � 0 in all coe�cients) are
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We also can compute the v5 correction in the large brackets from the implicit version of the predictions, but have
not computed it explicitly yet (though it should just be messy, not particularly di�cult). This is the highest-order
complete logarithmic coe�cient that we can predict with the present simplification. However, it appears that the
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Here we give the explicit predictions for leading logarithmic coe�cients of �U and (dE/dt)1 to all orders. In both
cases we consider a circular orbit, around Schwarzschild for �U , and an equatorial orbit around a Kerr black hole for
(dE/dt)1. For the moment we just give the results for the coe�cients predicted for the first two appearances of a
given power of log(v) given in [1]; note that the predictions for the coe�cients of odd powers of v with no logarithms
(i.e., n = 0) are correct, while the analogous predictions for the even terms are not (i.e., they should only be considered
for n � 1):
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For comparison, we also look at the similar terms predicted in the energy flux at infinity by the S`m factorization
from [2], where here we also are able to obtain certain of the spin-dependent terms. The only change necessary to
to allow the S`m factorization to treat these spin-dependent terms is to use the Kerr version of ⌫, where the spin-
dependent terms contain v3k coe�cients (k 2 N) and dependence on m in the coe�cients of 2mv3; see Eqs. (C.37)
in [3], recalling that the monodromy calculated there is the same as ⌫ up to an overall factor of i. Of course, we also
obtain spin-dependent terms in the remainder after factorization, so S`m no longer removes all the half-integer terms,
even at low orders, when one considers spin. (This is not surprising, since the contributions to the multipole moments
from spin enter at half-integer orders—see, e.g., [4]—and one does not expect this simplification to remove those.)
Additionally, the order to which S`m removes all the logarithms is also lower, only going to v12 for ` = 2, instead of
v14, as for Schwarzschild; at higher ` we need to calculate higher PN corrections to ⌫ to check the simplification at
higher orders in v.

If we denote the dimensionless spin of the large black hole by q, then the leading logarithmic coe�cients predicted
by the simplification (here valid for n � 0 in all coe�cients) are
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We also can compute the v5 correction in the large brackets from the implicit version of the predictions, but have
not computed it explicitly yet (though it should just be messy, not particularly di�cult). This is the highest-order
complete logarithmic coe�cient that we can predict with the present simplification. However, it appears that the

ΔU

Energy flux 
at infinity 
for Kerr

These predictions for the energy flux at infinity come 
from the Slm simplification, where the only change 
necessary for Kerr is to use the Kerr version of ν. 

However, there are transcendental functions of the spin that 
enter at higher orders and are not accounted for by Slm.

Here q 
is the 

dimensionless 
spin



Explicit expressions for some of these predictions, including first results 
for the energy flux at infinity for a circular, equatorial orbit in Kerr

• One can derive explicit expressions for the predictions of the simplification. 

• Here we show the predictions for the coefficients of the first few appearances of a 
given power of log(v) in both the integer and half-integer terms both for ΔU for a 
circular orbit in Schwarzschild, and the energy flux at infinity for a circular equatorial 
orbit in Kerr. We write the expansion in terms of v for both, for easy comparison. 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Here we give the explicit predictions for leading logarithmic coe�cients of �U and (dE/dt)1 to all orders. In both
cases we consider a circular orbit, around Schwarzschild for �U , and an equatorial orbit around a Kerr black hole for
(dE/dt)1. For the moment we just give the results for the coe�cients predicted for the first two appearances of a
given power of log(v) given in [1]; note that the predictions for the coe�cients of odd powers of v with no logarithms
(i.e., n = 0) are correct, while the analogous predictions for the even terms are not (i.e., they should only be considered
for n � 1):
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For comparison, we also look at the similar terms predicted in the energy flux at infinity by the S`m factorization
from [2], where here we also are able to obtain certain of the spin-dependent terms. The only change necessary to
to allow the S`m factorization to treat these spin-dependent terms is to use the Kerr version of ⌫, where the spin-
dependent terms contain v3k coe�cients (k 2 N) and dependence on m in the coe�cients of 2mv3; see Eqs. (C.37)
in [3], recalling that the monodromy calculated there is the same as ⌫ up to an overall factor of i. Of course, we also
obtain spin-dependent terms in the remainder after factorization, so S`m no longer removes all the half-integer terms,
even at low orders, when one considers spin. (This is not surprising, since the contributions to the multipole moments
from spin enter at half-integer orders—see, e.g., [4]—and one does not expect this simplification to remove those.)
Additionally, the order to which S`m removes all the logarithms is also lower, only going to v12 for ` = 2, instead of
v14, as for Schwarzschild; at higher ` we need to calculate higher PN corrections to ⌫ to check the simplification at
higher orders in v.

If we denote the dimensionless spin of the large black hole by q, then the leading logarithmic coe�cients predicted
by the simplification (here valid for n � 0 in all coe�cients) are
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We also can compute the v5 correction in the large brackets from the implicit version of the predictions, but have
not computed it explicitly yet (though it should just be messy, not particularly di�cult). This is the highest-order
complete logarithmic coe�cient that we can predict with the present simplification. However, it appears that the
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Here we give the explicit predictions for leading logarithmic coe�cients of �U and (dE/dt)1 to all orders. In both
cases we consider a circular orbit, around Schwarzschild for �U , and an equatorial orbit around a Kerr black hole for
(dE/dt)1. For the moment we just give the results for the coe�cients predicted for the first two appearances of a
given power of log(v) given in [1]; note that the predictions for the coe�cients of odd powers of v with no logarithms
(i.e., n = 0) are correct, while the analogous predictions for the even terms are not (i.e., they should only be considered
for n � 1):
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For comparison, we also look at the similar terms predicted in the energy flux at infinity by the S`m factorization
from [2], where here we also are able to obtain certain of the spin-dependent terms. The only change necessary to
to allow the S`m factorization to treat these spin-dependent terms is to use the Kerr version of ⌫, where the spin-
dependent terms contain v3k coe�cients (k 2 N) and dependence on m in the coe�cients of 2mv3; see Eqs. (C.37)
in [3], recalling that the monodromy calculated there is the same as ⌫ up to an overall factor of i. Of course, we also
obtain spin-dependent terms in the remainder after factorization, so S`m no longer removes all the half-integer terms,
even at low orders, when one considers spin. (This is not surprising, since the contributions to the multipole moments
from spin enter at half-integer orders—see, e.g., [4]—and one does not expect this simplification to remove those.)
Additionally, the order to which S`m removes all the logarithms is also lower, only going to v12 for ` = 2, instead of
v14, as for Schwarzschild; at higher ` we need to calculate higher PN corrections to ⌫ to check the simplification at
higher orders in v.

If we denote the dimensionless spin of the large black hole by q, then the leading logarithmic coe�cients predicted
by the simplification (here valid for n � 0 in all coe�cients) are
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We also can compute the v5 correction in the large brackets from the implicit version of the predictions, but have
not computed it explicitly yet (though it should just be messy, not particularly di�cult). This is the highest-order
complete logarithmic coe�cient that we can predict with the present simplification. However, it appears that the

ΔU

Energy flux 
at infinity 
for Kerr

2

coe�cients of the first three appearances of q2 and the first appearance of q4 in a given power of log(v) in the
half-integer terms are also predicted correctly even when the rest of the term is not predicted correctly.

Of course, while the above terms are the only ones where one can predict an entire coe�cient of logn(v) or qk logn(v),
the simplification often correctly predicts the coe�cients of certain transcendentals in a given coe�cient, which allows
one to obtain the remainder of the coe�cient with far fewer digits than one would otherwise need. In particular,
we have been able to obtain analytic forms for the complete coe�cients of q log4(v)vp for p 2 {33, 35} using this
method (where we only need to use PSLQ to obtain the purely rational piece). We also obtained analytic forms for
the remainder of the powers of q—up to q5—at v35/2 by a direct application of PSLQ to Abhay’s data, where the q2

and q4 terms were correctly given by the simplification, as mentioned above; at v33/2, Abhay had already obtained
analytic forms for the coe�cients of the higher powers of q. Specifically, we have
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It should be possible to obtain analytic forms for some other high-order logarithmic coe�cients that Abhay only
obtained numerically using this method. However, one will require a more careful study of the structure to obtain
analytic forms for many of these coe�cients, due to the transcendental functions of q that one finds at higher orders.
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Example of a newly-obtained spin-dependent piece of a coefficient 
of the energy flux at infinity for a circular, equatorial orbit in Kerr

Here q 
is the 

dimensionless 
spin



Why such high order PN expansions?

• Why do we bother making such high-order PN expansions? In particular, there is 
a fit for ΔU and other invariants for circular orbits in Schwarzschild that 
reproduces the numerical values with quite high accuracy up to the light ring 
(Akcay et al., 2012). 

• We mostly do this as a warm-up for Kerr, where such fits do not yet exist, so 
high-order PN expansions will be quite useful. Additionally, since the PN 
expansions of conservative invariants are only known to very low order in Kerr, it 
would be useful to be able to compute analytic PN coefficients for them, e.g., to 
aid comparable-mass PN calculations. 

• Additionally, these perturbative series can often be used to obtain nonperturbative 
pieces (the principle of resurgence). One can also frequently make interesting 
studies of the structure of the expansion and properties of the coefficients (as is 
often done for quantum field theory series); it is already interesting to compare the 
structure of the series for ΔU with that of the energy flux at infinity.
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Conclusions and outlook

• It is possible to use experimental mathematics techniques, 
notably the application of an integer relation algorithm, to obtain 
analytic forms of quite complicated high-order PN coefficients 
with high confidence. 

• To do this efficiently, one looks at the individual modes and 
studies their structure, finding a simplification that allows one to 
predict various higher-order terms, letting one obtain the 
complete coefficient with PSLQ with fewer digits. 

• Additionally, one can perform the infinite l-sum analytically, rather 
than numerically, by obtaining the general form of the l-
dependence of a given PN coefficient.



Conclusions and outlook II

• We have currently applied this method to ΔU for a circular orbit in 
Schwarzschild, as an illustration, obtaining the PN coefficients to 
12.5PN + 13.5PN completely analytically, and the coefficients to 21PN 
in mixed numerical-analytic form. Our confidence in these analytic 
forms has been validated by the exact agreement with the concurrent 
purely analytic calculation by Kavanagh, Ottewill, and Wardell. 

• The methods we have developed should be applicable to more 
complicated cases without too many changes—we plan on considering 
circular equatorial orbits in Kerr next and have started studying the 
structure of the energy flux at infinity, since this was a good guide in the 
Schwarzschild case. Even at these early stages of this study, we have 
already been able to obtain a few new coefficients of logarithmic terms 
in the energy flux at infinity from Abhay’s pre-existing numerical data.



Extra Slides



Example of our method of using linear combinations of values at 
different radii to increase the accuracy of a given PN coefficient 

• Assume that we are at a point in the expansion where it 
looks like: 

!

• Then, if we know SN(R) at R = 10k, 10k+p, and 10k+q, we 
can use the following expression to remove the O(R-N-1) 
pieces and obtain αN,0 to ~2k digits:
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coe�cients of the first three appearances of q2 and the first appearance of q4 in a given power of log(v) in the
half-integer terms are also predicted correctly even when the rest of the term is not predicted correctly.

Of course, while the above terms are the only ones where one can predict an entire coe�cient of logn(v) or qk logn(v),
the simplification often correctly predicts the coe�cients of certain transcendentals in a given coe�cient, which allows
one to obtain the remainder of the coe�cient with far fewer digits than one would otherwise need. In particular,
we have been able to obtain analytic forms for the complete coe�cients of q log4(v)vp for p 2 {33, 35} using this
method (where we only need to use PSLQ to obtain the purely rational piece). We also obtained analytic forms for
the remainder of the powers of q—up to q5—at v35/2 by a direct application of PSLQ to Abhay’s data, where the q2

and q4 terms were correctly given by the simplification, as mentioned above; at v33/2, Abhay had already obtained
analytic forms for the coe�cients of the higher powers of q. Specifically, we have
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It should be possible to obtain analytic forms for some other high-order logarithmic coe�cients that Abhay only
obtained numerically using this method. However, one will require a more careful study of the structure to obtain
analytic forms for many of these coe�cients, due to the transcendental functions of q that one finds at higher orders.
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No log(R) term for simplicity of describing the remainder—this will never occur in practice

12

p, q 2 N such that 10k+p and 10k+q give radii at which we know the value of SN ), giving

↵N,0 = 10kN
(q � p)SN (10k)� q10(N+1)pSN (10k+p) + p10(N+1)qSN (10k+q)

q � p� q10p + p10q
+

q � p� q10�p + p10�q

q � p� q10p + p10q
↵N+2,0

102k
| {z }

R

. (29)

Here the remainder R gives a small enough correction
that the first term will give ↵N,0 to ⇠ 2k digits, pro-
vided that ↵N+2,0 is not much larger than ↵N,0, which
will usually be the case. (Note that we have neglected
the rest of the remainder, whose leading term goes as
10�3k. We also have not included half-integer terms in
the remainders for simplicity, though the presence of a
half-integer term before the given remainder term will,
of course, reduce the number of digits one obtains from
the expression.)

We obtained the particular linear combination given
in Eq. (29) by considering SN (10k) + ASN (10k+p) +
BSN (10k+q) and fixing the coe�cients A and B by de-
manding that resulting expression does not contain the
two R�N�1 terms (viz., ↵N+1,0 and ↵N+1,1). One then
solves the resulting expression for ↵N,0 to obtain Eq. (29).
One derives the more involved expressions for more com-
plicated cases with more terms and more radii in the
same way by solving a linear system, which Mathemat-
ica will do quite e�ciently. For the determinations re-
ported in this work, we needed at most 1240 digits and
15 radii, which we used to determine the coe�cient of
the log2(R)/R17.5 term in the (2, 2) mode [and implicitly
check the prediction of the simplification for the coe�-
cient of the log3(R)/R17.5 term]; removing these terms
was necessary to obtain the nonlogarithmic part of 12PN
coe�cient of the (2, 2) mode.

E. Overview of our method for obtaining analytic
forms of the coe�cients of the modes of �U

Our general approach for determining analytic forms of
the PN coe�cients of the modes of �U is first to obtain
the coe�cient of the highest power of log(R) present at a
given order, which will always be rational (or a rational
times ⇡, for the half-integer terms), and will always come
from the corresponding power of eulerlogm(R), where m
is the mode’s degree (i.e., its magnetic quantum num-
ber). Indeed, once we have obtained the coe�cients of
the first three log(R) terms in the PN expansion of a
given mode, we are able to predict the coe�cients of all
of the highest powers of log(R) (and, in fact, much more)
using the simplification. Thus, while an individual PN
coe�cient of the (2, 2) mode of �U can have as many as
17 transcendentals at the relatively high PN orders we are
considering, we have to use at most 5 transcendentals in

the vector to which we apply PSLQ (for the 10PN non-
logarithmic term), since the coe�cients of the remaining
transcendentals are predicted by the simplification, or
given by the coe�cients of higher powers of logarithms
at that order. (We only need 4 transcendentals for the
nonlogarithmic piece at 12PN, despite its more compli-
cated structure, since at this point in the calculation we
have removed some of the transcendentals that entered
at 10PN using the simplification.)

Once we have obtained (or—more often—checked the
simplification’s prediction for) the coe�cient of the high-
est power of log(R) at a given PN order, we then
subtract o↵ the appropriate rational times a power of
eulerlogm(R) and proceed to the lower powers of log(R),
which have a more complicated structure. At the orders
where there are powers of log(2/R) present, we still sub-
tract o↵ the putative contribution as if the logn(R) term
came solely from a eulerlognm(R) term, and then include
the appropriate piece when obtaining the coe�cient of
the next lower power of log(R) to account for the pres-
ence of the logn(R) term. For instance, when the log(R)
term comes from a eulerlogm(R)+ b log(2/R), so we sub-
tract o↵ (a+2b) eulerlogm(R), taking the log(R) term to
come solely from an eulerlogm(R) term, we thus include
the remaining transcendental, viz., 2�+log(2)+2 log(m),
in the vector to which we apply PSLQ when obtaining the
coe�cient of the nonlogarithmic term at this PN order.

The only exception to this procedure occurs when we
can predict the coe�cient of the eulerlognm(R) contri-
bution from the simplification (necessarily for n � 2,
since the coe�cients of the eulerlogm(R) terms are in-
puts to the simplification, and thus not predicted by
it), in which case we simply obtain the coe�cient of
logn(2/R) directly from the coe�cient of logn(R). Ad-
ditionally, at 12PN in the (2, 2) mode, things are quite
complicated, since we have to disentangle contributions
from eulerlog2(R), eulerlog22(R), eulerlog2(R) log(2/R),
log(2/R), and log2(2/R) terms. Here we just subtract
o↵ the log2(R) coe�cient we obtained as an log2(R) term
and then include � + log(2) and log(2) in the vector to
which we apply PSLQ to obtain the log(R) coe�cient.
The coe�cients of � + log(2) and log(2) in the log(R)
coe�cient then let us predict the coe�cients of certain
� log(2) and log2(2) contributions in the nonlogarithmic
coe�cient, so we need only include 2� + 3 log(2) and
�2 + 3� log(2) + (9/4) log2(2) in the vector to which we
apply PSLQ.



Convergence

• We find that the additional PN terms we have obtained improve the 
accuracy of the PN series for ΔU, even in the strong-field regime inside the 
ISCO. However, the convergence becomes less rapid with increasing field 
strength, as expected. 

• Exponential resummation helps some with the convergence, though not 
as much as it does for the energy flux at infinity, where it works very well 
when applied mode-by-mode. 

• Of course, we primarily calculated these terms as a first application of our 
method, not simply to increase the accuracy of the PN series for ΔU. 
These high-order calculations also give useful insight into the structure of 
the PN expansion, showing similar structures in both conservative and 
dissipative quantities, due to tail effects from wave propagation on curved 
spacetime.
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• We find that the additional PN terms we have obtained  improve the 
accuracy of the PN series for ΔU, even in the strong-field regime inside the 
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as much as it does for the energy flux at infinity, where it works very well 
when applied mode-by-mode. 

• Of course, we primarily calculated these terms as a first application of our 
method, not simply to increase the accuracy of the PN series for ΔU. 
These high-order calculations also give useful insight into the structure of 
the PN expansion, showing similar structures in both conservative and 
dissipative quantities, due to tail effects from wave propagation on curved 
spacetime.
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FIG. 2: Convergence of the 21.5PN expression for �U for orbits at various radii, comparing with the numerical data from
Dolan et al. [30] and Akcay et al. [16]. Specifically, we show the convergence of the plain series, as well as the results of factoring
out the test particle binding energy and/or performing exponential resummation on the entire series.

exponential resummation to the individual modes, then
one finds that it does improve the convergence of some
modes, particularly the ones with larger `�m. Factoring
out the test particle binding energy, as done in Akcay et

al. [16] also improves the convergence, particularly near
the light ring (where the test particle binding energy di-
verges), but does not improve the convergence nearly as
much as the exponential resummation on its own.

One can also estimate the radius of convergence (in v)

of the PN series for �U by looking at a�1/n
n , where an

is the nonlogarithmic coe�cient of vn. If the series has
no logarithmic terms, then the radius of convergence, vr,

is given by 1/vr = lim supn!1 a1/nn . Thus, since �U di-
verges at the light ring (as discussed in, e.g., [16]), one
expects the radius of convergence of the PN series for


