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Analytic Self Force Background



» Extreme mass ratio inspirals give a prominent and
long-lived GW signal ((e)LISA band)

» Small object probes the field of its companion

Self Forces: First Second
Order Order

Waveforms: | Adiabatic | Post-1/2 Post1

(Resonances) Adiabatic




Scalar/E&M

1st Order 2nd Order
Flat, Forced Limiting Process Gralla, Harte, Wald - 2009 * Our computation *
Regularized point force  Abraham, Lorentz, Dirac - 1930s X
Quin 2000; etc..
Curved, vacuum Effective Field Thy <—Ga|ley1 2010—
Regularized point force Several, eg. Barack, Ori 2000 Rosenthal! 2005
Burko 2002
Fully general Limiting Process +Harte? 2008—

1 .
Nonlinear scalar

2 . .
Not a perturbative calculation



Gravity
1st Order 2nd Order

Nonvacuum Zimmerman, Poisson 2014 X
Linz, Freedman, Wiseman 2014

Limiting Process Gralla, Wald 2008 Gralla 2012

Matched Asymptotics Mino , Sasaki, Tanaka 1997 Adam Pound 2012
Quinn,Wald 1997

Gauge specific techniques Rosenthal 2006




» New Result : second-order electromagnetic self-force for
general body

» Extension of Gralla, Harte, and Wald’s first order E&M
computation

» Rigorous derivation from limiting process (no regularization of
singularities)

» Useful for physical understanding

» Method similar to matched asymptotic expansions (D’Eath
1996, Detweiler 2001, Poisson 2004)



The Set-Up for Limiting Techniques



Context

> Flat spacetime

» Compact body with:

Second Order Radiation-Reaction

used for body params

af af
F g Fself + FeXt
%
\V4 Felf = J \V4 Fxt =0
~
compact
support
compact support
_ %6} af
% = Tl +Io self-self | T Telf ext T Lext-ext
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Precise Axiom Statement [Gralla, Harte, Wald]

Axiom

There exists a one-parameter family of fields consisting of the
Maxwell tensor F),, (A, x*), the charge current density j*(\, a*),
and the stress energy tensor T% (A, z#), which satisfy the Maxwell
equations, charge current conservation and stress-energy
conservation equations.

VYEu (A, zt) =4mg, (A, zH)
v,uju(/\ku) =0
VvV, TH (X xt) =0

These fields have support on the open interval 0 < A < Ay, for
some A\g. In particular, the fields need not have a solution at A = 0.

Second Order Radiation-Reaction Cornell University



Axiom
All of the fields F),,,, j*, and T% are smooth in A away from
A=0.

Axiom .
There exists functions z*(\, t), j*(\,t, X?), and T4 (A, t, X*) such
that for some global Lorentz frame coordinates (t,x%):

GHON t,2t) =AM ()\ t,—————— = (1)
T (A 1, 2) =\~ 2T <>\ ‘) A’”) 2)

and j* and T4} are jointly smooth in their arguments and have
compact spatial support.



Body Parameters from Field Values



» Definitions of extended body params I = = Jx(T; matter & T se|f)§,8d Yo
(mass, spin, etc) usually use integrals
over spatial hypersurfaces

> Self-energy becomes problematic at
higher orders
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» Definitions of extended body params
(mass, spin, etc) usually use integrals
over spatial hypersurfaces

> Self-energy becomes problematic at
higher orders

» Spacelike integral has dependence

on past worldline
» Radiation must be handled carefully

» We use integrals over null cones
[Harte]
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» Definitions of extended body params
(mass, spin, etc) usually use integrals
over spatial hypersurfaces

> Self-energy becomes problematic at
higher orders

» Spacelike integral has dependence

on past worldline
» Radiation must be handled carefully

» We use integrals over null cones
[Harte]
» Depends exclusively on a small
region of the worldline

:fz

af
Tmatter

self self)gﬁd E




Hypersurface Choice

C v _ B B
» Definitions of extended body params I = Js(Tratter + T seir)p0°
(mass, spin, etc) usually use integrals
over spatial hypersurfaces

> Self-energy becomes problematic at
higher orders

» Spacelike integral has dependence >
on past worldline ) P
> Radiation must be handled carefully % '

> We use integrals over null cones
[Harte]
» Depends exclusively on a small
region of the worldline
» Dependence on choice of
hypersurface due to non-conserved
stress energy

Second Order Radiation-Reaction Cornell University



(Worldline Dependent) Bare Multipoles

» For this presentation, I'll use ‘bare’ Multipoles to indicate
q:/ d¥y5" PH(T) —/ dx;TH
= pX
JH(T) = /E dxquj* SH (1) = / AL, T (2(7), )"
b

@(r) = [ dmgl o x(0), 2" i =B P

QU (r) = / 07 o (2(1), 2)" o (2(7), 2)*

> Free indices are taken to indicate an implied parallel
propagator to z(7), u” is the parallel transported velocity

> In general, these depend on a choice of hypersurface 3 and
worldline - our results use a null surface

Second Order Radiation-Reaction Cornell University



A Representative Worldline

> A concept of a central worldline is
required define bulk motion and
multipoles
» Fixed by a spin-supplementary
condition (‘center of mass’)
» We take

coaf o _
Sy Fys =0

» Defines (by a nontrivial equation) a
central worldline z(7)

» Spin supplementary is very similar to
a gauge choice

» Changes form of equations of
motion, but not the physical result

Second Order Radiation-Reaction

Figure: Many different worldlines;
different EOMs, same physics

Cornell University



» Source fields are a one-parameter family 7" (X, z*), and
g, 2t

» Derivation expands worldline (via acceleration) and body
multipoles perturbatively, e.g. :

2
a —aO8 4 gk 4 A @
2

- A2 .
Qn :Q(O)MV + )\Q(I)MV + ?Q@)uv (3)

» Maxwell field equations, conservation of stress energy,
conservation of charge current expanded order by order to
derive DTP(")“ and a(™#

» We require also a projector for many portions, defined as
P = (" + u'uy)



Laws of Motion for Momenta



» The form of the acceleration given in [GHW] is
(a7i)®) = D, (a® ,§o) + 0oy, g 4 ]pop(g(q(f))f( D.a00)
L), 0 GO _ 9D, (u, F(ext)[VHQ(O)ulp}))

» Can be re-written as null cone integrated, renormalized
momentum:

PP, = §#a), — 2a05g®2 4 ops, pEe0bl, GOvy,

» And momentum derivative
DT(P(l)")IPn" = F(ext)wuuq(l) + Pnnp(ext)nu;VQ(O)W

» Projected equation of motion for a generalized killing
momentum from [Harte]



» Timelike component of Momentum Equation of motion

Dy (PM#Yu, = 2(59)2a0) 008 + uy OO, GOR
> This implies a rest mass 7 = 1/ P, P evolution:

Dy = Ip Flet) QO 4 2@20)'/ FV(ZXt)a(O)[uup]

» With spin evolution also consistent with [GHW]

DTgnupnanA — QF(ext)[VIMIPV/\Q(l)MIW]]Pn/i




- - (1) -
Lp@np,r = pr, [ (S(O)xma(())u) _ (gam)ng(on)(l) + 2RE0l QUWy,,

+m(1)gnua(0)y _ gnuDTﬁ(l)H n 2F(EXt)[TI\HP(UV]PVPQ(O)MP]
m(0) 17,(0) ~ 11 (0) ~
+§q(0)Q(O)ﬂ";V;Auuu”u>‘ _ %Q(O)Q(O)HQ(O)W;UUV + %q(O)G(O)Ha(O)nQ(O)wuV

+% DTa(O)#q’(O)Q(O)ﬂ# _ F(ext)nvuua(O)GQ(O)wu _ F(ext)nva(O)VQ(O)wMua

—%DT (F(ext)n#Q(O)uw\) Uyl — %DT(F(eXt)WuMQ(O))“’P)u,\ugup

—%F(eXt)u”;”Q(O)“’\PuyuAup - D, (F(ext)an(O)Vup) P.,

+ F(eXt)WU;p]PIWQ(O)IWAu/\uUuP — F(ex"),,"mugc}(o)""“
_15_6F(ext)npa(O)/\IPNVQ(O)MVUU + %F(ext)nuuya(f))pQ(O)Wpuaup
_3F(ext)n”a(0),’@(0)vu/\u)‘ 4 %F(ext)#Vuya(O)nQ(O)w\ouwa

_4F(ex*c)7ma(0)uQ(O)W\ffuyu/\u(7 _ %F(eXt)’?”a(O)HIP,,)\Q(U))‘WU,,

ety g0, GOy, 4 L F(ext)ﬂaa(O)VQ(O)unvua}

» This gives the relation between the various body parameters and the
total momentum of the object - increasingly complicated at high order



%DTIE’(Q)"IP,,“ = P~ [ q(2)F(e><t)wu +F ext)n Q(l)/w

_pglg(O) D. (a(O)na(O)y) Q(O)uvuﬂ + 3(5(0) D-a©® ,a Ol QO Ikly,,
+%q‘(0) Dga(o)u]pqu(O)nv + % F(eXt)"u;y; /\uvuAQ(O)upaupua
+%a(0)vuu F(ext)vqu(O)Apouwpua _ %Cj(O)a(O)Va(O)ua(O)HQ(O)nV
_%a(O)#F(ext)m/;puppw\Q(O)aw\ua + %F(ext)nu;y;pIPpalpvl\Q(O)w\cf
_|_%Q(O)VF(ext)nm/\IpAUQ(O)MW + a(O)VF(ext)ntfW]pMQ(O)w\M

2 (g(oqu(owa(o%a(mA 4 AFEDV GO, ) GOy,

8 (), Ing(0), Gy 4 4F (Dl plex) W@'”M@Wuaup)]

» Momentum derivative nontrivially related to acceleration - full
dependence on external field derived from reduction of order

» ‘Internal structure’ dependence

» Mixing between multipole and self force



1D, P2y, = POraM), 4 (§(5<o>)2a(o>ua<0)u)<” FupFEON  Qmv
+340 D0, Pr,a©®, QO 1 LoO) ety AQOTPay 1y,
—L1a0), OO o0 QO — LEED vy e QOO
_ %F(ext)uv;/\;pu,}]pAUIppaQ(O)wa — a(o)"‘F(eXt)V’\;HUAQ(O)”U’DUGUP
—400), F©0,7 4, GO _ qOrpED) A 4y GOop,
+140 (D26, + a©,,a@¥4® ) Pr GOy,

_ip, <gup §al0),0), — 4RO, G 00 OOy,
_E (o), g0, (Mg, — 4PN ple) | Ole] 0N u,,uﬂ>

» Non-vanishing for pure monopole, though rest mass conserved for
monopole
» Again, internal structure and mixing of multipole and self force



DTS’(l)""]Pn""IPUP =P*,P*, %q(O)DTa(O)[o@(O)uIn]uN + %5(0)a(O)pa(O)[UIQ(O)#\n]
+F(ext)[n|MQ(1)u\0] + %F(ext)[nu;U]Q(O)uMuuu)\
+F(ext)[n|u;VIPV/\Q(O)uIU]A 4 %F(ext)[nua(o)tf]Q(O)/W/\uyu/\

(), vy Ol GOl 3 F(ext)[m#a<o>yQ(0>ma}u]
> acceleration-dependence : self torque arises at second order
Mm@ = — POy, — L(2(50)150),4O1 1 §v,53q(0),40),
_|_4F(6><t)[r/|/\guya(O)HQ(O)|<7]>\u(7 + gp(ext)y[ua(U)MQA]VuA
A POl prlext) [ApQ"’]uQmﬁuau”)

» With these terms taken into account, monopole rest mass is
conserved.



Derivation Process



Worldline-Following Basis

> We define a 4-vector P* at each
worldline point, then choose a
tetrad basis using worldline velocity
to compute above components

> Related to a momentum in a
stationary basis by a
time-dependent boost

Pt = / dX, TP

P =A(t)" P

Second Order Radiation-Reaction

Cornell University



The Self Field and the Body Parameters

» We anticipated that the dependence of the self force may be
complicated and involve degrees of freedom not usually
associated with multipoles (‘internal structure’)

» However, we also anticipated that these values, like the static
case, will be encoded in the external field degrees of freedom

» This anticipation has proved a useful check on our results and
catch errors

» From this, we can work out which combinations of bare
multipoles give the true field dependence, and express the self
force in terms of the field degrees of freedom

» This defines the multipole renormalizations Q's in our
equations of motion

Second Order Radiation-Reaction Cornell University



External field on Co-accelerating Null Cones

» Field extracted from source function via Green Functions:

A (3, 7) = / /5 (o(2, 7)) g (2, 2')* (')

v

Re-write delta as §(7) /o +
[Similar to Quinn 2000]

Expand 7 values near 7 = 7_

v

v

— !
Expand 0, 04, gog near x =

v

o(z,2") = 0 fixes the null cone
surface 7/'(2/, )

Second Order Radiation-Reaction Cornell University



> No guarantee that the bare multipoles directly correspond to
external field multipoles

» We start with the bare multipoles - Field expansion shows
that they're alright to leading order

0 n’ 3 1 11 (0 , " o
Al )'ulzl(T) =3 d xrﬁuj( )“(7-,;5 )= EQ( )uy
> At subleading order, the field moments become more
complicated

ADR_ (), = 7:_2( — QO 4+ QO Ly s + 200, QO uyu,
4

— 200,Q7 4 = Q0% u,)



> Assume a one-parameter family of
solutions labeled by € such that
mass, charge and size of body are
all proportional to e as e — 0
[Gralla, Harte and Wald]

» Scale parameter is the ratio of
external field scale to body size
> This gives two limits

» ¢ — 0 at fixed “far zone"
coordinates, body shrinks




> Assume a one-parameter family of
solutions labeled by € such that
mass, charge and size of body are
all proportional to e as e — 0
[Gralla, Harte and Wald]

» Scale parameter is the ratio of
external field scale to body size
> This gives two limits

» ¢ — 0 at fixed “near zone”
coordinates, background
stretches, body remains constant




> Analytic derivation method - very similar to that of Gralla,
Harte and Wald:

» Expand acceleration dependent stress-energy conservation and
higher multipole equations order-by-order

/ A,V T = / X, ut FEO™ j,
/dzﬂﬁglu'%"vauTﬁM :/dzuuuF(ext)ﬁVﬁgl...%nijy

> Impose spin supplementary condition
> Impose TH =T ¢ for boundary integrals
> invert to find acceleration



Process of Deriving the Laws of Motion

» Automated analytic derivation performed using xAct
mathematica package

» Consists of around 900 mathematica cells, with several
custom functions for dealing with the frame manipulations we
need for working in retarded basis tetrads

» Cascaded order-by-order equation substitution is largely
automated

» Without cached results, the code takes approximately 10-12
hours to run from start to end on a personal system
> No paralellization used
> Likely many optimizations can be made to pare that down
» Caching at several steps brings execution time down under an
hour on subsequent runs.

Second Order Radiation-Reaction Cornell University



Conclusions

» Rigorous limiting process-based
techniques can be used to examine
higher-order self forces

» For general (non-symmetric) bodies,
the electromagnetic dipole effects are
comperable to the first order self force,
the quadrupole effects are comparable
to the second-order self force

» These methods derive subtle effects
that would be overlooked by naively
adding point particle self force and
multipole coupling terms

» Equations of motion require careful
choice of extended body parameter
definitions

Second Order Radiation-Reaction Cornell University
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