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Talk Overview
• Introduction to Gauge Invariants 

• Recent Gauge Invariants: Spin Precession, Tidal Tensor 

• Deriving New Invariants: Octupoles 

• Expressions in Terms of the Perturbed Metric 

• Computational Methods  
• Frequency Domain: Regge-Wheeler Gauge 

• Frequency Domain: Lorenz Gauge 

• Post Newtonian Expansion:MST 

• Results 
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• PN behaviour of Octupoles 
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Spin Precession I
• For circular orbits, have a killing vector                    

and axial vector      such that  

• Define Lie- and Parallel-transported tetrads:  
 
 

• Find these are related by:
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Spin Precession II
• Looking for physical 

quantities proportional to 
1st derivative of the 
metric (     ). 

• Spin precession       is 
exactly the quantity we’re 
looking for: 

• Find variation        by 
calculating the terms like
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Variation

• Total variation given by two terms  
 
 
 

• Reduces to just an expression as function of metric 
perturbation 
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• Newtonian Example: Have potential    , and particles  x   
and  z  located at                           ,  , so  
 
 

• Now Taylor Expand Potentials: 
 
 
 
 
Gives us a “geodesic deviation”:
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Tidal Tensor II
• Have similar equation in GR, where the        previously 

(describing curvature) is constructed from            :  
 

• Also have similar equation for          , the hodge dual 
corresponding to Papapetrou eqns: 

• Can make a suitable choice of basis tetrad such that     
matrices    and    seperate. Find 5 L.I. invariants:
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Octupolar Terms

• Begin by defining a tetrad as for tidal case,so that 
Eij is diagonal in perturbed spacetime. 

• Consider 3rd derivs of metric 

• Define contractions similar to quadrupole case for 
octupole moments:
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Octupoles II
• Have 64 terms, but lots of symmetry.  

• Circular orbit+reflection symmetry     many terms zero. 

• Time independence     many terms given by quadrupoles. 

• Bianchi Identity, Trace conditions     relations between octupole terms. 

• Left with just 4+3 new independent terms:  
 
 
 
Non zero unperturbed terms given by  
 

)

)
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E333 = 0
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Electric Conservative, 1 trace eqn 
Electric Dissipative, 1 trace eqn 

Magnetic Dissipative, 1 trace eqn



Collected numerous gauge invariants up to 
octupolar moment in the perturbed field: 

All just dependent on                 ; Calculating 
these gives us gauge invariant quantities. 
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Circular Orbits: Lorenz
• Compute frequency domain circular orbit metric 

perturbation for two gauges, Lorenz & Regge-Wheeler. 

• Lorenz takes the physically motivated gauge choice         
to simplify a standard wave equation:  
 

• Spherical decomposition leaves {6 even +4 odd} fields, - 
(3 even +1odd) gauge equations to solve. 

• 4 +2 coupled equations. Awkward to solve but easier to 
regularise.
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Circular Orbits: RW
• Regge-Wheeler gauge is defined by setting a selection of 

3 even +1 odd field to zero. 

• Reduces Einstein’s equations to just one even plus one 
odd field equation: 

• Usually can’t be regularised, due to singularities in 
perturbation expressions; For GIs however, can just use 
Lorenz gauge RPs. 

• Single field means quicker and easier to solve.
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Solving Perturbations

• Whichever gauge we choose, the wave 
equations must be solved numerically. 

• First find boundary conditions via power 
law expansions at boundaries:  
 
 
 
 
 

• Numerically solve inwards from 
boundaries to get solutions at particle.
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MST

• Using MST (Chris’s talk tomorrow), construct 
analytical expressions for the PN series in R-W 
gauge. 

• Can compare these against our numerical results 
to provide a 3rd check of our calculations. 



Regularisation
• Taking higher derivatives comes at a cost: extra 

derivatives of harmonics increase  -mode divergence 
 

• Must subtract off regularisation parameters   by   : 
 
 
 
 
So codes need higher accuracy with each derivative. 
(lose 2-3 orders of magnitude per factor of  )
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R-W v Lorenz

Comparing RW to Lorenz codes. See excellent agreement to 
~22 sf for all gauge invariants.



E-type Octupoles

Comparing Codes with PN parameters extracted from MST 
method, for          .�E122

lost accuracy due  
to regularisation



B-type Octupoles

Similar comparison for magnetic-type fields          . again see 
accuracy floor at ~22 s.f.

�B123

no singular piece  
to regularise



Light Ring Divergence

Near the light ring, can extract divergent behaviour for 5 of 6 
conservative fields.           can’t quite be resolved in this range.�B233



Conclusions
• Results have extracted very high order PN 

expressions, and combined with Light Ring data 
can be used for EOB calibrations.  

• Found as with tidal case that most fields were 
conservative, but again have some dissipative  
 
modify particle orbits at higher order. 

• Next steps: extend gauge invariant calculations to 
Kerr (Chris) and generic orbits (Sarp).
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