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Relevance of Second Order Self Force

I Extreme mass ratio inspirals give a prominent and
long-lived GW signal ((e)LISA band)

I Small object probes the field of its companion
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Current State of Formal Derivations - Linear fields

Scalar/E&M

1st Order 2nd Order

Flat, Forced Limiting Process Gralla, Harte, Wald - 2009 * Our computation *

Regularized point force Abraham, Lorentz, Dirac - 1930s X
Quin 2000; etc..

Curved, vacuum Effective Field Thy ←Galley1 2010→

Regularized point force Several, eg. Barack, Ori 2000 Rosenthal1 2005
Burko 2002

Fully general Limiting Process ←Harte2 2008→

1
Nonlinear scalar

2
Not a perturbative calculation
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Current State of Formal Derivations - Gravity

Gravity

1st Order 2nd Order

Nonvacuum Zimmerman, Poisson 2014 X
Linz, Freedman, Wiseman 2014

Limiting Process Gralla, Wald 2008 Gralla 2012

Matched Asymptotics Mino , Sasaki,Tanaka 1997 Adam Pound 2012
Quinn,Wald 1997

Gauge specific techniques Rosenthal 2006

Second Order Radiation-Reaction Cornell University



How Our Computation Fits In

I New Result : second-order electromagnetic self-force for
general body

I Extension of Gralla, Harte, and Wald’s first order E&M
computation

I Rigorous derivation from limiting process (no regularization of
singularities)

I Useful for physical understanding

I Method similar to matched asymptotic expansions (D’Eath
1996, Detweiler 2001, Poisson 2004)
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Context

I Flat spacetime

I Compact body with:

Fαβ = Fαβself + Fαβext

∇µFµνself = jν︸︷︷︸
compact
support

∣∣∣∣∣ ∇µFµνext = 0

Tαβ =

compact support︷ ︸︸ ︷
Tαβmatter +Tαβself-self

used for body params

+ Tαβself-ext + Tαβext-ext
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Precise Axiom Statement [Gralla, Harte, Wald]

Axiom
There exists a one-parameter family of fields consisting of the
Maxwell tensor Fµν(λ, xµ), the charge current density jµ(λ, xµ),
and the stress energy tensor TMµν (λ, xµ), which satisfy the Maxwell
equations, charge current conservation and stress-energy
conservation equations.

∇νFµν(λ, xµ) =4πjν(λ, xµ)

∇µjµ(λ, xµ) =0

∇µTµν(λ, xµ) =0

These fields have support on the open interval 0 < λ < λ0, for
some λ0. In particular, the fields need not have a solution at λ = 0.
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Precise Axiom Statement [Gralla, Harte, Wald]

Axiom
All of the fields Fµν , jµ, and TMµν are smooth in λ away from
λ = 0.

Axiom
There exists functions zi(λ, t), j̃µ(λ, t,Xi), and T̃µνM (λ, t,Xi) such
that for some global Lorentz frame coordinates (t, xi):

jµ(λ, t, xi) =λ−2j̃µ
(
λ, t,

xi − zi(λ, t)
λ

)
(1)

TµνM (λ, t, xi) =λ−2T̃µνM

(
λ, t,

xi − zi(λ, t)
λ

)
(2)

and j̃µ and T̃µνM are jointly smooth in their arguments and have
compact spatial support.
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Hypersurface Choice

I Definitions of extended body params
(mass, spin, etc) usually use integrals
over spatial hypersurfaces

I Self-energy becomes problematic at
higher orders

I Spacelike integral has dependence
on past worldline

I Radiation must be handled carefully

I We use integrals over null cones
[Harte]

I Depends exclusively on a small
region of the worldline

I Dependence on choice of
hypersurface due to non-conserved
stress energy

Pα =
∫

Σ(Tαβmatter + Tαβself-self)ξβd
3Σα
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(Worldline Dependent) Bare Multipoles

I For this presentation, I’ll use ‘bare’ Multipoles to indicate

q =

∫
Σ
dΣη̄j

η̄

Jµ(τ) =

∫
Σ
dΣη̄u

η̄jµ

Qµν(τ) =

∫
Σ
dΣη̄u

η̄jµσ(z(τ), x)ν

Pµ(τ) =

∫
Σ
dΣη̄T

µη̄

Sµν(τ) =

∫
Σ
dΣη̄T

η̄[µσ(z(τ), x)ν]

m̂ =

√
P̃µP̃µ

Qµνλ(τ) =

∫
Σ
dΣη̄u

η̄jµσ(z(τ), x)νσ(z(τ), x)λ

I Free indices are taken to indicate an implied parallel
propagator to z(τ), uβ is the parallel transported velocity

I In general, these depend on a choice of hypersurface Σ and
worldline - our results use a null surface
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A Representative Worldline

I A concept of a central worldline is
required define bulk motion and
multipoles

I Fixed by a spin-supplementary
condition (‘center of mass’)

I We take

S̃αβ(Σ)P̃(Σ)β = 0

I Defines (by a nontrivial equation) a
central worldline z(τ)

I Spin supplementary is very similar to
a gauge choice

I Changes form of equations of
motion, but not the physical result Figure: Many different worldlines;

different EOMs, same physics
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Our Perturbation Theory Notation

I Source fields are a one-parameter family Tµν(λ, xµ), and
jµ(λ, xµ)

I Derivation expands worldline (via acceleration) and body
multipoles perturbatively, e.g. :

aµ =a(0)µ + λa(1)µ +
λ2

2
a(2)µ

Q̃µν =Q̃(0)µν + λQ̃(1)µν +
λ2

2
Q̃(2)µν (3)

I Maxwell field equations, conservation of stress energy,
conservation of charge current expanded order by order to
derive DτP

(n)µ and a(n)µ

I We require also a projector for many portions, defined as
P
η
κ ≡ (gηκ + uηuκ)
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A Reminder of the First Order Form

I The form of the acceleration given in [GHW] is

(aσm̂)(1) = Dτ (a(0)
µS̃

σµ) + F (ext)σµuµq̃
(1) +Pσρ

(
2
3

(
q̃(0)
)2

(Dτa
(0)ρ)

+1
2F

(ext)
µν

;ρQ̃(0)νµ − 2Dτ (uνF
(ext)[ν|

µQ̃
(0)µ|ρ])

)
I Can be re-written as null cone integrated, renormalized

momentum:

P̃ (1)η
Pη

κ = S̃µκa(0)
µ − 2

3a
(0)κq̃(0)2 + 2PκηF

(ext)[η|
νQ̃

(0)|µ]νuµ

I And momentum derivative

Dτ (P̃ (1)η)Pη
κ = F (ext)κµuµq̃

(1) +PκηF
(ext)η

µ;νQ̃
(0)µν

I Projected equation of motion for a generalized killing
momentum from [Harte]
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First Order Mass and Spin Evolution

I Timelike component of Momentum Equation of motion

Dτ (P̃ (1)µ)uµ = 2
3(q̃(0))2a(0)

µa
(0)µ + uλF

(ext)λ
µ;νQ̃

(0)µν

I This implies a rest mass m̂ ≡
√
P̃µP̃µ evolution:

Dτm̂
(1) = 1

2DτF
(ext)

ρνQ̃
(0)ρν + 2Q̃

(0)
ρ

νF
(ext)
νµ a(0)[µuρ]

I With spin evolution also consistent with [GHW]

Dτ S̃
ην
Pη

κ
Pν

λ = 2F (ext)[ν|µ
Pν

λQ̃(1)
µ
|η]
Pη

κ
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Second Order Laws of Motion - Momentum Value

1
2 P̃

(2)η
Pη

κ = P
κ
η

[(
S̃(0)µηa(0)

µ

)(1)
−
(

2
3a

(0)η q̃(0)2
)(1)

+ 2F (ext)[η|
µQ̃

(1)|ν]µuν

+ m̂(1)S̃ηνa(0)ν
m̂(0) − S̃ηµDτ P̃ (1)

µ

m̂(0) + 2
F (ext)[η|

µP̃ (1)ν
PνρQ̃(0)µ|ρ]

m̂(0)

+2
3 q̃

(0)Q̃(0)µη
;ν ;λuµu

νuλ − 5
3 q̃

(0)a(0)
µQ̃

(0)ηµ
;νu

ν + 1
3 q̃

(0)a(0)
µa

(0)ηQ̃(0)µνuν

+1
3Dτa

(0)
µq̃

(0)Q̃(0)ηµ − F (ext)ηνuνa
(0)

σQ̃
(0)µσ

µ − F (ext)ηνa(0)
νQ̃

(0)µσ
µuσ

−1
3Dτ

(
F (ext)η

µQ̃
(0)µνλ

)
uνuλ − 1

6Dτ (F (ext)ηµuµQ̃
(0)λσρ)uλuσuρ

−1
3F

(ext)
µ
ν ;ηQ̃(0)µλρuνuλuρ −Dτ

(
F (ext)η

µQ̃
(0)νµρ

)
Pνρ

+F (ext)ησ
;ρPµνQ̃

(0)µνλuλuσu
ρ − F (ext)

ν
σ

;µuσQ̃
(0)νηµ

−16
5 F

(ext)η
µa

(0)
λP

µ
νQ̃

(0)σλνuσ + 13
6 F

(ext)ηνuνa
(0)

µQ̃
(0)µσρuσuρ

−3F (ext)η
µa

(0)
νQ̃

(0)νµλuλ + 1
3F

(ext)
µ
νuνa

(0)ηQ̃(0)µλσuλuσ

−4F (ext)ηµa(0)
µQ̃

(0)νλσuνuλuσ − 2
3F

(ext)ηνa(0)
µPνλQ̃

(0)λµσuσ

−F (ext)ν
µa

(0)
νQ̃

(0)µηλuλ + 1
5F

(ext)
µ
σa(0)

νQ̃
(0)µηνuσ

]
I This gives the relation between the various body parameters and the

total momentum of the object - increasingly complicated at high order
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Second Order Laws of Motion - Force

1
2Dτ P̃

(2)η
Pη

κ = P
κ
η

[
1
2 q̃

(2)F (ext)ηµuµ + F (ext)η
µ;νQ̃

(1)µν

+4
3 q̃

(0)Dτ

(
a(0)ηa(0)

ν

)
Q̃(0)µνuµ + 8

3 q̃
(0)Dτa

(0)
µa

(0)[η|Q̃(0)ν|µ]uν

+2
3 q̃

(0)D2
τa

(0)
µP

µ
νQ̃

(0)ην + 1
6F

(ext)η
µ;ν ;λu

νuλQ̃(0)µρσuρuσ

+1
6a

(0)
νuµF

(ext)νµ;ηQ̃(0)λρσuλuρuσ − 2
3 q̃

(0)a(0)
νa

(0)µa(0)
µQ̃

(0)ην

−1
5a

(0)
µF

(ext)ην
;ρu

ρ
PνλQ̃

(0)σµλuσ + 1
2F

(ext)η
µ;ν ;ρP

ρ
σP

ν
λQ̃

(0)µλσ

+4
5a

(0)
νF

(ext)η
µ;λP

λ
σQ̃

(0)µνσ + a(0)νF (ext)ησ
;νPλσQ̃

(0)µλ
µ

+a(0)η

m̂(0)

(
S̃(0)ν

µS̃
(0)λµa(0)

νa
(0)

λ + 4F (ext)[ν|
λS̃

(0)µ
νa

(0)
µQ̃

(0)|σ]λuσ

+8
3F

(ext)
ν

[µa(0)
µQ̃

λ]νuλ + 4F (ext)[µ|νF (ext)
[λ|νQ̃

|σ]
µQ̃|ρ]

λuσu
ρ

)]
I Momentum derivative nontrivially related to acceleration - full

dependence on external field derived from reduction of order

I ‘Internal structure’ dependence

I Mixing between multipole and self force
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Second Order Laws of Motion - Timelike Component

1
2Dτ P̃

(2)µuµ = P̃ (1)µa(1)
µ +

(
2
3(q̃(0))2a(0)

µa
(0)µ
)(1)

+ uλF
(ext)λ

µ;νQ̃
(1)µν

+4
3 q̃

(0)Dτa
(0)

µP
µ
νa

(0)
λQ̃

(0)νλ + 1
6a

(0)
µF

(ext)µν
;λuνu

λQ̃(0)σραuσuρuα

−1
5a

(0)
µF

(ext)νλ
;σuλu

σQ̃(0)ρµ
νuρ − 1

6F
(ext)

µ
ν

;λ;σuνu
λuσQ̃(0)µραuρuα

−1
2F

(ext)
µ
ν

;λ;ρuνP
λ
σP

ρ
αQ̃

(0)µσα − a(0)µF (ext)
ν
λ

;µuλQ̃
(0)νσρuσuρ

−4
5a

(0)
µF

(ext)
ν
σ

;λuσQ̃
(0)νµλ − a(0)µF (ext)

ν
λ

;µuλQ̃
(0)σρν

Pσρ

+4
3 q̃

(0)
(
D2
τa

(0)
µ + a(0)

νa
(0)νa(0)

µ

)
P
µ
σQ̃

(0)σλuλ

− 1
m̂Dτ

(
S̃νµS̃

λµa(0)
νa

(0)
λ − 4F (ext)[ν|

λS̃
µ
νa

(0)
µQ̃

(0)|σ]λuσ

−8
3F

(ext)
ν

[µa(0)
µQ̃

λ]νuλ − 4F (ext)[µ|νF (ext)
[λ|νQ̃

|σ]
µQ̃|ρ]

λ uσu
ρ

)
I Non-vanishing for pure monopole, though rest mass conserved for

monopole

I Again, internal structure and mixing of multipole and self force
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Second Order Rest Mass and Spin evolution

Dτ S̃
(1)ησ

Pη
κ
Pσ

ρ = P
κ
ηP

ρ
σ

[
2
3 q̃

(0)Dτa
(0)[σ|Q̃(0)µ|η]uµ + 1

3 q̃
(0)a(0)

µa
(0)[σ|Q̃(0)µ|η]

+F (ext)[η|
µQ̃

(1)µ|σ] + 1
3F

(ext)[η
µ

;σ]Q̃(0)µνλuνuλ

+F (ext)[η|
µ;νP

ν
λQ̃

(0)µ|σ]λ + 2
3F

(ext)[η
µa

(0)σ]Q̃(0)µνλuνuλ

+F (ext)
µ
νuνa

(0)[σ|Q̃(0)µ|η]λuλ + 4
5F

(ext)[η|
µa

(0)
νQ̃

(0)µ|σ]ν

]
I acceleration-dependence : self torque arises at second order

m̂(2) = −P̃ (2)µuµ − 1
m̂

(
2
9(q̃(0))4a(0)

µa
(0)µ + S̃νµS̃

λµa(0)
νa

(0)
λ

+4F (ext)[ν|
λS̃

µ
νa

(0)
µQ̃

(0)|σ]λuσ + 8
3F

(ext)
ν

[µa(0)
µQ̃

λ]νuλ

+4F (ext)[µ|νF (ext)
[λ|νQ̃

|σ]
µQ̃|ρ]

λuσu
ρ

)
I With these terms taken into account, monopole rest mass is

conserved.
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Worldline-Following Basis

I We define a 4-vector Pµ at each
worldline point, then choose a
tetrad basis using worldline velocity
to compute above components

I Related to a momentum in a
stationary basis by a
time-dependent boost

Pξ
â =

∫
dΣαT

αβξâβ

P̃ â =Λ(t)âb̂Pξ
b̂
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The Self Field and the Body Parameters

I We anticipated that the dependence of the self force may be
complicated and involve degrees of freedom not usually
associated with multipoles (‘internal structure’)

I However, we also anticipated that these values, like the static
case, will be encoded in the external field degrees of freedom

I This anticipation has proved a useful check on our results and
catch errors

I From this, we can work out which combinations of bare
multipoles give the true field dependence, and express the self
force in terms of the field degrees of freedom

I This defines the multipole renormalizations Q̃′s in our
equations of motion
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External field on Co-accelerating Null Cones

I Field extracted from source function via Green Functions:

Aµ(x, τ) =

∫
d4x′δ(σ(x, x′))gµν(x, x′)jν(x′)

I Re-write delta as δ(τ)/σ,τ
[Similar to Quinn 2000]

I Expand τ values near τ = τ−

I Expand σ , σ,α , gαβ near x = x′

I σ(x, x′) = 0 fixes the null cone
surface τ ′(x′, x)
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Charge Renormalization from External Field

I No guarantee that the bare multipoles directly correspond to
external field multipoles

I We start with the bare multipoles - Field expansion shows
that they’re alright to leading order

A(0)µ
l=1(τ) =

n̂ν

r2

∫
d3x′r′n̂′νj

(0)µ(τ, x′) =
n̂ν

r2
Q(0)µ

ν

I At subleading order, the field moments become more
complicated

A(1)µ
l=1(τ)uµ =

n̂ν

r2
(−Q(0)α

ν +Q(0)µ
ν
λ
,σuµuλu

σ + 2
5a

(0)
νQ

(0)µλσuµuλuσ

− 4

5
a(0)

µQ
σ
ν
µuσ − a(0)

µQ
(0)µ

ν
σuσ)
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Method of Derivation

I Assume a one-parameter family of
solutions labeled by ε such that
mass, charge and size of body are
all proportional to ε as ε→ 0
[Gralla, Harte and Wald]

I Scale parameter is the ratio of
external field scale to body size

I This gives two limits
I ε→ 0 at fixed “far zone”

coordinates, body shrinks
I ε→ 0 at fixed “near zone”

coordinates, background
stretches, body remains constant
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Deriving Laws of Motion

I Analytic derivation method - very similar to that of Gralla,
Harte and Wald:

I Expand acceleration dependent stress-energy conservation and
higher multipole equations order-by-order∫

dΣµ∇µT n̂µ =

∫
dΣµu

µF (ext)n̂νjν∫
dΣµn̂

î1...̂inrm∇µT n̂µ =

∫
dΣµu

µF (ext)n̂ν n̂î1...̂inrmjν

I Impose spin supplementary condition
I Impose Tµν = Tµνself-self for boundary integrals
I invert to find acceleration
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Process of Deriving the Laws of Motion

I Automated analytic derivation performed using xAct
mathematica package

I Consists of around 900 mathematica cells, with several
custom functions for dealing with the frame manipulations we
need for working in retarded basis tetrads

I Cascaded order-by-order equation substitution is largely
automated

I Without cached results, the code takes approximately 10-12
hours to run from start to end on a personal system

I No paralellization used
I Likely many optimizations can be made to pare that down

I Caching at several steps brings execution time down under an
hour on subsequent runs.
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Conclusions

I Rigorous limiting process-based
techniques can be used to examine
higher-order self forces

I For general (non-symmetric) bodies,
the electromagnetic dipole effects are
comperable to the first order self force,
the quadrupole effects are comparable
to the second-order self force

I These methods derive subtle effects
that would be overlooked by naively
adding point particle self force and
multipole coupling terms

I Equations of motion require careful
choice of extended body parameter
definitions
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